P Neil D. Jones,

Proving (Security) Properties
of Multithreaded Programs

Alexander Malkis

malkis at sec dot in dot tum dot de

Chair of IT security TI.ITI

Prof. Dr. Claudia Eckert Technische Universitat Minchen

Advanced topics in IT security
4. May 2016

Acknowledgments:

P IMDEA Software Institute, Manfred Broy's research group at Technische Universitit Miinchen,
P H. Seidl, J. Esparza, C. Broadbent, L. Mauborgne, A. Podelski, . ..

Classifying trace-based properties—an informal overview

» Invariance property: expressible by assert(...) statements.

» Safety property: “nothing bad happens”’, a superclass of
invariance properties.

» Checking a safety property can be reduced to checking an
invariance property of (program || monitor).

> Liveness property: “something good eventually happens”,
almost disjoint from safety properties.
» Each property can be shown to be a conjunction of a safety

and a liveness property.
Formalization in: Baier, Katoen, Principles of Model-Checking.
Security properties are often trace-based. E.g., confidentiality can

be viewed as a safety property.

In this lecture:
invariance properties of multithreaded programs with recursion.

Multithreaded programs

Program: (Glob, Frame, init, (Y¢, He, ¢)t<n)

>

>

>

>

n: number of threads (ordinal).
Interleaving semantics.

Local state = stack contents;

Loc = Frame™.

Thread state: (g, stack_word) € Glob x Loc

Program state:
(shared, (stack-wordg, stack_wordy, stack_wordy, ...));
State = Glob x Loc".

Initially, each stack contains exactly one letter.

For each t < n:

>

>

>

My C (GlobxFrame) x (Globx Framex Frame),
He C (GlobxFrame) x (GlobxFrame),
1y C (GlobxFramexFrame) x (GlobxFrame).

Semantics

Operational semantics of each thread t<n:

((g,a), (g/, b,c)) € W, u € Frame®
(g,au) ~+ (g, beu)

((g,a), (g, b)) € Ht u € Frame®
(g:au) ~¢ (g, bu)
((g,a,b),(g',c)) €y ue Frame*
(g, abu) ~ (g/, cu)

As the operational semantics of the whole program we choose the
so-called interleaving semantics. It is given by

the concrete domain D = B(State),

and the successor map
post: D — D,
Q—{(g"0)|3t<n, (g, 0) € Q: (g, lr) ~¢ (&', 1%)
AVs<n:s#t=ls=1.}.

Multithreaded shared-memory recursive programs

Multithreading 4+ recursion is rare, but exists, both in the models
and in real code.

>

>

>

Model of the Bluetooth driver from Windows NT
Model of the old synchronized java.util.Vector

“Concurrent manipulation of binary search trees”, H. T. Kung
and Philip L. Lehman, 1980

Parallel Merge Sort: merging sorted pairs of subsequences
may happen in parallel for independent pairs of subsequences
Cilkchess

“A new multithreaded and recursive direct algorithm for

parallel solution of the sparse linear systems”, Ercan Selcuk
Boliikbasi, 2013

Invariants and inductive invariants

Regardless of the internal structure of init and post:
A set of states of a program is called

» an invariant iff it contains all states reachable from the initial
ones:

S invariant &% Ifp(A Q € D.initUpost(Q)) C S.

» inductive iff it contains the initial states and is closed under
the transition function, i.e.:

S inductive <& initC S A post(S) C S.

To prove an invariance property P C State, it suffices to provide an
inductive invariant S C P.

Escape undecidability through overapproximation

For multithreaded programs with unbounded stacks:

» Membership in the strongest inductive invariant:
undecidable.

» Membership in a special-form inductive invariant, not
necessarily the strongest one:
perhaps decidable.

Multithreaded-Cartesian set of program states

Simplify for a moment: finite Glob = {0, 1,...|Glob| — 1}, finite n.
A set S C State is in multithreaded-Cartesian form iff
there are L, ; C Loc (g € Glob, t < n) s.t.

S = {O} X LO,O X ... X L07n_1
U {1} X Ll,O X ... X L17n_1

U {[Glob| — 1} X LiGiob|-1,0 X - -+ X L|Glob|-1,n—1 -

Multithreaded-Cartesian set of program states
General case: arbitrary Glob, arbitrary n.
States (g, /), (g’,F’) are equivalent iff g = g’.
A set S C State is in multithreaded-Cartesian form iff
the intersection of each equivalence class with S is a Cartesian
product.

Glob

Multithreaded-Cartesian overapproximation

@)

U {1}x '

pmc(S) = {(g.0) |Vt<n3Ileloc": Iy =1, A (g,0) e S}.

Pmc <{O}X

= {0}x

For S C State,

Pmc IS an upper closure operator.

Multithreaded-Cartesian Galois-connection: abstraction

Concrete domain: D = ‘B(State) PB(Glob x Loc").
Abstract domain: (B(Glob x Loc))".

Qe {O}X. U {1} x U{Z}X.

= ({0} X e U {1} % U {2} x

{0}x

U {1}x U{Q}X‘).

Abstraction amc(S) = ({(g,¢:) | (g,€) € S}),_,-

Multithreaded-Cartesian abstraction: concretization

Yme ({0} X e U {1}

U {2} X e |

{0}x

U {1} x U{2}><‘

Concretization Yme((At);<,) = {(g,€) |Vt<n: (g,¢¢) € As}.

Pmc = Tmc © Omc

Multithreaded-Cartesian abstract interpretation

Ifp(A S € D. pmc(init U post(S)))

Ifp(A A € D¥. amc(init U post(mc(A))))

Intricate example

initially g =0
Procedure f: Procedure h:

postcondition g =0 V g =3

The strongest inductive invariant is not context-free.

Strongest multithreaded-Cartesian inductive invariant for
the example

{0} x ({Ax,Dx | xe{B,C}*} U{B,C}™)
U {1} x {ABx | x € {B,C}*}

> = |U {2} x {ACx | x € {B,C}*}
U {3} x ({Dx|x € {B,C}'} U{B,C}")
x ({Ax,Dx | xe{B,C}*'} U{B,C}").
Notice:

(w1l = [w2| =1 A (g,(w1,w2)) €S) = (g=0V g=3).

The property would be proven by a multithreaded-Cartesian
analysis generating (a finite representation of) S.

Viewed as a set of words, S is regular.

It can be generated!

TMR algorithm

Generating a regular representation of

Ifp(A S € D. pmc(init U post(S))) .

» Construct n NFAs simultaneously, one per thread.
» Each NFA describes a set of thread states (€ Glob x Loc).
» Sequentially chain the NFAs.

Generating automata for the left and right threads (1)

Procedure f: initially g =0 Procedure h:

Generating automata for the left and right threads (2)

Procedure f: initially g =0 Procedure h:

Gy = {(0~ 1)}

Generating automata for the left and right threads (3)

Procedure f: initially g =0 Procedure h:

Gy = {(0> 1)a (07 2)}

Generating automata for the left and right threads (4)

Procedure f: initially g =0 Procedure h:

G = {(07 1)? (O’ 2)7 (07 3)}

Generating automata for the left and right threads (5)

Procedure f: initially g =0 Procedure h:

Go = {(O, 1)7 (07 2)7 (07 3)}

Generating automata for the left and right threads (6)

Procedure f: initially g =0 Procedure h:

GO = {(07 1)7 (07 2)7 (07 3)}

Generating automata for the left and right threads (7)

Procedure f: initially g =0 Procedure h:

Go = {(07 1)7 (O’ 2)7 (07 3)}

Generating automata for the left and right threads (8)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)? (O’ 2)7 (07 3)}

Generating automata for the left and right threads (9)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)? (O’ 2)7 (07 3)}

Generating automata for the left and right threads (10)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)? (O’ 2)7 (07 3)}

Generating automata for the left and right threads (11)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)7 (Oa 2)7 (07 3)}

Generating automata for the left and right threads (12)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)7(Oa2)7(073)} G = {(170)7(2=0)7(370)}

Generating automata for the left and right threads (13)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)7 (Oa 2)7 (07 3)}

Generating automata for the left and right threads (14)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)7 (07 2)7 (07 3)}

Generating automata for the left and right threads (15)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)7 (07 2)7 (07 3)}

Generating automata for the left and right threads (16)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)?(’2)7(073)}

Generating automata for the left and right threads (17)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)?(’2)7(073)}

Generating automata for the left and right threads (18)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)7 (O’ 2)7 (07 3)}

Generating automata for the left and right threads (19)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)7 (O’ 2)7 (07 3)}

Generating automata for the left and right threads (20)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)7 (Oa 2)7 (07 3)}

Generating automata for the left and right threads (21)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)7 (O’ 2)7 (07 3)}

Generating automata for the left and right threads (22)
Procedure f: initially g =0 Procedure h:

Go = {(07 1)7 (O’ 2)7 (07 3)}

Generating automata for the left and right threads (...)

TMR inference system
Couple post® with thread-modular verification.
Let f be a fresh symbol. Let V = Glob U Glob x Loc.

,0) € init
(TMR INIT) % ten
g—7f
,a),(g’, b)) €4 v
(TMR STEP) (e)Ifg Des: ex ten
/

g v (88)€G

v ((g’ a)v(glvba C)) € Iilt

(gb)=>v (g4&) €6
v ((ga a, b)’(glvc)) € U

(TMR POP) —— p

g2v (88)€G

(TMR PUSH)

Gt g % v .
t#s are in n

(TMR ENV)

Generated automata for the left and right threads

Procedure f: initially g =0 Procedure h:

NFAs for the threads — NFAs for the program

D
2 QAD_ g
%) s R— @B 5 (OAD

Summary

The strongest multithreaded-Cartesian inductive invariant is
a regular language.

Multithreaded-Cartesian abstract interpretation can be
implemented in O(nlogn) time on a RAM under log-cost
measure (and in polynomial time in other quantities).

(Proof: see Multithreaded-Cartesian Abstract Interpretation of
Multithreaded Recursive Programs Is Polynomial, Alexander

Malkis; RP 2015, Warsaw, Springer,
https://www.sec.in.tum.de/ malkis/
Malkis-MultCartAbstIntOfMultRecProgIsPoly_techrep.pdf.)

Precise running time on RAM under log-cost

v

Representation of all data: lists in tables.
Let L(x) be the length of the binary representation of x € Np.
Time of a single access = L(address) + L(data) + 1.

Running time of TMR:

O (n(|init| 4 |Glob|*|Frame[®)(L(|init|) + L(n) + L(|Glob|) +
L(|Frame())).

Constructing the full NFA after constructing the threads’
NFAs is asymptotically negligible.

In the input length size, it is
O((input length)?L(input length)).

Questions?

