
A Framework for Privacy Preferences and
Data-Handling Policies

Moritz Y. Becker Alexander Malkis
Laurent Bussard

September 2009

Technical Report
MSR–TR–2009–128

Microsoft Research
Roger Needham Building
7 J.J. Thomson Avenue
Cambridge, CB3 0FB

United Kingdom



A Framework for Privacy Preferences and

Data-Handling Policies

Moritz Y. Becker Alexander Malkis Laurent Bussard

September 2009

This paper presents SecPAL4P, a language for specifying both users’ preferences
on how their personally identifiable information (PII) should be treated by data-
collecting services, and services’ policies on treating collected PIIs. Preferences
and policies are specified in terms of granted rights and required obligations, ex-
pressed as assertions and queries in an instance of SecPAL (a language originally
developed for decentralized authorization). This paper further presents a formal
definition of satisfaction between a policy and a preference, and a satisfaction
checking algorithm. Based on the latter, a protocol is described for disclosing
PIIs between users and services, as well as between third-party services.

1 Introduction

Increasing amounts of personal information are being collected by Internet ser-
vices today. For instance, commercial sites typically require users to provide
their credit card details and contact information. In social networks, users
voluntarily disclose personal information to large communities. In cloud com-
puting, users’ applications and data reside in the “cloud”, spanning multiple
regulatory environments. Finally, the community-wide electronic health record
services that are being developed around the globe will store a vast amount of
patient-confidential data.

Naturally, users are becoming increasingly aware and concerned about pri-
vacy issues, and want to disclose their personal information only to services that
they trust to handle their data in a way that satisfies their (usually implicit)
preferences. However, most users do not want to invest much time in reading
websites’ privacy policies or in configuring their own preferences. Indeed, in
most domains, support for privacy is not yet seen as a competitive advantage,
and pressure from users and regulators (see e.g. European directives on privacy
[13, 14]) is necessary to convince service providers.

Currently, there is no satisfactory solution for specifying and matching users’
privacy preferences and services’ data-handling policies. Languages such as P3P
[20], APPEL [19], EPAL[1], and Prime-DHP [3] lack a formal specification of
when a policy satisfies a preference, are not easily human-readable, and cannot

1



express certain statements that seem useful in practice. The latter include
obligations (requirements on the service’s behaviour, e.g. to forget the data
after some maximum period of time) and restrictions on third-party information
disclosure, where the user’s data may be forwarded between multiple services.

There are two main issues to be considered when personal data is about to
be disclosed and collected by a service. Firstly, the user and the service have
to agree on how the data will be handled by the service. In other words, it
has to be checked whether the service’s data-handling policy satisfies the user’s
privacy preference on this piece of data. Secondly, services have to be trusted
to comply with their own data-handling policies.

This work solves the first issue by offering a mechanism for specifying user
preferences and service policies, and for checking satisfaction between policies
and preferences. The second issue is partially addressed by providing a frame-
work that formally specifies the notion of compliance. This framework is delib-
erately kept abstract; concrete mechanisms for checking or enforcing compliance
are therefore not within the scope of this work.

Our main technical contributions are as follows:

1. An abstract framework that formalises the notions of preferences and poli-
cies, as well as satisfaction and compliance.

2. A highly expressive, declarative language for expressing both users’ pri-
vacy preferences and services’ data-handling policies. The language sup-
ports permissions and obligations, is close to natural language, and has a
formal semantics. The language is based on SecPAL, a language originally
designed for specifying authorization policies in decentralized systems. We
call our language SecPAL for Privacy (SecPAL4P).

3. A data disclosure protocol for determining if a service’s policy satisfies a
user’s preference, and ensuring that the preference is respected when data
is forwarded to and between third party services.

This paper is organized as follows: Section 2 gives an informal overview of
SecPAL4P and briefly summarizes the underlying language SecPAL. Section 3
illustrates the language and the protocol by means of an extended example. Sec-
tion 4 defines SecPAL4P as an instance of SecPAL, and presents an algorithm
for checking satisfaction between a policy and a preference. Section 5 presents
the abstract framework that formalises the notions of preference, policy, sat-
isfaction and compliance. Section 6 describes the protocol for data disclosure
and fowarding. Related work is discussed in Section 7. We conclude in Sec-
tion 8 with a discussion on possible extensions, limitations of our approach, and
potential future work. Finally, proofs are provided in an appendix.

2 Overview

The user has a collection of pieces of personally identifiable information (PII).
The user specifies a preference on handling her PIIs. Services specify a data-

2



handling policy on treating users’ PIIs. During an encounter between a user and
a service, it is checked whether the service’s policy satisfies the user’s preference.
If a service complies with its own policy, then this check guarantees that it also
complies with the user’s preference. Policies and preferences may also specify
the conditions when a PII may (or must) be forwarded to a third-party service.
A protocol for data forwarding should ensure that a service may only get hold
of a user’s PII if this particular communication of the PII is in accordance
with the user’s preference, and the service’s policy satisfies the preference. The
framework presented here provides a language for specifying user preferences
and service policies, and a method for checking satisfaction between a policy
and a preference.

The following gives a more detailed intuition on the intended meaning of
preferences and policies. We assume that there is a predefined collection of PII-
relevant service behaviours, and a corresponding vocabulary for representing
these behaviours. These are generally domain-specific, and may include “using
an email address for marketing”, “forwarding contact details to trusted sellers”,
“deleting credit card details within one month” or “retaining X-rays for at least
10 years”.

A user preference can be divided into two parts. The first part specifies
an upper bound on a service’s behaviours with respect to the user’s PIIs. It
therefore expresses what a service is permitted to do. The second part specifies
a lower bound on a service’s behaviours. It therefore expresses obligations, i.e.
the behaviours that a service must exhibit towards a PII.

A service policy can also be divided into two parts. The first part specifies
an upper bound on its own PII-relevant behaviours. It therefore expresses and
advertises the possible behaviours of the service. The second part specifies a
lower bound on its behaviours. Therefore, these are promised behaviours.

Checking that a policy satisfies a preference consists of two steps. Firstly,
every behaviour declared as possible in the policy must be permitted by the
preference. Therefore, it is checked that the upper bound specified in the policy
is contained in the upper bound specified in the preference. Secondly, every
behaviour declared as obligatory in the preference must be promised by the
policy. Therefore, it is checked that the lower bound specified in the preference
is contained in the lower bound specified in the policy.

This duality is reflected in the language. The upper bound on behaviours is
specified as phrases using the may verb. More specifically, the upper bound is
specified in the user preference as a collection of may-assertions, e.g.

〈Usr〉 says 〈Svc〉 may use FaxNo for Contact.

In the service policy, the upper bound is specified as a may-query, because
the corresponding possible behaviours should be a subset of the permitted be-
haviours. Intuitively, a service must ask for permission upfront for anything
that it might do with a user’s PII in the future. Here is a simple may-query :

〈Usr〉 says 〈Svc〉 may use Email for Marketing?

3



The lower bound on behaviours is specified as phrases using the will verb. More
specifically, the lower bound specified by the user preference is stated in terms
of a will-query. Intuitively, a user asks the service to promise the obligatory
behaviours. Here is an example of a will-query, in which the user requires the
service to delete her email address within two years:

∃t (〈Svc〉 says 〈Svc〉 will delete Email within t? ∧ t ≤ 2 yr?)

In the service policy, the lower bound is specified as a collection of will-assertions.
The following assertion would satisfy the query above:

〈Svc〉 says 〈Svc〉 will delete Email within 1 yr.

Checking if a service policy satisfies a user preference is now straightforward.
We just need to check if the may-query in the policy and the will-query in
the preference are both satisfied. In general, queries are not satisfied by a
single assertion but by a set of assertions. This is because assertions may have
conditions that depend on other assertions, and authority over asserted facts
may be delegated to other principals. This is why the queries are evaluated
against the union of the assertions in the policy and the preference.

2.1 SecPAL Overview

SecPAL4P is based on SecPAL, a language for writing authorization policies in
decentralized systems [6, 11]. A concise and up-to-date formal specification of
SecPAL can be found in [4]. This section provides a brief overview of the syntax
of SecPAL.

A SecPAL authorization policy is a set of assertions α of the form

E says f0 if f1, ..., fn where c

where E is a constant1, the fi are facts, and c is a constraint on variables
occurring in the assertion. A constraint is a formula from some domain-specific
constraint language.

A phrase of syntax is ground iff no variables occur in it, and closed if no free
variables (i.e., in the scope of a quantifier) occur in it.

The syntax for facts is defined below.2 Henceforth, we keep to the following
conventions for symbols: x, y denote variables, E,U, S constants from the set
Const, e denotes an expression (i.e., either a variable or a constant), c a con-
straint, p a predicate, a an atom, f a fact, F a ground fact, α an assertion,
A a set of assertions, θ a variable substitution, and γ a ground total variable
substitution (mapping every variable to a constant). As usual, an atom is a

1Intuitively, E is of type principal, but for simplicity we omit types in this presentation,
even though they would be used in a real implementation.

2For simplicity, we omit SecPAL’s fact construct can say0 here, as it is not needed in our
examples.

4



predicate symbol applied to a tuple of expressions of the right arity. The pred-
icate symbols are domain-specific, and we often write atoms in infix notation,
e.g. Alice can read x, or y is a trusted seller.

Fact f ::= a
| e can say f

In an assertion α = 〈e says f if f1, ..., fn where c〉, e is the issuer, f the head,
f1, ..., fn the body, and c the constraint of α. The keyword if is omitted when
n = 0; likewise, where c is omitted when c = true.

The syntax of queries q is defined as follows.

Query q ::= e says f?
| c?
| ¬q
| q1 ∧ q2
| q1 ∨ q2
| ∃x(q)

Let ~x = 〈x1, ..., xn〉. We write ∃~x(q) to denote ∃x1(...∃xn(q)...).
Queries are evaluated against sets of assertions. If A is a set of assertions

and q a closed query, then we write A ` q iff q evaluates to true in the context of
A. We refer to [4, 6] for the formal definition of `. A syntactic safety condition3

ensures that query evaluation is sound and complete and terminates.

3 Example

Before we define the language and its semantics, we describe an extended exam-
ple. In our example, the user Alice has an encounter with the service eBooking,
which wants to collect her email address. Alice’s privacy preference relating to

3Note that many of the assertions typically written in SecPAL4P would be unsafe according
to the safety condition in [6] and [5]. They are, however, safe according to the more liberal
IN/OUT-safety condition in [4].

5



her email address consists of five assertions and a query:

Pr.1 Alice says x may use Email for p if
x is a BookingSvc,
where p ∈ {Confirmation,Newsletter,Stats}

Pr.2 Alice says x may delete Email within t

Pr.3 Alice says x may send Email to y if
x is a BookingSvc,
y is a TrustedPartner

Pr.4 Alice says CA can say x is a y

Pr.5 Alice says x can say y is a TrustedPartner if
x is a BookingSvc

PrQ.6 Alice says 〈Svc〉 is a RegisteredSvc? ∧
∃t (〈Svc〉 says 〈Svc〉 will delete Email within t? ∧ t ≤ 30 days?)

Pr.1 allows booking services to use Alice’s email address for sending confir-
mations and newsletters, and for statistical purposes. Pr.2 permits any data
collector to forget her email address. Pr.3 allows booking services to forward
her email address to trusted partners. Pr.4 and Pr.5 use SecPAL’s can say
mechanism to express delegation of authority. Alice delegates authority over
“is a”-facts to the certificate authority CA, and she allows booking services to
define for themselves who their trusted partners are. PrQ.6 is a will-query. It
specifies that Alice is only considering encounters with registered services, and
only with services that promise they will forget about her address within a
month.

The service eBooking has a policy consisting of three assertions and a query:

Pl.1 eBooking says eBooking will delete Email within 15 days

Pl.2 CA says eBooking is a RegisteredSvc

Pl.3 CA says eBooking is a BookingSvc

PlQ.4 〈Usr〉 says eBooking may use Email for Confirmation? ∧
〈Usr〉 says eBooking may use Email for Stats? ∧
〈Usr〉 says eBooking may delete Email within 15 days?

In Pl.1, eBooking promises to delete email addresses within 15 days. Pl.2 and
Pl.3 are credentials issued by CA, and PlQ.4 is a may-query in which the ser-
vice declares that it may use email addresses for confirmation and statistical
purposes, and that it may delete email addresses within 15 days.

To check if eBooking’s policy satisfies Alice’s preference, the placeholders
〈Usr〉 and 〈Svc〉 are replaced by Alice and eBooking, respectively, and the will-
query and the may-query are evaluated against the union of all assertions. The
first part of the will-query succeeds because of Pl.2 and Pr.4. The second part
succeeds because of Pl.1. The may-query also succeeds because Pl.3 and Pr.4

6



together prove that eBooking is a booking service, and because of Alice’s may-
assertions Pr.1 and Pr.2. Thus the policy satisfies the preference, so by our
correctness theorem 5.8 from Section 5, as long as eBooking indeed deletes the
email address within the next 15 days and uses it for no other purposes but
confirmation and statistics, eBooking’s behaviour will also comply with Alice’s
preference.

Now suppose eBooking would like to share Alice’s email address with
eMarketing, one of its third-party partners. Since this is not within its pol-
icy, it will need to amend the policy and rerun the queries. First, it adds the
following assertion:

eBooking says eMarketing is a TrustedPartner

Secondly, the amended may-query is the conjunction of the old may-query and
the following may-query:

〈Usr〉 says eBooking may send Email to eMarketing?

Now, the unchanged will-query and the amended may-query have to be re-
evaluated against the new collection of assertions, and indeed, the queries eval-
uate to true. However, this only proves that eBooking’s action of sharing the
email address with eMarketing is permitted. But we also must ensure that
eMarketing’s policy also satisfies Alice’s preference. Suppose eMarketing’s pol-
icy is as follows:

Pl′.1 eMarketing says eMarketing will delete Email within 30 days

Pl′.2 CA says eMarketing is a RegisteredSvc

PlQ′.3 〈Usr〉 says eMarketing may use Email for Marketing? ∧
〈Usr〉 says eMarketing may delete Email within 30 days?

To check if eMarketing’s policy satisfies Alice’s preference, eBooking must have
kept a copy of Alice’s original, uninstantiated preference. This time, the place-
holders 〈Usr〉 and 〈Svc〉 are instantiated by Alice and eMarketing, respectively,
and the queries PrQ.6 and PlQ′.3 are evaluated against Alice and eMarketing’s
instantiated assertions. In this case, PlQ′.3 fails because Alice has not permitted
her email address to be used for marketing purposes, so eBooking will refrain
from sharing the email address with eMarketing.

4 SecPAL4P

This section defines SecPAL4P, an instance of SecPAL for specifying both users’
preferences and services’ policies.

In order to represent PII-relevant service behaviours, we fix a set of pred-
icate symbols BehSymb. Atoms constructed from predicates in BehSymb are
called behaviour atoms. These are often written in infix notation and may in-
clude atoms such as 〈use FaxNo for Contact〉 and 〈delete Email within 1 yr〉.

7



Henceforth, we write b to denote a behaviour atom, B for a ground behaviour
atom, and B for a set of ground behaviour atoms.

We extend the syntax of facts by two constructs:

Fact f ::= ...
| e may b
| e will b

Definition 4.1. A user-service pair τ = (U, S) is a pair of constants denoting
the user U and the service S during an encounter.

Recall that the lower bound on service behaviours specified in users’ pref-
erences and the upper bound specified in services’ policies are expressed as a
will-query and a may-query, respectively, as defined below.

Definition 4.2. Let τ = (U, S) be a user-service pair.

• A τ -will-query is a query in which no subquery of the form S says S will b?
occurs in the scope of a negation sign (¬).

• A τ -may-query is a query in which no subquery of the form U says S may b?
occurs in a disjunction or in the scope of an existential quantifier or a
negation sign.

The definition above syntactically restricts the query occurring in a policy
or a preference to those that can be given an intuitive meaning in terms of an
upper bound or a lower bound on behaviours, such that the standard SecPAL
query semantics matches this meaning. Disjunction and, similarly, existential
quantification are allowed within a will-query, e.g.

∃t (S says S will delete Email within t? ∧ t ≤ 2yr?)

In may-queries, however, disjunction does not make much sense. If a service
wanted to state that it may possibly use the user’s email address for contact or
for marketing, it would specify a conjunctive query:

U says S may use Email for Contact? ∧
U says S may use Email for Marketing?

If this query is successful in the context of U ’s preference, the service is permitted
to use the email address for contact, for marketing, or for both, or to not use it
at all.

Definition 4.3. A τ -preference is a pair (Apr, qw) where Apr is a set of asser-
tions and qw a closed τ -will-query. A τ -policy is a pair (Apl, qm) where Apl is a
set of assertions and qm a closed τ -may-query.

As already mentioned informally, satisfaction between a policy and a pref-
erence is checked by evaluating the queries against the union of both the user’s
and the service’s assertions:

8



Definition 4.4. A τ -policy (Apl, qm) satisfies a τ -preference (Apr, qw) iff Apl∪
Apr ` qm ∧ qw.

We assume that on an encounter between U and S, U provides a (U, S)-
preference and S provides a (U, S)-policy. In practice, preferences and policies
are written with placeholders that get instantiated when the encounter is initi-
ated, with values that are specific to the encounter. In particular, the concrete
syntax may include 〈Usr〉 and 〈Svc〉 that get instantiated with U and S, respec-
tively. The formal sections in this document assume that such placeholders in
preferences and policies have all been instantiated.

The definitions above formally specify an algorithm for checking if a policy
satisfies a preference, but they do not show that the algorithm is correct. In-
deed, there is as yet no definition of what we mean by correct. The following
section formalises a notion of correctness and proves correctness of the satisfac-
tion checking procedure.

5 Trace Semantics

Policies and preferences specify upper and lower bounds on services’ behaviours.
So what we are interested in is whether a particular run, or trace, of a service
complies with a policy or a preference. Since we are only interested in which PII-
relevant behaviours a trace exhibits, we keep the notion of trace as abstract as
possible. We assume a set whose elements are called traces, as well as a function
Beh which maps each trace to a set of ground behaviour atoms. Intuitively,
a trace t exhibits exactly the behaviours in Beh(t). (And conversely, every
ground behaviour atom can be seen as a trace property.)

Fig. 1 provides an overview of the formal notation introduced in this section.

Definition 5.1. A trace t complies with a set of traces T iff t ∈ T . A set of
traces T1 is at least as strict as a set of traces T2 iff T1 ⊆ T2.

In the following, we show how policies and preferences can be mapped to
sets of traces. Furthermore, we will show that if a policy satisfies a preference,
then the set of traces induced by the policy is at least as strict as the set induced
by the preference.

Then checking that a policy satisfies a preference is sufficient for proving that
the trace exhibited by the service complies with the user preference, assuming
that the trace also complies with the service’s own policy. This follows from the
simple lemma below:

Lemma 5.2. Let t be a trace and T1, T2 be sets of traces. If t complies with
T1 and T1 is at least as strict as T2 then t also complies with T2.

5.1 Trace Semantics of Policies

We first define two auxiliary relations that are used for specifying the trace
semantics of a policy.

9



B |=wa
τ,A Apl Behaviours B include all the promises made by the will-

assertions in A ∪Apl.

B |=mq
τ,A qm Behaviours B are contained in the behaviours for which per-

mission is asked for in the τ -may-query qm, in the context
of A.

B |=ma
τ,A Apr Behaviours B are contained in the behaviours permitted by

the may-assertions in A ∪Apr.

B |=wq
τ,A qw Behaviours B include all the obligations required by the

τ -will-query qw, in the context of A.

t |=pl
τ,A Πpl Trace t complies with policy Πpl, in the context of A.

t |=pr
τ,A Πpr Trace t complies with preference Πpr, in the context of A.

[[Πpl]]
pl
τ,A Set of all traces that comply with policy Πpl, in the context

of A.

[[Πpr]]
pr
τ,A Set of all traces that comply with preference Πpr, in the

context of A.

Figure 1: Overview of the formal notation in Section 5

Promised obligations Let τ = (U, S), let A, Apl be sets of assertions, and
B a set of ground behaviour atoms. The relation B |=wa

τ,A Apl holds if the be-
haviours in B include all behaviours promised by will-assertions in Apl, together
with the foreign assertions A in the context (later, A will be instantiated to the
assertions from the user preference).

B |=wa
τ,A Apl iff B ⊇ {B | A ∪ Apl ` S says S will B}

Queried permissions Let τ = (U, S), A be a set of assertions, B a set of
ground behaviour atoms, and qm a τ -may-query. The relation B |=mq

τ,A qm holds
if all behaviours in B are contained in the behaviours that may be exhibited,
as specified by qm, in the context of A (later, A will be instantiated to the
assertions from both the service policy and the user preference). The relation
is defined inductively as follows:

B |=mq
τ,A U says S may B? if B ⊆ {B}

B |=mq
τ,A q1 ∧ q2 if there exist B1,B2 such that

B = B1 ∪ B2 and B1 |=mq
τ,A q1 and B2 |=mq

τ,A q2

∅ |=mq
τ,A q if A ` q and no subquery of the form

〈U says S may B?〉 occurs in q

The following definition formalizes the trace semantics of a policy in the
context of a set of assertions.

10



Definition 5.3. Let τ = (U, S), Πpl = (Apl, qm) be a policy, and A a set of
assertions. Then

B |=pl
τ,A Πpl iff B |=wa

τ,A Apl and B |=mq
τ,Apl∪A qm.

Let t be a trace. Then

t |=pl
τ,A Πpl iff Beh(t) |=pl

τ,A Πpl.

We write [[Πpl]]
pl
τ,A to denote the set of all traces t such that t |=pl

τ,A Πpl.

5.2 Trace Semantics of Preferences

Permissions Let τ = (U, S), let A, Apr be sets of assertions, and B a set
of ground behaviour atoms. The relation B |=ma

τ,A Apl holds if all behaviours
in B are contained in the set of behaviours permitted by the may-assertions
in Apl, together with the foreign assertions A in the context (later, A will be
instantiated to the assertions from the service policy).

B |=ma
τ,A Apr iff B ⊆ {B | A ∪ Apr ` U says S may B}

Obligations Let τ = (U, S), A be a set of assertions, B a set of ground
behaviour atoms, and qw a τ -will-query. The relation B |=wq

τ,A qw holds if the
behaviours in B include all behaviours specified as required by qw, in the context
of A (later, A will be instantiated to the assertions from both the service policy
and the user preference). The relation is defined inductively as follows:

B |=wq
τ,A S says S will B? if B ⊇ {B}

B |=wq
τ,A q1 ∧ q2 if B |=wq

τ,A q1 and B |=wq
τ,A q2

B |=wq
τ,A q1 ∨ q2 if B |=wq

τ,A q1 or B |=wq
τ,A q2

B |=wq
τ,A ∃x(q) if there exists E ∈ Const : B |=wq

τ,A q[E/x]

B |=wq
τ,A q if A ` q and no subquery of the form

S says S will B? occurs in q

The following definition formalizes the trace semantics of a preference in the
context of a set of assertions.

Definition 5.4. Let τ = (U, S) be a user-service pair, Πpr = (Apr, qw) a
preference, and A a set of assertions. Then

B |=pr
τ,A Πpr iff B |=ma

τ,A Apr and B |=wq
τ,Apr∪A qw.

Let t be a trace. Then

t |=pr
τ,A Πpr iff Beh(t) |=pr

τ,A Πpl.

We write [[Πpr]]
pr
τ,A to denote the set of all traces t such that t |=pr

τ,A Πpr.

11



5.3 Satisfaction and Compliance

Lemma 5.5 implies that checking a policy’s may-query against a set of assertions
is sufficient for guaranteeing that a set of behaviours respect the upper bound
specified by the assertions, given that the set of behaviours also respect the
upper bound specified by the may-query.

Lemma 5.5. Let A be a set of assertions, qm a closed τ -may-query, and B a
set of ground behaviour atoms. If A ` qm and B |=mq

τ,A qm then B |=ma
τ,A A.

Lemma 5.6 implies that checking a preference’s will-query against a set of
assertions is sufficient for guaranteeing that a set of behaviours respect the lower
bound specified by the will-query, given that the set of behaviours also respect
the lower bound specified by the assertions.

Lemma 5.6. Let A be a set of assertions, qw a closed τ -will-query, and B a set
of ground behaviour atoms. If A ` qw and B |=wa

τ,A A then B |=wq
τ,A qw.

Based on these two lemmas, Lemma 5.7 states that checking that the policy
satisfies the preference (by checking that all queries are successfully evaluated)
is sufficient for guaranteeing that the set of traces represented by the policy is
at least as strict as the set of traces represented by the preference.

Lemma 5.7. Let Πpl = (Apl, qm) be a τ -policy and Πpr = (Apr, qw) a τ -
preference. If Πpl satisfies Πpr then [[Πpl]]

pl
τ,Apr

is at least as strict as [[Πpr]]
pr
τ,Apl

.

Theorem 5.8 is our main correctness theorem. Given that a service trace
complies with the service’s own policy, successfully evaluating all queries is
sufficient for guaranteeing that the trace also complies with the preference.

Theorem 5.8. Let t be a trace, Πpl = (Apl, qm) a τ -policy and Πpr = (Apr, qw)
a τ -preference. If t complies with [[Πpl]]

pl
τ,Apr

and Πpl satisfies Πpr, then t com-
plies with [[Πpr]]

pr
τ,Apl

.

6 The PII-disclosing Protocol

We can now use the satisfaction checking algorithm and Theorem 5.8 as the
main building block for the protocol for disclosing a PII.

User-service encounter The base case is an encounter between a user U
and a service S (i.e., τ = (U, S)), where S wishes to collect PII E from U . The
protocol consists of the following steps:

1. U and S decide on a τ -preference Πpr and a τ -policy Πpl, respectively, to
be used for this encounter.

2. If Πpl does not satisfy Πpr, then the protocol is aborted, and E is not
disclosed. Otherwise, U discloses E to S. (Which principal performs the

12



satisfaction check has an impact on the trust model; possible choices would
be U , S or a trusted third party. The most natural choice seems to be U ,
since the preference itself may be deemed at least somewhat confidential,
whereas the service policy is usually public. Also, it is mainly in U ’s
interest to control usage of the PII.)

3. S keeps a copy of Πpl and Πpr together with the data E. (This step is
only needed when we allow S to change its policy after PII disclosure, or
to disclose PIIs to third party services; see below.)

If E is disclosed, U can be assured that S will comply with her preference,
assuming that S also complies with its own policy.

Policy change In practice, a service may wish to alter its policy regarding a
PII even after it has already collected the PII. For example, a service may want
to disclose the PII to a previously unknown third party at some point after the
original encounter, even though the behaviour corresponding to the disclosure
action was not declared in the may-assertions in its corresponding policy. Or it
may wish not to exhibit a behaviour it had previously promised in the will-query
of the policy.

Strictly speaking, both cases represent compliance violations of the service’s
own original policy. However, one could argue that such violations should be
permitted as long as the new behaviours still comply with the user’s preference.
In this scheme, the service would need to alter its policy in such a way that
the new behaviours comply with the new policy. It then has to check if the
new policy still satisfies the preference. If it does not, then it must continue
complying with the original policy; otherwise, it may continue complying with
the new policy.

This scheme guarantees that all policy changes result in policies that still
satisfy the user’s preference.

Third party disclosure Once a PII has been collected by a service, it may
or may not be further sent on to a third party service. In most scenarios, this
action of disclosing a user’s PII to a third party represents a relevant behaviour
that should be controlled within preferences and policies. For example, the
behaviour of forwarding a user’s email address to eMarketing may be expressed
by the behaviour atom 〈send Email to eMarketing〉.

However, controlling the action of disclosure is not sufficient. The intended
property of such a system is that every service that receives a user’s PII through
a chain of disclosures also complies with the user’s preference. To achieve this,
a service S may only disclose a PII to a third party S′ if

1. S’s policy allows the disclosure, and

2. S′ policy complies with U ’s preference. (Again, the trust model should
dictate who performs this check. We believe that in most scenarios, it
should S.)

13



The aforementioned placeholders 〈Usr〉 and 〈Svc〉 are important in this con-
text. If PIIs may be forwarded along a chain of services, it is unreasonable to
require that the original user preference contains specific references to all these
services. Using the placeholders 〈Usr〉 and 〈Svc〉 effectively parameterizes pref-
erences and policies by the current user-service pair τ . The placeholders are
instantiated just before checking satisfaction. Also, service S must retain the
original, uninstantiated preference along with the PII, so that it can later be
instantiated using τ ′ = (U, S′) when S prepares to disclose the PII to S′.

This scheme guarantees that all forwarding actions are permitted by U ’s
preference and all recipients comply with U ’s preference (again assuming that
they comply with their own respective policies).

7 Related work

This paper leverages SecPAL, a language originally designed for authorization,
to specify privacy preferences and data-handling policies. SecPAL is particularly
suitable because it supports extensible vocabularies and decentralized delegation
of authority and is formally specified. It was also designed to achieve a good
balance between expressiveness and usability. We refer to [4] for a more thorough
and formal treatment of SecPAL, and to [5, 6] for background and general
discussion on SecPAL as well as a review of other authorization languages such
as ABLP [2], SPKI/SDSI [12], XrML [10], SD3 [16], RT [17], XACML [18],
Cassandra [9], and DKAL [15].

The following discusses other languages designed for specifying privacy poli-
cies and preferences.

P3P and APPEL. P3P [20] specifies the privacy practices of web sites, i.e.
how personal information is gathered and used. The user can specify his pref-
erences in a separate language called APPEL [19], which is a syntactic pattern
matcher for P3P policies. Alternatively, the user may do some ad-hoc processing
of P3P policies, which may or may not comply with P3P’s intended semantics.
P3P and APPEL are strongly tied to the domain of web pages and web browsers,
including cookies, the HTTP protocol, URLs, and thus have a fixed, built-in vo-
cabulary of PII types, purposes, etc. P3P allows the specification of behaviour
in case a site violates its declared policy.

P3P does not support general obligations such as 〈will notify within 30 days〉.
The only obligations addressed by P3P are related to data retention. Behaviours
in P3P cannot be conditioned on constraints or predicates. Checking if a P3P
policy is satisfied by an APPEL preference is only informally described, and it
is unclear what the matching algorithm guarantees: neither the P3P policy nor
the APPEL preference have any formal semantics. Finally, P3P policies may
define whether data can be forwarded to third parties but does not offer any
control over third parties’ data handling.

14



EPAL and EPAL-QUERY. EPAL [1] is a language for specifying a data
handling policy inside an enterprise. The language EPAL-QUERY can be used
to specify authorization queries to obtain data access. EPAL is a special-purpose
language with only one predicate that allows describing common user data han-
dling practices inside a large enterprise; it is not possible to extend the language
with other predicates, purposes, etc. This predicate has a fixed number of ar-
guments of fixed types like the handler category, the handling action, the data
type, the purpose of handling and the obligation connected with the data. The
predicate may have constraints expressed in terms of relations on numbers,
strings, sets, and other data types. The query satisfaction is described as an
informal algorithm.

Prime-DHP. The PRIME data handling policy [3] allows one single data
handling predicate which specifies recipients (where each recipient is a set of
conditions and a subject), handling actions, purposes and obligations (where
a obligation is a set of triggers and actions). A policy is a template that is
instantiated by the user. Forwarding users data from the first receiver to the
second is handled, but data handling is not enforced by the second and more
than two hops are not possible. Prime-DHP does not deal with the issue of user
preferences, hence instantiation of the templates has to rely on unspecified ad-
hoc mechanisms. Just like P3P and EPAL, Prime-DHP lacks a formal model,
and only provides an XML-based syntax, but no syntax that can be both easily
read by humans and processed by machines.

8 Discussion

SecPAL4P (or actually, the underlying language, SecPAL) has been designed to
make preferences and policies as human-readable as possible. However, while
professional hosting services may be able to directly write their policies in Sec-
PAL4P using a dedicated editor with tool support, end users cannot be expected
to be willing to learn the language. A number of different tools could be built
on top of SecPAL4P to enhance usability for end users. Users could be offered
to select amongst a small number of predefined preferences for specific types of
services. Preferences could be customized using application-specific or browser-
specific user interfaces that do not offer the full expressiveness and flexibility
of the underlying language, but may let the user define exceptions to the pre-
defined preferences. Users may also be able to download preferences provided
by trusted third parties; also, the task of managing preferences and of checking
satisfaction between policies and preferences could be delegated to an external
adviser acting as a user agent.

The example preference and policies given in Section 3 were very small;
real-world preferences and policies will usually contain many more assertions,
for instance if there are many different types of PIIs for which preferences and
policies have to be specified. One way to deal with this complexity is to use
hierarchical predicate parameters [4], and to specify PII types (and possibly

15



other types such as usage purposes) to be hierarchical. Under this scheme,
the fact Alice says 〈Svc〉 may use /Addr for p automatically implies that 〈Svc〉
can also use /Addr/Email, /Addr/Postcode, /Addr/Email/Secondary etc. for
purpose p.

Combining hierarchical types with may-queries and will-queries can lead to
subtle results. For example, the will-query

Alice says 〈Svc〉 will delete /Addr within 30 days?

is not satisfied by the will-assertion

eBooking says eBooking will delete /Addr/Email within 30 days

even if the PII to be disclosed is the email address. For the query to be satisfied,
the service actually has to promise to delete /Addr or / (i.e., the top-level PII
type).

An alternative solution (which can be combined with hierarchical types)
would be to introduce a placeholder 〈PII〉 that gets instantiated before the
satisfaction check with the PII type in question, and a simple syntactic scoping
construct that takes advantage of the hierarchy on PII types:

Include if 〈PII〉 � /Addr {
[...]
Alice says 〈Svc〉 will delete 〈PII〉 within 30 days?
[...]

}

This work was designed to be general-purpose; as such, we abstract away
from a number of details that would need to be designed and implemented for a
concrete application domain. First of all, one has to fix an application-specific
vocabulary of SecPAL predicates; in particular, all relevant behaviours must be
expressible in terms of some behaviour predicate.

Secondly, one needs to decide and agree on the semantics of these behaviours.
In many cases, it may be sufficient to specify them informally, but even then it is
important to pay attention to details. For example, consider the behaviour atom
delete Email within 1 day. What does “delete” mean and entail? Who measures
the time span, and when do you start counting? For a fully formal treatment,
one needs to define the structure of traces and the behaviour mapping Beh from
Section 5.

Thirdly, it has to be ensured that services actually adhere to their own
policies. After all, the correctness theorem 5.8 rests on this assumption. This
means that any behaviour it exhibits must be permitted by its may-query, and it
must exhibit all behaviours promised by its will-assertions. Again, in most cases
it will be unfeasible to enforce this by static analysis or dynamic monitoring.
For small systems, formal methods and obligation-enforcing mechanisms may
be applicable; we may investigate these in future work. A fully formal treatment
would also require a mapping between real, concrete executions of a service to
traces and behaviours.

16



Future work may also study options for the case when the policy does not
satisfy the preference. When this occurs, the user may just decide not to use
the service, but perhaps we could develop tools for negotiating an acceptable
policies or for suggesting changes to the preference. Such tools may rely on
previous work on abduction in the context of SecPAL [8, 7].

This work was presented in the context of privacy. However, usage control,
i.e. attaching rights and obligations to data, is also useful in other scenarios
such as enterprise right management. It would be interesting to study whether
SecPAL4P is suitable for specifying licenses in such other contexts.

References

[1] Enterprise privacy authorization language, research report. Techni-
cal report, Nov. 2003. http://www.zurich.ibm.com/security/enterprise-
privacy/epal/Specification/index.html.

[2] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for ac-
cess control in distributed systems. ACM Transactions on Programming
Languages and Systems, 15(4):706–734, 1993.

[3] C. A. Ardagna, M. Cremonini, S. D. C. di Vimercati, and P. Samarati.
A privacy-aware access control system. Journal of Computer Security,
16(4):369–397, 2008.

[4] M. Y. Becker. SecPAL formalisation and extensions. Technical Report
MSR-TR-2009-127, Microsoft Research, 2009.

[5] M. Y. Becker, C. Fournet, and A. D. Gordon. SecPAL: Design and seman-
tics of a decentralized authorization language. Technical Report MSR-TR-
2006-120, Microsoft Research, 2006.

[6] M. Y. Becker, C. Fournet, and A. D. Gordon. Design and semantics of a
decentralized authorization language. In IEEE Computer Security Foun-
dations Symposium, pages 3–15, 2007.

[7] M. Y. Becker, J. F. Mackay, and B. Dillaway. Abductive authorization
credential gathering. In IEEE International Symposium on Policies for
Distributed Systems and Networks (POLICY’09), pages 1–8, 2009.

[8] M. Y. Becker and S. Nanz. The role of abduction in declarative autho-
rization policies. In 10th International Symposium on Practical Aspects of
Declarative Languages (PADL), 2008.

[9] M. Y. Becker and P. Sewell. Cassandra: Flexible trust management, ap-
plied to electronic health records. In IEEE Computer Security Foundations
Workshop, pages 139–154, 2004.

[10] ContentGuard. eXtensible rights Markup Language (XrML) 2.0 specifica-
tion part II: core schema, 2001. At www.xrml.org.

17



[11] B. Dillaway and J. Hogg. Security Policy Assertion Language (SecPAL)
Specification, version 1.0, February 2007.

[12] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
T. Ylonen. SPKI certificate theory, RFC 2693, September 1999. At
www.ietf.org/rfc/rfc2693.txt.

[13] European Parliament and the Council. Directive 95/46/EC - the data
protection directive, October 1995.

[14] European Parliament and the Council. Directive 2002/58/EC on privacy
and electronic communications, July 2002.

[15] Y. Gurevich and I. Neeman. DKAL: Distributed-knowledge authorization
language. In IEEE Computer Security Foundations Symposium, pages 149–
162, 2008.

[16] T. Jim. SD3: A trust management system with certified evaluation. In
Proceedings of the 2001 IEEE Symposium on Security and Privacy, pages
106–115, 2001.

[17] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust
management framework. In Proceedings of the 2002 IEEE Symposium on
Security and Privacy, pages 114–130, 2002.

[18] OASIS. eXtensible Access Control Markup Language (XACML) Version 2.0
core specification, 2005. At www.oasis-open.org/committees/xacml/.

[19] W3C. A P3P Preference Exchange Language 1.0, Working Draft, Apr.
2002. http://www.w3.org/TR/P3P-preferences.

[20] W3C. P3P 1.1 Specification, Working Group Note, Nov. 2006.
http://www.w3.org/TR/P3P11.

18



A Proofs

Restatement of Lemma 5.5. Let A be a set of assertions, qm a closed
τ -may-query, and B a set of ground behaviour atoms. If A ` qm and B |=mq

τ,A qm
then B |=ma

τ,A A.

Proof. By structural induction on qm. We assume (a) A ` qm and (b) B |=mq
τ,A

qm. It is sufficient to show that B ⊆ B′ = {B | A ` U says S may B}. There
are three cases to consider.

In the first case, qm is of the form U says S may B?. From (a), B ∈ B′.
From (b), B ⊆ {B}. Hence B ⊆ B′.

In the second case, qm is of the form q1 ∧ q2. From (b) and the induction
hypothesis, either there exist B1 and B2 such that B = B1∪B2 and B1 ⊆ B′ and
B2 ⊆ B′; therefore B ⊆ B′. Or else this case is subsumed by the last and third
case below.

In the third case, no subquery of the form U says S may B? occurs in qm.
From (b), B = ∅, hence trivially B ⊆ B′.

Restatement of Lemma 5.6. Let A be a set of assertions, qw a closed
τ -will-query, and B a set of ground behaviour atoms. If A ` qw and B |=wa

τ,A A
then B |=wq

τ,A qw.

Proof. By structural induction on qw. We assume (a) A ` qw and (b) B ⊇ B′ =
{B | A ` S says S will B}.

Consider the case where qw is of the form S says S will B?. From (a), B ∈ B′.
Together with (b), this gives B ⊇ {B}, and hence B |=wq

τ,A qw. The other cases
follow from (a) and the induction hypothesis.

Restatement of Lemma 5.7. Let Πpl = (Apl, qm) be a τ -policy and Πpr =
(Apr, qw) a τ -preference. If Πpl satisfies Πpr then [[Πpl]]

pl
τ,Apr

is at least as strict
as [[Πpr]]

pr
τ,Apl

.

Proof. Suppose t ∈ [[Πpl]]
pl
τ,Apr

. Let B = Beh(t). We need to show that t ∈
[[Πpr]]

pr
τ,Apl

, that is, (a) B |=ma
τ,Apl

Apr and (b) B |=wq
τ,Apl∪Apr

qw.
From the assumption, B |=mq

τ,Apl∪Apr
qm. From the definition of satisfaction

and Lemma 5.5, B |=ma
τ,Apl∪Apr

Apl ∪ Apr. By definition of |=ma
τ,Apl∪Apr

, we also
have (a) B |=ma

τ,Apl
Apr.

From the definition of satisfaction we get Apl ∪ Apr ` qw. Furthermore,
from the assumption we get B |=wa

τ,Apr
Apl, which is equivalent to B |=wa

τ,Apl∪Apr

Apl ∪Apr by definition of |=wa
τ,Apl∪Apr

. Hence Lemma 5.6 can be applied to get
(b) B |=wq

τ,Apl∪Apr
qw.

Restatement of Theorem 5.8. Let t be a trace, Πpl = (Apl, qm) a τ -
policy and Πpr = (Apr, qw) a τ -preference. If t complies with [[Πpl]]

pl
τ,Apr

and
Πpl satisfies Πpr, then t complies with [[Πpr]]

pr
τ,Apl

.

Proof. This is a corollary of Lemma 5.7 and Lemma 5.2.

19


