Proving (Security) Properties of Multithreaded Programs

Alexander Malkis malkis at sec dot in dot tum dot de

Chair of IT security
Prof. Dr. Claudia Eckert

Advanced topics in IT security 4. May 2016

Acknowledgments:

- Neil D. Jones.
- IMDEA Software Institute, Manfred Broy's research group at Technische Universität München,
- H. Seidl, J. Esparza, C. Broadbent, L. Mauborgne, A. Podelski, . . .

Classifying trace-based properties—an informal overview

- ▶ Invariance property: expressible by assert(...) statements.
- Safety property: "nothing bad happens", a superclass of invariance properties.
- ► Checking a safety property can be reduced to checking an invariance property of (program || monitor).
- ► Liveness property: "something good eventually happens", almost disjoint from safety properties.
- ► Each property can be shown to be a conjunction of a safety and a liveness property.

Formalization in: Baier, Katoen, Principles of Model-Checking.

Security properties are often trace-based. E.g., confidentiality can be viewed as a safety property.

In this lecture:

invariance properties of multithreaded programs with recursion.

Multithreaded programs

Program: (Glob, Frame, init, $(\sqcup_t, \sqcup_t, \sqcup_t)_{t < n}$)

- n: number of threads (ordinal).
- Interleaving semantics.
- ▶ Local state = stack contents; Loc = Frame⁺.
- ▶ Thread state: $(g, \text{stack_word}) \in \text{Glob} \times \text{Loc}$
- Program state: (shared, (stack_word₀, stack_word₁, stack_word₂, ...)); State = Glob × Locⁿ.
- ▶ Initially, each stack contains exactly one letter.

For each t < n:

- ▶ $\sqsubseteq_t \subseteq$ (Glob×Frame) × (Glob×Frame×Frame),
 - ▶ $\exists_t \subseteq$ (Glob×Frame) × (Glob×Frame),
 - ▶ $\Box_t \subseteq (\mathsf{Glob} \times \mathsf{Frame} \times \mathsf{Frame}) \times (\mathsf{Glob} \times \mathsf{Frame}).$

Semantics

Operational semantics of each thread t < n:

$$\frac{((g,a),(g',b,c)) \in \boxminus_t \qquad u \in \mathsf{Frame}^*}{(g,au) \leadsto_t (g',bcu)}$$
$$\frac{((g,a),(g',b)) \in \boxminus_t \qquad u \in \mathsf{Frame}^*}{(g,au) \leadsto_t (g',bu)}$$
$$\frac{((g,a,b),(g',c)) \in \beth_t \qquad u \in \mathsf{Frame}^*}{(g,abu) \leadsto_t (g',cu)}$$

As the operational semantics of the whole program we choose the so-called interleaving semantics. It is given by

the concrete domain
$$D = \mathfrak{P}(State)$$
,

and the successor map post : $D \rightarrow D$,

$$Q \mapsto \{(g',\ell') \mid \exists t < n, (g,\ell) \in Q \colon (g,\ell_t) \leadsto_t (g',\ell'_t)$$

$$\land \forall s < n \colon s \neq t \Rightarrow \ell_s = \ell'_s \}.$$

Multithreaded shared-memory recursive programs

Multithreading + recursion is rare, but exists, both in the models and in real code.

- Model of the Bluetooth driver from Windows NT
- Model of the old synchronized java.util.Vector
- "Concurrent manipulation of binary search trees", H. T. Kung and Philip L. Lehman, 1980
- ► Parallel Merge Sort: merging sorted pairs of subsequences may happen in parallel for independent pairs of subsequences
- Cilkchess
- "A new multithreaded and recursive direct algorithm for parallel solution of the sparse linear systems", Ercan Selçuk Bölükbaşi, 2013

•

Invariants and inductive invariants

Regardless of the internal structure of init and post:

A set of states of a program is called

an invariant iff it contains all states reachable from the initial ones:

$$S \text{ invariant } \stackrel{\text{def}}{\Longleftrightarrow} \operatorname{lfp}(\lambda Q \in D. \operatorname{init} \cup \operatorname{post}(Q)) \subseteq S.$$

inductive iff it contains the initial states and is closed under the transition function, i.e.:

$$S \text{ inductive } \stackrel{\text{def}}{\Longleftrightarrow} \text{ init } \subseteq S \land \text{post}(S) \subseteq S.$$

To prove an invariance property $P \subseteq S$ tate, it suffices to provide an inductive invariant $S \subseteq P$.

Escape undecidability through overapproximation

For multithreaded programs with unbounded stacks:

- Membership in the strongest inductive invariant: undecidable.
- Membership in a special-form inductive invariant, not necessarily the strongest one: perhaps decidable.

Multithreaded-Cartesian set of program states

Simplify for a moment: finite $\mathsf{Glob} = \{0, 1, \dots |\mathsf{Glob}| - 1\}$, finite n. A set $S \subseteq \mathsf{State}$ is in multithreaded-Cartesian form iff there are $L_{g,t} \subseteq \mathsf{Loc}\ (g \in \mathsf{Glob},\ t < n)$ s. t.

$$\begin{array}{lll} \mathcal{S} & = & \{0\} & \times L_{0,0} & \times \ldots \times L_{0,n-1} \\ & \cup \{1\} & \times L_{1,0} & \times \ldots \times L_{1,n-1} \\ & \vdots & & \\ & \cup \{|\mathsf{Glob}|-1\} \times L_{|\mathsf{Glob}|-1,0} \times \ldots \times L_{|\mathsf{Glob}|-1,n-1} \,. \end{array}$$

Multithreaded-Cartesian set of program states

General case: arbitrary Glob, arbitrary n. States $(g, \vec{\ell})$, $(g', \vec{\ell'})$ are equivalent iff g = g'.

A set $S \subseteq$ State is in multithreaded-Cartesian form iff the intersection of each equivalence class with S is a Cartesian product.

Multithreaded-Cartesian overapproximation

For $S \subseteq State$,

$$\rho_{\mathsf{mc}}(S) \ = \ \{(g,\ell) \mid \forall \ t < n \ \exists \ \tilde{\ell} \in \mathsf{Loc}^n \colon \ \tilde{\ell}_t = \ell_t \ \land \ (g,\tilde{\ell}) \in S\} \ .$$

 $ho_{
m mc}$ is an upper closure operator.

Multithreaded-Cartesian Galois-connection: abstraction

Concrete domain:
$$D = \mathfrak{P}(\mathsf{State}) = \mathfrak{P}(\mathsf{Glob} \times \mathsf{Loc}^n)$$
.
Abstract domain: $D^\# = (\mathfrak{P}(\mathsf{Glob} \times \mathsf{Loc}))^n$.

$$\alpha_{\mathrm{mc}}\bigg(\{0\}\times \bigg) \quad \cup \ \{1\}\times \bigg) \quad \cup \ \{2\}\times \bigg)$$

$$= \big(\{0\}\times \bigg) \quad \cup \ \{1\}\times \bigg) \quad \cup \ \{2\}\times \bigg),$$

$$\{0\}\times \bigg) \quad \cup \ \{1\}\times \bigg) \quad \cup \ \{2\}\times \bigg).$$

Abstraction $\alpha_{mc}(S) = (\{(g, \ell_t) \mid (g, \ell) \in S\})_{t < n}$.

Multithreaded-Cartesian abstraction: concretization

Concretization $\gamma_{\mathsf{mc}} \big((A_t)_{t < n} \big) = \{ (g, \ell) \, | \, \forall \, t < n \colon (g, \ell_t) \in A_t \}.$

$$\rho_{\mathsf{mc}} = \gamma_{\mathsf{mc}} \circ \alpha_{\mathsf{mc}}$$

Multithreaded-Cartesian abstract interpretation

$$\mathsf{lfp}(\lambda \ S \in D. \ \rho_{\mathsf{mc}}(\mathsf{init} \cup \mathsf{post}(S)))$$

Ifp(
$$\lambda A \in D^{\#}$$
. $\alpha_{mc}(init \cup post(\gamma_{mc}(A))))$

Intricate example

The strongest inductive invariant is not context-free.

Strongest multithreaded-Cartesian inductive invariant for the example

$$S = \begin{pmatrix} \{0\} \times (\{Ax, Dx \mid x \in \{B, C\}^*\} \cup \{B, C\}^+) \\ \cup \{1\} \times \{ABx \mid x \in \{B, C\}^*\} \\ \cup \{2\} \times \{ACx \mid x \in \{B, C\}^*\} \\ \cup \{3\} \times (\{Dx \mid x \in \{B, C\}^*\} \cup \{B, C\}^+) \\ \times (\{Ax, Dx \mid x \in \{B, C\}^*\} \cup \{B, C\}^+) .$$

Notice:

$$(|w_1| = |w_2| = 1 \land (g, (w_1, w_2)) \in S) \Rightarrow (g = 0 \lor g = 3).$$

The property would be proven by a multithreaded-Cartesian analysis generating (a finite representation of) S.

Viewed as a set of words, S is regular.

It can be generated!

TMR algorithm

Generating a regular representation of

$$\mathsf{lfp}(\lambda \ S \in D. \ \rho_{\mathsf{mc}}(\mathsf{init} \cup \mathsf{post}(S))) \, .$$

- Construct n NFAs simultaneously, one per thread.
- ► Each NFA describes a set of thread states (∈ Glob × Loc).
- Sequentially chain the NFAs.

Generating automata for the left and right threads (1)

Generating automata for the left and right threads (2)

Generating automata for the left and right threads (3)

Generating automata for the left and right threads (4) initially g = 0Procedure h:

0

Generating automata for the left and right threads (5) Procedure f: initially g = 0. Procedure h:

Generating automata for the left and right threads (6) Procedure f: initially g = 0 Procedure h:

Generating automata for the left and right threads (7)

Generating automata for the left and right threads (8) Procedure f: initially g = 0 Procedure h:

Generating automata for the left and right threads (9) Procedure f: initially g = 0 Procedure h:

Generating automata for the left and right threads (10) Procedure f: initially g = 0 Procedure h:

Generating automata for the left and right threads (11) Procedure f: initially g = 0 Procedure h:

Generating automata for the left and right threads (12) Procedure f: initially g = 0 Procedure h:

Generating automata for the left and right threads (13)

Generating automata for the left and right threads (14) Procedure f: initially g = 0 Procedure h:

Generating automata for the left and right threads (15) Procedure f: initially g = 0 Procedure h:

Generating automata for the left and right threads (16) Procedure f: initially g = 0 Procedure h:

Generating automata for the left and right threads (17) Procedure f: initially g = 0 Procedure h:

Generating automata for the left and right threads (18)

Generating automata for the left and right threads (19)

Generating automata for the left and right threads (20)

Generating automata for the left and right threads (21)

Generating automata for the left and right threads (22)

Generating automata for the left and right threads (...)

. . .

TMR inference system

Couple post* with thread-modular verification. Let \mathfrak{f} be a fresh symbol. Let $V = \mathsf{Glob} \cup \mathsf{Glob} \times \mathsf{Loc}$.

$$(\text{TMR INIT}) \frac{(g,\ell) \in \text{init}}{g \frac{\ell_t}{t}} f$$

$$(\text{TMR STEP}) \frac{((g,a),(g',b)) \in \boxminus_t \qquad g \frac{a}{t'} \vee}{g' \frac{b}{t'} \vee \qquad (g,g') \in G_t} t \in n$$

$$(\text{TMR PUSH}) \frac{g \frac{a}{t'} \vee \qquad ((g,a),(g',b,c)) \in \boxminus_t}{g' \frac{b}{t'} (g',b) \frac{c}{t'} \vee \qquad (g,g') \in G_t}$$

$$(\text{TMR POP}) \frac{g \frac{a}{t'} \vee \frac{b}{t'} \bar{v} \qquad ((g,a,b),(g',c)) \in \boxminus_t}{g' \frac{c}{t'} \bar{v} \qquad (g,g') \in G_t}$$

$$(\text{TMR ENV}) \frac{(g,g') \in G_t \qquad g \frac{a}{s'} \vee}{g' \frac{a}{s'} \vee} t \neq s \text{ are in } n$$

Generated automata for the left and right threads

NFAs for the threads \rightarrow NFAs for the program A,B,C,O $\tilde{A}_{0,0}$: $\tilde{A}_{0.1}$: B,C A,B,C,D (1,A)A,B,C,D(0) ₽ A,B,C,D A,B,C,D 8,0 B,C 0 $A_{1,0}$: $A_{1,1}$: (1,A)A,B,C,D(0,A)₽B 8,C A,B,C,D (2,A)(initial) accepting $\tilde{A}_{2,0}$: A,B,C,D $A_{2,1}$: (1,A)Bi ₽B (0,A)A,B,C,D'(2,A)3 A.B.C.D B,C $\tilde{A}_{3,0}$: $A_{3,1}$: (1,A)(3)₽B B,C,DA,B,C,D(0,A)(2,A)

B,C

Summary

The strongest multithreaded-Cartesian inductive invariant is a regular language.

Multithreaded-Cartesian abstract interpretation can be implemented in $\mathcal{O}(n \log n)$ time on a RAM under log-cost measure (and in polynomial time in other quantities).

(Proof: see Multithreaded-Cartesian Abstract Interpretation of Multithreaded Recursive Programs Is Polynomial, Alexander Malkis; RP 2015, Warsaw, Springer,

https://www.sec.in.tum.de/~malkis/

Malkis-MultCartAbstIntOfMultRecProgIsPoly_techrep.pdf.)

Precise running time on RAM under log-cost

- Representation of all data: lists in tables.
- ▶ Let L(x) be the length of the binary representation of $x \in \mathbb{N}_0$.
- ▶ Time of a single access = L(address) + L(data) + 1.
- ▶ Running time of TMR: $\mathcal{O}(n(|\mathsf{init}| + |\mathsf{Glob}|^4|\mathsf{Frame}|^5)(L(|\mathsf{init}|) + L(n) + L(|\mathsf{Glob}|) + L(|\mathsf{Frame}|)))$.
- Constructing the full NFA after constructing the threads' NFAs is asymptotically negligible.
- In the input length size, it is O((input length)²L(input length)).

