
Reachability in Multithreaded Programs Is Polynomial in the Number of Threads
(Version with Proofs)

Alexander Malkis
Technical University of Munich (TUM), Boltzmannstr. 3, 85748 Garching, Germany

Abstract—Reachability in multithreaded programs is an impor-
tant yet inherently difficult problem, even if they are finite-state
and equipped with the interleaving semantics. So far, the com-
plexity of this problem in the number of threads n, while
keeping the maximal size of the thread-local memory and the
size of shared memory bounded by a constant, has been ex-
plored poorly. We close this gap by measuring aspects such as
(i) the diameter, i.e., the longest finite distance realizable in the
transition graph of the program, (ii) the local diameter, i.e., the
maximum distance from any program state to any thread-lo-
cal state, (iii) and the computational complexity of bug finding.
We prove that all these are majorized by a polynomial in n

and, in certain cases, by a linear, logarithmic, or even constant
function in n. Such bounds shed more light on how the widely
expressed claim, that one of the major obstacles to analyzing
concurrent programs is the exponential state explosion in the
number of threads, should (and should not) be understood.

Index Terms—multithreading, concurrency, transition graph,
diameter, asynchronous execution, shared-memory communica-
tion, interleaving, complexity, exponential blow-up, state-space
explosion, formal methods, threads, parallelism, operational se-
mantics, formal languages, combinatorics, counting problems,
graph theory, path problems

0. Introduction

Since 2004, the speed limit of CPUs has been stagnating,
which has increased the demand for multithreading by a
quantum leap [0]. Conceptually, a multithreaded program
consists of a batch of threads running in parallel; each thread
can access only its private memory and the memory shared
among the threads. The semantics of accessing the shared
memory can be cumbersome [1, 2]; to simplify writing and
analyzing multithreaded code, the code is typically written
in such a way that every execution on a parallel machine
can be viewed as an execution on a sequential machine that
interleaves the steps of different threads. Even given this
simplified framework, programming errors are widespread
[3, 4], and the effects of failures can be devastating [5–8].
In practice, almost every such failure can be viewed as a
violation of a so-called safety property, which is, informally
speaking, a property of the form “nothing bad happens in
all executions.”

We focus on the most basic safety properties of the form “a
program state is not reachable from another program state”:

any safety property can be reduced to such a state-to-state
unreachability property [9]. Deciding such properties of pro-
grams in practice often incurs the infamous state-explosion
problem, which is the phenomenon whereby the number
of program states grows exponentially in the number of
threads n of the program analyzed [10–15]. It is a “problem”
because the program analyzer often runs out of resources
while reasoning about these states and fails to deliver a
conclusive answer. It is possible to show that deciding reach-
ability for finite-state multithreaded programs equipped with
the interleaving semantics is PSpace-complete in the over-
all input length (cf. generally Lem. 3.2.3 in [16]). Since
PSpace is a very robust class [17, § 8.2, Ex. 8.4] contain-
ing a wealth of complete decision problems [18, 19], the
PSpace-completeness characterization is rather coarse. It
does not reveal any details about the exponential blow-up in
n from a theoretical viewpoint.

To study the state-explosion phenomenon, we consider the
parametrized setting with a variable number of threads n and
two constant parameters: the maximal size of local memory
per thread and the size of shared memory. In this setting,
we ask how the following quantities asymptotically grow
with n: the diameter, the local diameter (both of which we
define formally later), and the complexity of two natural
reachability problems. Informally speaking, is the growth
fast (as suggested by the state explosion occurring in the
tools) or slow (not atypical in the parametrized-complexity
field)?

As we will show, the second case holds: for reachability
tasks that can be formulated in the parametrized setting
described, the aforementioned blow-up and high complexity
can be asymptotically avoided. These results generalize and
partially sharpen the previous findings of [20] (this discusses
binary programs, in which the two aforementioned constant
parameters are both 2) and are motivated by experiments
[21].

The variable number of threads and the bounded sizes of
local memory per thread and of shared memory might be
observed in several areas; we name three. The first area is
high-performance computing; we consider applications in
which the threads themselves are fixed in size, whereas what
changes is the number of threads executed in parallel when
a program is moved from one supercomputer to another (or,
to a lesser extent, from one GPU to another) or when a
program goes from a test setup to a fully parallel setup. (At
the time these lines are written, a leading Web search engine

returns numerous occurrences of “char thread_id;” and “char
threadId;” in real-world C code, which allocates 8 bits for
the thread identifier. Such pieces of code are likely to be
of limited use or even erroneous on a system with more
than 256 threads.) The second area is modeling memory
limitations in dynamic systems. (A typical bug example
is a thread-identifier overflow [22]: a server starts a new
thread upon a new query from a client while using fixed
space for thread identifiers. After the server runs sufficiently
long, the thread-identifier variable overflows, wreaking havoc.
Modeling dynamic thread creation in a static-threaded finite-
state program would have exposed the issue.) The third area
is modeling Edge Computing, in which parallel computations
(e.g., in the cloud) are given to a variable number of small-
size computational nodes (say, embedded and mobile devices)
which are accessing a single server. For the purpose of
modeling, the small nodes can be viewed as threads, the
server can be viewed as shared memory, and various types
of message passing can be replaced with the interleaving
semantics.

Before proceeding, let us introduce some terminology. In-
tuitively, a program state is a valuation of all the variables
of the program including the control-flow counters of all the
threads. The distance from a program state s to a program
state s′ is the minimal number of program steps needed to
reach s′ from s along an execution (or ∞ if s′ is unreach-
able from s). The diameter of a program is the maximal
finite distance present in the program. If a bug finder out-
puts an error trace of the program analyzed, this trace is, in
the worst case, at least as long as the diameter of the pro-
gram. So, the diameter of a program is a lower bound on the
worst-case running-time of a bug finder on this program. At
the same time, the diameter is equal to the number of steps
an ideal search (i.e., a search equipped with an oracle for the
exact search heuristic) would take to travel from a source
program state to a target program state if these states are
furthest apart but still connected. So, the diameter is an up-
per bound on the running time for a successful, ideal search,
in which the bug finder would always choose the right walk.

We are interested in the worst-case diameter among all
the programs with the same number of threads (recall that
the sizes of shared and local memory are fixed). Thus, we
concentrate on the function that, given a natural number n,
returns the largest diameter over all programs with n threads.
We will call this function diamax. To the best of our knowl-
edge, nothing is known about this function yet except [20].
Certainly, diamax is majorized by the size of the state space,
which is singly exponential in n. We show much more: a
linear lower bound and a polynomial upper bound, thereby
positively solving Open Problem 1.12.3 from [23]. Our upper
bound is both a generalization and a tightening of the upper
bound from [20]. Furthermore, we demonstrate a stronger,
linear upper bound for a certain subclass of programs. More-
over, we prove that, for a rather general class of probability
distributions, the diameter of a random program is asymp-
totically almost surely at most linear. We will also show
that the program-state–to–program-state (non-)reachability
problem belongs to the complexity class NSpace(log n).

The above notion of the (maximal) diameter is based on
the program-state–to–program-state distance and thus targets
“nonlocal” properties concerning more than one thread, such
as deadlock freedom or mutual exclusion. Still, many interest-
ing nonreachability properties (of, say, real operating-system
code) are “local,” meaning that they are, to simplify, of the
form “a particular state of a particular thread does not occur
in any execution” (a thread state stands for a valuation of
all the variables that the thread can access directly, includ-
ing its control flow counter). Such a property could, e.g., be
specified by an assert statement of the programming lan-
guage C. Moreover, program transformations and modeling
may turn local properties into nonlocal ones or vice versa,
sometimes producing intricate objects (e.g., internal models
generated by automatic CEGAR loops).

Therefore, we also consider a related notion, the so-called
local diameter. Roughly speaking, the local diameter of a
program is the length of the shortest counterexample to any
of the worst (i.e., hardest to refute, but still refutable) local
safety properties. If a bug finder outputs an error trace to a
thread state, this output is, in the worst case, at least as long
as the local diameter of the program. So, the local diameter
of a program is a lower bound on the worst-case time for
finding local bugs in this program. At the same time, the
local diameter is the number of steps an ideal search (i.e., a
search equipped with an oracle for the exact heuristic) would
take to arrive from a source program state at a target thread
state of a target thread in the worst case, i.e., maximizing
over all triples (source program state, target thread, target
thread state). (A formal definition will appear in § I.2.) So,
the local diameter is an upper bound on the running time
for the successful, ideal thread-state search in which the
bug finder always chooses the fastest walk. These lower
and upper bounds also apply to searches for local bugs in
program models (and not only in original programs), e.g.,
in the inner loops of the CEGAR schemes.

We will show that the maximum local diameter for n-
threaded programs is bounded above by a value that is
independent of n, and that the least upper bound can be
explicitly constructed. (That is, we can actually write an al-
gorithm computing the least upper bound to any level of
detail.) One may derive the existence of the bound through a
careful interpretation and extension of results in the literature
(cf. § VI); we propose a mostly self-contained proof of the
existence of the bound and its explicit construction in § III.
Moreover, we will show that the program-state–to–thread-
state (non-)reachability problem belongs to the complexity
class NC1 [17, Def. 10.38] (again, considering the shared and
thread-local memories bounded). The membership in this
class is both a generalization and an improvement over the
corresponding bound from [20]. The results on diameters and
local diameters are, to the best of our knowledge, among the
strongest non-algorithmic, asymptotic, formal arguments sup-
porting the conventional wisdom that local safety properties
are easier to deal with than nonlocal ones.

Summarizing, our major contributions are as follows:
• The definitions of the diameter and the local diameter of a

multithreaded program (extending [20]).

2

• Constructively bounding the maximum local diameter for
the parametrized case from above by an explicitly comput-
able value independent of n (Def. and Cor. III.9).
• Bounding diamax between a linear and a polynomial func-

tion (Thms. IV.1.1 and IV.2.1.13). Restricted to the binary
case, the polynomial degree is lower than a previously
known one (Note IV.2.1.14).
• A class of programs for which we show a linear upper

bound in n on the diameter (Thm. IV.2.2.3). This upper
bound matches the lower bound up to a constant.
• For rather general probability distributions on thread tran-

sitions, the diameter of a program is asymptotically almost
surely at most linear in n (Thm. IV.2.3.2).
• Deciding whether a program state is reachable from another

program state is possible in NSpace(log n) (Thm. V.1).
• Deciding whether a state of a specified thread is reachable

from a program state is possible (assuming that n is the
only variable parameter) in NC1 (Thm. V.2).

We conclude by discussing the growth rate of the diamax
function (§ VII), including the theoretical benefits of its low
growth rate to bug finding and verification.

Limitations

First, it is not the goal of this paper to empirically mea-
sure or improve contemporary techniques for bug finding
or verification; none of the algorithms from the proofs are
meant to be used directly in practice. Rather, the paper con-
tributes to the classification of the asymptotic complexity
of search, with and without an oracle for the exact heuris-
tic in the parametrized setting in which the contribution of
the variable number of threads n is singled out. For this
purpose, we measure the distances in the transition graphs
and use traditional complexity classes. (The classification
in the parametrized-complexity class hierarchy would break
the limits of this paper and is relegated to a later report
[24].) Since we are interested in the dependency on n, the
expressions that do not depend on n (“constants,” especially
those hidden in the asymptotic notation) are of minor im-
portance here. Still, we sometimes get these constants for
free and, as a service to the interested reader, track or even
optimize them if the corresponding proof methods permit to
do it easily. Whether these constants are “optimal enough”
is subjective and does not matter much for the purpose of
classification: tooling and practically usable techniques are
orthogonal to the goals of this paper.

Second, it is not our intention to consider program fam-
ilies created from thread templates for which the sizes of
shared and thread-local state spaces depend on parameters
such as the number of threads n (e.g., [25]). For thread-
template–based families, there is no standard dependency of
the sizes of shared and thread-local state spaces on n (de-
pending on the example, the dependency may not exist [26,
§§ 7, 8] or be anywhere between linear [27, Ex. 13] and,
say, nO(n) [28]). Moreover, some parametrized programs
(say, Readers-Writers) come with two or more independent
variable parameters, which together determine the number
of threads and the sizes of shared and local state spaces.

Investigations of such families would necessarily be more
family-specific; results obtained for one family need not trans-
fer to another. As opposed to that, this paper aims to deal
with only one variable parameter and generically with the
whole class of multithreaded programs rather than particular
families of multithreaded programs.

I. Preliminaries

We now introduce the formal notation used throughout the
paper.

I.1. General conventions

In logical statements, the symbol ⇒ means implication and
⇔ means bi-implication.

Let N+ be the set of positive integers, N>0 the set of
nonnegative integers, Q the set of rationals, and Q>0 the
set of nonnegative rationals. Unless otherwise stated, the
implicit universe of variables is N>0. For a simple notation,
we view natural numbers as ordinals, so ∀ i, j : i<j ⇔ i∈j.
(It will help us to get rid of additional notation for the set of thread
identifiers such as Tid often seen in the literature [29]: Tid gets
unnecessary, since the number of threads n can be viewed as the
set of thread identifiers {0, . . . , n−1}. Moreover, formulas such as
“∀ i ∈ n \ {j} : . . .” are simpler than “∀ i ∈ N>0 : (i < n ∧ i 6=
j)⇒”)

Our map-constructor is right-associative, meaning that X
→Y→Z is read as X→(Y→Z), which is the set of func-
tions mapping each element of X to some function from
Y→Z. Maps are sometimes written in λ-notation [30]; e.g.,
λx∈X. λ y∈Y. z is a particular element of X→Y→Z as-
suming z∈Z. We write X99KY for the set of partial maps
from X to Y , X↪→Y for the set of injective (in other ter-
minology, one-to-one) maps from X to Y , X�Y for the
set of surjective (in other terminology, onto) maps from
X to Y , and X↪�Y for the set of bijections (in other ter-
minology, one-to-one correspondences) from X to Y . The
inverse of a bijection f is written as f−1. The domain and
the image of a map f are denoted by dom f and img f , re-
spectively. For finite functions mapping into some number
domain (naturals, rationals, . . .), ‖·‖1 denotes the 1-norm
and ‖·‖∞ the maximum norm: ‖f‖1

def
=
∑

i∈dom f |f(i)| and

‖f‖∞
def
= max{|f(i)| | i ∈ dom f}, where max ∅ def

= 0.
For a sequence σ with an index set I and i∈I , we mostly

use the right lower subscript or the right upper subscript in
square brackets to write the ith element as σi or σ[i]; the
whole sequence is written as (σi)i∈I or

(
σ[i]
)
i∈I , respec-

tively. If the index set is some initial segment of natural
numbers, we sometimes write i<n or i6n instead of i∈n
or i ∈ n+1 in the right subscript position; the version with
the weak inequality “6” additionally implies the nonempti-
ness of σ. The context will determine which of the notations
for sequences is most convenient.

By a slight abuse of notation, writing a plain number in the
right upper position of a symbol denotes the power of that
symbol (where the multiplication operation is taken from
the context), e.g., 32 = 9 or X3 = (X×X×X).

3

For a set X we write idX
def
= {(x, x) | x∈X} for the

identity relation on X . If → is a binary relation, we write
→∗ for its reflexive-transitive closure (on a set taken from
the context).

A preorder on a set X is a binary relation . on X such
that . is reflexive on X and transitive. A preordered set is
a pair (X,.) of a set X and a preorder . on X .

The index of an equivalence relation is the number of the
equivalence classes.

The term log x will denote the logarithm of x in basis 2.

I.2. Program notation

For n ∈ N+, an (n-threaded) program is the tuple
p = (Glob, Loc,→0, . . . ,→n−1)

such that Glob and Loc are finite nonempty sets and
∀ i<n : →i ⊆ (Glob× Loc)2 .

(Adapted from [31].) Such a program is called binary iff
|Glob| = |Loc| = 2. Elements of Glob are called shared
states (in other terminology, global states), elements of Loc
local states, elements of Glob×Loc thread states, elements
of
⋃
i<n→i thread transitions. A program state is an element

of
State

def
= Glob× Locn .

The transition graph induced by p is a directed graph (State,
−→) where

(g, l) −→ (g′, l′)
def⇔ ∃ i<n :

(
(g, li)→i (g′, l′i)

∧ ∀ j ∈ n\{i} : lj= l′j

)
for all (g, l), (g′, l′) ∈ State. A walk in the graph is a se-
quence (si)i<m of states connected by program transitions,
i.e., such that si −→ si+1 for all i with i+1 < m. A
path is an injective walk, i.e., a walk (si)i<m satisfying
∀ i, j ∈ m : si=sj ⇒ i=j. The length of a nonempty walk
is the number of times an edge is taken:

length
(
(si)i6m

) def
= m,

where “6” in the subscript ensures that the walk is nonempty,
containing s0. The distance from a program state s to a
program state s′ in the transition graph is the length of a
shortest walk from s to s′ (or infinity, if s′ is unreachable
from s):

d(s, s′)
def
= min

{
m

∣∣∣∣∃walk (s0, . . . , sm) in (State,−→)
such that s0=s ∧ sm=s′

}
,

where min ∅ def
= ∞. If the referred program in the above

definitions is not clear from the context, we add a lower
index to the above symbols referring to the program: e.g.,
dlocp (. . .) means the local distance inside the program p.

The local distance from a program state s to a thread state
(g, a) of a thread i in the transition graph is the length of
the shortest walk from s to a program state with local part
a of thread i and shared part g (or infinity, if no such walk
exists):

dloc
(
s, i, (g,a)

) def
= min

m
∣∣∣∣∣∣
∃ l∈ Locn, walk (s0, . . . , sm)
in (State,−→) : li = a ∧
s0 = s ∧ sm = (g, l)

,

where again min ∅ def
= ∞. The diameter of a transition graph

as above is the largest realizable finite distance:

diam(State,−→)
def
= max

(
(img d) \ {∞}

)
.

The diameter of a program p is the diameter of its transition
graph:

diam(p)
def
= diam(transition graph of p) .

Since we are interested in the dependency of the measured
quantities on n, we fix Glob, Loc, G def

= |Glob|, and L
def
=

|Loc| for the rest of the paper. Thus, we write programs such
as p above more shortly as

p = (→0, . . . ,→n−1)

or, even more compressed,
p = (→i)i<n .

We say that a program (i)i<m is a subprogram of a pro-
gram (→i)i<n if there is an injective map f : m↪→n such
that ∀ i<m : i =→f(i). Note that the subprogram relation
is a preorder on the set of programs.

The local diameter of a program is the largest finite local
distance realizable in the program’s transition graph:

diamloc(p)
def
= max

(
(img dlocp) \ {∞}

)
.

The maximal possible diameter for an n-threaded program
is denoted by

diamax(n)
def
= max{diam(p) | p is an n-threaded program} .

The maximal possible local diameter for an n-threaded pro-
gram is denoted by

diamaxloc(n)
def
== max

{
diamloc(p)

∣∣∣∣p is an n-threaded
program

}
.

II. Examples

Before turning to the main results of this paper, we present
some small examples (mostly taken from [20]). For simplicity,
we show a few binary n-threaded programs whose diameter
is diamax(n) for n ∈ {1, 2, 3}.

We therefore give some names to the shared and lo-
cal states, say, Glob = {α,β} and Loc = {0, 1}, where
α6=β are some literals. For brevity in the binary case, we
will sometimes omit commas and parentheses when writ-
ing thread or program states: we will occasionally typeset
thread states (g, l) ∈ Glob×Loc as gl and program states
(g, (l0, . . . , ln−1)) ∈ Glob× Locn as strings gl0 · · · ln−1.

The (local) diameters of following examples are all com-
puted directly from the definitions; double-checking the num-
bers is an exercise for the reader.

II.1. n = 1

Consider the program with exactly one thread and transitions
α0 →0 α1, α1 →0 β1, and β1 →0 β0. The diameter and
the local diameter of this program are both 3. The transition
graph of the program is depicted below right.

Since the total number of program states is 4,
no single-threaded program can have a larger
diameter. In total, there are six programs that
have diameter 3 and exactly three transitions
and whose diameter-realizing paths start in α0.

α0 α1

β0 β1

4

II.2. n = 2

Now we depict some two-threaded programs of maximal
diameter.

In the following tables, we omit the index at the arrows
in thread transitions. In each transition graph, solid arrows
constitute a shortest path from α00 to a state at the largest
distance, dashed arrows are program transitions that do not
contribute to the path, while dotted gray lines simply help
to visualize the set of states as a geometric cube.

A program with a total of 5 thread transitions is depicted
below.

Thread 0: Thread 1: Transition graph:

α0 α1

β0 β1

α0 α1

β0 β1
α00

α01

α10

α11

β00

β01

β10

β11

It has diameter 7 = d(α00,β11), and, since the total number
of states in any two-threaded program is 8, no two-threaded
program can have a larger diameter. Omitting any thread
transition would yield a program with a lower diameter.
Adding copies of existing threads in general doesn’t produce
programs with a maximal diameter: diam(→0,→0,→1) =
diam(→0,→1,→1) = 8 and diam(→0,→0,→1,→1) = 9,
which, as we will see, are less than the lower bound from
Thm. IV.1.1. The local diameter is 6 = dloc(α00, 0,β1).
Note that for each thread, each thread state occurs twice
as part of some program states (e.g., the thread state α1
of thread 1 occurs in α01 and α11). Thus, for any source
program state the two occurrences cannot both have distance
7 from this source: if any of these occurrences is reachable
from the source, at least one of these occurrences must have
distance not exceeding 6. Thus, no two-threaded program
can have a local diameter exceeding 6.

We give names to programs for convenient referencing.
Figs. 1 and 2 depict some programs with a total of 6 and 7
thread transitions, respectively. These programs have diame-
ter 7. Omitting any thread transition from these programs
would yield programs with a lower diameter.

Adding thread transitions or copies of existing threads may
change the diameter, but this is not always the case.

Let us consider some cases:
In N2T6A, adding α0→0β0 shrinks the diameter. Instead,

adding any combination of the thread transitions α1→0α0,
β0→0α0, and β1→0α0 does not change the diameter. We
have diam(→0,→0,→1) = 7 and diam(→0,→1,→1) =
8 = diam(→0,→0,→1,→1). The local diameter is 6 =
dloc(α00, 1,β1).

The transition graph of N2T6B is strongly connected.
Adding any combination of the thread transitions β1→0α1,
α1→0α0, β1→0α0, and β0→0α0 would not change the di-
ameter, but adding α1→0β0 would shrink it. Duplicating the
threads slightly increases the diameter: diam(→0,→0,→1)

Thread 0 Thread 1 Transition graph
Program N2T6A

α0 α1

β0 β1

α0 α1

β0 β1
α00

α01

α10

α11

β00

β01

β10

β11

Program N2T6B

α0 α1

β0 β1

α0 α1

β0 β1
α00

α01

α10

α11

β00

β01

β10

β11

Program N2T6C

α0 α1

β0 β1

α0 α1

β0 β1
α00

α01

α10

α11

β00

β01

β10

β11

Program N2T6D

α0 α1

β0 β1

α0 α1

β0 β1
α00

α01

α10

α11

β00

β01

β10

β11

Figure 1. Some two-threaded binary programs with 6 thread transitions.

= diam(→0,→1,→1) = 8 and diam(→0,→0,→1,→1) =
9. The local diameter is 6 = dloc(α00, 1,β0).

In N2T6C, adding any combination of the transitions α1
→0α0, β0→0α0, and β1→0α0 would shrink the diameter.
Adding the thread transition β1→0α1 would not change
the diameter. We have diam(→0,→0,→1) = 7, diam(→0,
→1,→1) = 8, and diam(→0,→0,→1,→1) = 9. The local
diameter is 5 = dloc(α00, 1,β0).

The transition graph of N2T7B is strongly connected. There
are two paths realizing distance 7: α00 −→∗ α01 (denoted by
thick arrows) and α01 −→∗ β00. Adding any combination of
α1→0α0, β1→0α0, and β0→0α0 would retain the diameter
7, but the only path realizing the longest distance would
be α01 −→∗ β00. Instead, adding β0→1β1 would keep
both paths realizing the longest distance. Thread duplication
increases the diameter in some cases: diam(→0,→0,→1) =
7 and diam(→0,→1,→1) = 8 = diam(→0,→0,→1,→1).
The local diameter is 6 = dloc(α01, 1,β0).

II.3. n = 3

Consider the program N3T9 from Fig. 3.
Its transition graph is depicted in Fig. 4.

5

Thread 0 Thread 1 Transition graph
Program N2T7A

α0 α1

β0 β1

α0 α1

β0 β1
α00

α01

α10

α11

β00

β01

β10

β11

Program N2T7B

α0 α1

β0 β1

α0 α1

β0 β1
α00

α01

α10

α11

β00

β01

β10

β11

Figure 2. Some two-threaded binary programs with 7 transitions.

Thread 0: Thread 1: Thread 2:
α0 α1

β0 β1

α0 α1

β0 β1

α0 α1

β0 β1

Figure 3. A three-threaded binary program.

This program has local diameter 9 = dloc(α000, 2,α1)
and diameter 13 = d(α000,β011). The transition graph is
strongly connected. Adding a copy of each thread would
shrink the diameter: diam(→0,→0,→1,→1,→2,→2) = 11.
It can be shown [20, Prop. 6.2.1.1] that N3T9 has the maxi-
mal diameter among all three-threaded binary programs.

III. Local diameter

In this section we prove that the local diameter is bounded
above by a constant independent of the number of threads,
and that the least upper bound is computable by an explicit

α101

α111

α001

α011

β101

β001

β111

β011

α100

α110

α000

α010

β100

β000

β110

β010

Figure 4. N3T9: transition graph and a path realizing the longest distance.

algorithm. Informally, this means that the shortest counterex-
amples to violated local safety properties are short, and,
given enough computational resources, we can even say how
short. From a theoretic viewpoint, a constant bound will be
far better than the trivial bound diamaxloc(n) 6 diamax(n)
for all n ∈ N+.

From an intuitive standpoint, the proof relies on the obser-
vation that the local-distance function is, roughly speaking,
antitone in the program argument (adding threads to a pro-
gram reduces the local distances), as well as on any of the
known coverability procedures for Petri nets.

To develop this idea into a proof, we start with well-known
terminology.

For a preordered set (P,.), a subset A⊆P is called an
antichain iff ∀x, y ∈ A : (x.y ∨ y.x) ⇒ x=y. Infor-
mally, an antichain is a set in which no two elements are
comparable.

Given an arbitrary set I and arbitrary posets (Pi,≤i) for
i∈I , the componentwise partial order on the product

∏
i∈I Pi

is given by

x� y def⇔ ∀ i∈I : xi ≤i yi
(
x, y ∈

∏
i∈I

Pi

)
.

We call a map ϕ : X → Y between preordered sets
(X,.X) and (Y,.Y) an
• order-homomorphism iff ∀x1, x2 ∈ X : x1.Xx2 ⇔ ϕ(x1)
.Y ϕ(x2), and
• order-epimorphism iff ϕ is a surjective order-

homomorphism.
The following popular result is essential for the whole

section:

Proposition III.1 (Dickson’s Lemma). Let m ∈ N>0. Let
the set Nm>0 of m-tuples of natural numbers be equipped with
the componentwise partial order over the standard order on
natural numbers. Then every antichain in Nm>0 is finite.
Proof idea. A special case of Hilbert’s basis theorem (cf.
Chapitre III, § 2.10, Corollaire 2 in [32]). �

We recall that a partial order � on a set X is well-founded
iff each nonempty subset of X has a minimal element, i.e.,
∀Y ⊆X :

(
Y 6=∅ ⇒ ∃ y∈Y ∀ z∈Y : (z�y ⇒ z=y)

)
.

Note that for each m ∈N>0, the componentwise partial
order on Nm>0 is well-founded. We combine this fact with
Prop. III.1 now:

Lemma III.2. Let N>0 be equipped with the standard order
on natural numbers. Let m ∈ N>0, the set Nm>0 be equipped
with componentwise partial order, and f : Nm>0 99K N>0 be
an antitone partial map. Then:
a) img f is finite.
b) Assume that explicit algorithms solving the following prob-

lems exist:
1) Decide, given an arbitrary set I⊆m and a sequence of

pairs (si, ai)i∈I ∈ ({‘=’, ‘>’}×N>0)I , whether some y
∈ dom f exists satisfying

∧
i∈I

(
(si = ‘=’ ∧ yi = ai) ∨

(si = ‘>’ ∧ yi> ai)
)
.

2) Evaluate f at a point of its domain.

6

Then there is an explicit algorithm determining whether
img f is empty or not, and, in case of nonemptiness, com-
puting max(img f).

Proof idea. In the interesting case that dom f 6= ∅, consider
the antichain of minimal elements of dom f and let M be
the maximal value of f on this antichain. All the values of
f are bounded by M from above; there are finitely many
such values. As for computability, construct any antichain
in dom f first, and then enumerate the tuples below that
antichain. �

In the following, let P be the set of all programs, equipped
with the subprogram preorder (cf. Lem. B.1).

Lemma III.3. There is some k∈N+ and some order-
epimorphism ϕ : P � Nk>0 \ {k×{0}}, where the codomain
is equipped with the componentwise partial order.
(Since k is an ordinal, the notation k×{a} set-theoretically
means simply {0, . . . , k−1} × {a} = {(0, a), . . . , (k−1, a)} =
(a, . . . , a)︸ ︷︷ ︸

k times

, a vector of k copies of a. If programs with no threads

were allowed, the image of ϕ would include the all-zeros vector.)
Proof idea. Let k =

∣∣P((Glob×Loc)2)
∣∣ be the number

of different thread transition relations. We choose some
enumeration t0, . . . , tk−1 of these relations. Let ϕ map a
program (→i)i<n to

(∣∣{i<n | →i = tr}
∣∣)
r<k

. �

Moreover, all order-epimorphisms as in Lem. III.3 are of the
same form:

Lemma III.4. Let ϕ : P�Nk>0 \ {k×{0}} be an order-
epimorphism, where the codomain is equipped with the
componentwise partial order. Then k = 2G

2L2

, and there
is some enumeration t0, . . . , tk−1 of thread transition rela-
tions such that ϕ

(
(→i)i<n

)
=
(∣∣{i<n | →i = tr}

∣∣)
r<k

for

all programs (→i)i<n. Moreover, ϕ is computable and the
preimage of each vector under ϕ is finite and computable.
Proof idea. Induction on the number of threads. �

The above preparations imply:

Theorem III.5. Let f : P 99K N>0 be an antitone partial
map. Then:
a) img f is finite
b) Assume that there are explicit algorithms solving the fol-

lowing problems:
• Membership of a given program in dom f .
• Decide, given an arbitrary set I ⊆ P

(
(Glob×Loc)2

)
and an I-indexed sequence of pairs (s , a) ∈I ∈
({‘=’, ‘>’} × N>0)I , whether some (→i)i<n ∈ dom f

exists satisfying
∧
 ∈I

((
s = ‘=’ ∧

∣∣{i<n | →i = }
∣∣

= a
)
∨
(
s = ‘>’ ∧

∣∣{i<n | →i = }
∣∣ > a)).

• Evaluate f at a point of dom f .
Then there is an explicit algorithm determining whether
img f is empty or not, and, in the the case of nonemptiness,
computing max(img f).

Proof idea. Consider ϕ from Lems. III.3 and III.4. Let
A = {ϕ(p) | p ∈ dom f}. The map g : A→ N>0, a 7→ f(p)
for any p ∈ (dom f) ∩ ϕ−1(a) is well defined. Its image is

finite due to Lem. III.2a) and is equal to img f . Apply Lem.
III.2b). �

In the following, states of a particular form will play an
important role. We call a program state (g, l) ∈ Glob×Locn

of any n-threaded program uniform if all components of l
are the same, i.e., ∀ i, j ∈ n : li = lj .

Now we can use the aforementioned Thm. III.5:

Lemma III.6. For all g, g′ ∈ Glob, a, a′ ∈ Loc, and ⊆
(Glob×Loc)2 there is some c∈N>0 satisfying the following
property: for all n∈N+, all n-threaded programs (→0, . . . ,
→n−1), and all i<n, if →i = and dloc

(
(g, n×{a}), i,

(g′, a′)
)
< ∞, then dloc

(
(g, n×{a}), i, (g′, a′)

)
6 c. More-

over, the function mapping a tuple (g, g′, a, a′,) ∈ Glob
× Glob × Loc × Loc ×P((Glob×Loc)2) to the smallest c
satisfying the above property possesses an explicit algorithm.
Proof idea. Fix arbitrary g, g′ ∈ Glob, a, a′ ∈ Loc,
and ⊆ (Glob×Loc)2. Define f : P99KN>0 with domain{

(→i)i<n ∈ P
∣∣∣ ∃ i<n : →i= ∧ dloc(→i)i<n

(
(g, n×{a}), i,

(g′, a′)
)
<∞

}
such that f maps a program (→i)i<n from

that domain to min
{
dloc(→i)i<n

(
(g, n×{a}), i, (g′, a′)

) ∣∣∣ i<n
∧ =→i

}
. Apply Thm. III.5 to f . �

Since there are only finitely many shared states, local states,
and thread transition relations, a maximal c from Lem. III.6
can be computed:

Corollary III.7. There is some c∈N>0 such that for all g, g′
∈ Glob, a, a′ ∈ Loc, n ∈ N+, all n-threaded programs p,
and all i<n, if dlocp

(
(g, n×{a}), i, (g′, a′)

)
< ∞, then dlocp(

(g, n×{a}), i, (g′, a′)
)
6 c. Moreover, there is an explicit

algorithm constructing the smallest such c.

In Cor. III.7, the source program state is uniform. Generaliz-
ing, if an arbitrary initial program state (g, l) with a finite
distance to a thread state (g′, a′) of thread i is given, we re-
name the local states of all the threads except the ith one to
obtain a (different, in general) program with the same local
distance from (g, n×{li}) to (g′, a′) in thread i, and apply
the above result. We obtain:

Theorem III.8. There is some c ∈ N>0 such that ∀n ∈ N+ :
diamaxloc(n) 6 c. Moreover, the smallest such c can be
constructed by an explicit algorithm.

Due to Thm. III.8, the maximal local diameter for programs
can be determined:

Definition and Corollary III.9. C def
== max(img diamaxloc)

exists and is computable by an explicit algorithm.

The explicit algorithm can be determined by unrolling the
proofs to the necessary level of detail; for example, the top
level of the algorithm is “compute max(img ζ),” where ζ is
defined in the proof of Cor. III.7 in the appendix.

Although this paper does not aim to determine the nu-
merical value of C, three remarks are to be made. First,
“explicit” means that our algorithm computing C can be
easily converted to a runnable implementation in some real-
world programming language (although actually obtaining

7

the numerical representation of C in acceptable time would
require more efforts); this is strictly better than a pure com-
putability claim (in which case we would know that an
algorithm exists but might not know what it is). Second,
a general lower bound on C is GL − 1: we obtain it by
considering a single-threaded program whose transition rela-
tion is {((g, l), (g, l+1)) ∈ (N>0 × N>0)2 | g<G ∧ l+1 <
L} ∪ {((g, L−1), (g+1, 0)) ∈ (N>0 × N>0)2 | g+1 < G}.
Third, one more lower bound stems from the example N3T9
in § II.3: from diamloc(N3T9) = 9 we obtain that for
G = L = 2 we have C > 9.

IV. Diameter

Now we provide a lower and an upper bound on diamax, an
upper bound on the diameter of programs from a particular
class and an upper bound on the diameter of a random
program.

IV.1. A lower bound on diamax

Theorem IV.1.1. ∀n∈N+ : diamax(n) > (GL−L+1)(L−1)n
+ (2−L)(G−1)L.
Proof idea. Without loss of generality, suppose Glob =
{0, . . . , G−1} and Loc = {0, . . . , L−1}. Fix n>1. Con-
sider the following n-threaded program. Let the transitions
of thread 0 be {((g, l), (g, l+1)) | g<G ∧ l+1 < L} ∪
{((g, L−1), (g+1, 0)) | g+1 < G ∧ l<L}. Let the tran-
sitions of each thread i ∈ n\{0} be {((G−1, l), (0, l+1))
| l+1 < L}. Then d((0, (0)i<n), (G−1, (L−1)i<n)) =
(GL−L+1)(L−1)n+ (2−L)(G−1)L. �

Using Knuth’s Big-Omega notation [33], we obtain: L>2⇒
diamax(n) = Ω(n).

The proof of Thm. IV.1.1 cannot be strengthened by better
counting using the same program family. In Note D.3 we
show that the diameter of the n-threaded program from this
family is exactly (GL−L+1)(L−1)n+ (2−L)(G−1)L. In
this sense, the proof of Thm. IV.1.1 has reached its limit.

Of course, (GL−L+1)(L−1)n+(2−L)(G−1)L is only a
lower bound, and in general not the exact value of the diamax
function. We already saw in § II.2 examples, say, N2T6B
or N2T7A, of diameter 7 > 6 = 3n = (2·2−2+1)(2−1)n+
(2−2)(2−1)·2 for n = G = L = 2. Duplicating existing
threads in these examples did not raise the diameter above
the lower bound. As we will see in Thm. IV.2.2.3, adding
arbitrarily many arbitrary threads to these examples would
not raise the bound beyond linear anyway. A few more
exceptions are known, i.e., n-threaded programs (for small
n) for which the diameter is known to exceed the lower
bound; no such exception is known to have generalizations
for infinitely many n that could asymptotically improve
Thm. IV.1.1. Further, on a set of over 5 · 1024 n-threaded
binary programs with n > 5, no deviations from the lower
bound have been observed [21].

IV.2. Upper bounds

IV.2.1. An upper bound on diamax

We are going to show that diamax is asymptotically ma-
jorized by a polynomial function.

We start the proof by fixing an arbitrary program (→i)i<n
and an arbitrary state (g, l) ∈ State of this program until
(but not including) Thm. IV.2.1.13. We are going to prove
that d((g, l), s) = O(nc) for all s∈State, where c>1, and
neither c nor the constant hidden in the O-notation depend
on g, l, s, n, or the program. From a high-level view, our
proof will exploit symmetries between the threads.

As a first step, we “confuse” thread indexes if the local
parts corresponding to these thread indexes in the initial state
are equal and the threads’ transition relations are equal up to
self-loops. Formally, consider the diagonal D def

= idGlob×Loc.
Thread identifiers i, j < n are called confusable, written i∼j,
iff li = lj ∧→i\D =→j\D. Note that ∼ is an equivalence
relation on n.

Next, we define which program states should be considered
indistinguishable for our purposes: such states result from
each other by re-indexing threads with confusable identifiers
provided that the local parts corresponding to these thread
identifiers are equal. Formally:

Definition IV.2.1.1. A map ϕ : n→ n is called ∼-invariant
iff ∀ i<n : i ∼ ϕ(i). Program states (ĝ, l̂), (ǧ, ľ) are called
confusable, written (ĝ, l̂) ≈ (ǧ, ľ), iff ĝ=ǧ ∧ ∃ ∼-invariant
ϕ ∈ (n ↪� n) : ∀ i<n : l̂i = ľϕ(i). �

Intuitively speaking, ϕ in the above definition re-indexes
threads with confusable identifiers provided the correspond-
ing local parts are the same.

Example IV.2.1.2. Consider the binary case Glob = {α,β}
and Loc = {0, 1} and a two-threaded program ({(α1,α1)},
{(β0,β0)}) having self-loops only. Let the initial state be
(g, l) = (α, (0, 0)). The thread indexes 0 and 1 are confusable.
The transposition ϕ = λ i<2. 1−i, which swaps the indexes
of the threads, is ∼-invariant. Let (ĝ, l̂) = (β, (0, 1)), and
(ǧ, ľ) = (β, (1, 0)). Then ĝ = ǧ, l̂0 = ľϕ(0), and l̂1 = ľϕ(1).
Therefore, (ĝ, l̂) and (ǧ, ľ) are confusable. Here, ≈ is not
a classic bisimulation [15, Def. 7.1]: (ǧ, ľ) has a successor
program state (namely, itself), whereas (ĝ, l̂) has no succes-
sors. �

The inverses of ∼-invariant permutations of n are ∼-invariant
themselves:

Lemma IV.2.1.3. If ϕ : n ↪� n is ∼-invariant, so is ϕ−1.

Confusion of program states is an equivalence relation:

Lemma IV.2.1.4. ≈ is an equivalence relation on State.

We write State�≈ for the set of equivalence classes.
For computing distances, the self-loops in the transition

graph are irrelevant, which motivates the following notion:

Definition IV.2.1.5. A loopless thread transition relation is
a member of E def

= P
(
(Glob×Loc)2 \D

)
. �

8

Above, E stands for “edges”. Using this shorthand for loop-
less thread transition relations we can express the notion of
state confusion differently; instead of mentioning bijections
we can say that certain sets are equally large:

Lemma IV.2.1.6. For all ĝ, ǧ ∈ Glob and l̂, ľ ∈ Locn we

have (ĝ, l̂) ≈ (ǧ, ľ) iff
(
ĝ=ǧ∧

(
∀a, b ∈ Loc, ∈E :

∣∣{t<n
| lt=a∧→t\D = ∧ l̂t=b}

∣∣ =
∣∣{t<n | lt=a∧→t\D =

∧ ľt=b}
∣∣)).

Proof idea. Two sets have the same cardinality iff a bijection
between them exists. �

So, program states are confusable iff they are the same up
to renumbering the threads with confusable identifiers.

In the proofs of the following claims, both views of state
confusion will come in handy.

The next lemma, which says that confusable states have
the same distance from the fixed one, is crucial for the whole
section.

Lemma IV.2.1.7. ∀ s, s′ ∈ State : s≈s′ ⇒ d((g, l), s) =
d((g, l), s′).
Proof idea. Induction on min{d((g, l), s), d((g, l), s′)}. �
From this result we directly conclude:

Lemma IV.2.1.8. ∀ s ∈ State : d((g, l), s) < ∞ ⇒
d((g, l), s) <

∣∣∣State�≈∣∣∣.
Proof idea. Take a shortest path from (g, l) to s. Lem.
IV.2.1.7 implies that any two program states on this path are
inconfusable. Hence, the index of the equivalence relation
≈ exceeds the path length. �

It is unclear how to determine the index of ≈ from its
definition. To get a polynomial upper bound on this index,
we first establish a bijection between the set of equivalence
classes and another set for which the cardinality will be
easier to determine directly.

To this end, let V be the set of all maps

f : (Loc× E)→ Loc→ N>0

such that for all a∈Loc and all ∈ E we have

‖f(a,)‖1 =
∣∣{t<n | lt = a ∧→t\D = }

∣∣
(i.e., informally speaking, the sequence of values of f(a,)
forms a partition of the number of all the threads starting in a
and having the thread transition relation up to self-loops).

Lemma IV.2.1.9. There is a bijection between State�≈ and
Glob× V .
Proof idea. Construct a surjection from State to Glob×V
which delivers the same values for two states iff they are
confusable (using Lem. IV.2.1.6 to prove it). Lift this surjec-
tion to a bijection from State�≈ to Glob×V . �

(An aside has to be made. The proof of our upper bound on diamax
will use the fact that the aforementioned bijection—as any bijection—is
injective. But we will not use the fact that the bijection is also surjective.
The existence of a surjection only shows the difficulty of potential future
attempts to tighten our upper bound on diamax.)

For estimating the cardinality of Glob×V we employ a
generalization of the binomial coefficients in which the upper
argument can take arbitrary rational values:(

x

m

)
def
==

∏
i<m

x− i
i+ 1

for x ∈ Q and m ∈ N>0,

with the convention that the empty product evaluates to 1.
The definition of the set from Lem. IV.2.1.9 depends on

the transitions relations of the program. Now we bound the
cardinality of this set by an expression over G, L, and n,
which doesn’t involve the aforementioned dependency:

Lemma IV.2.1.10. |Glob× V | 6 G ·max
{∏

i<L·2GL(GL−1)(
ki+L−1
L−1

) ∣∣ k0, . . . , kL·2GL(GL−1)−1 ∈ N>0 ∧∑
i<L·2GL(GL−1) ki = n

}
.

Proof idea. Use the fact that there are
(
k+L−1
L−1

)
ways to

arrange k indistinguishable balls into L distinguishable bas-
kets. �

Recall that a product of constantly many nonnegative integers
with a constant sum is maximal when these integers coincide.
To simplify the maximum from Lem. IV.2.1.10, we will
require a similar result:

Lemma IV.2.1.11. Let n,m ∈ N>0 and t∈N+. Then max{∏
i<t

(
ki+m
m

) ∣∣ (ki)i<t ∈ (N>0)t ∧
∑

i<t ki = n
}
6(

n/t+m
m

)t
.

Proof idea. Generalize the claim to ki ∈ Q>0 (i<t) and
prove it by induction on

∣∣{i<t | ki 6= n
t }
∣∣. �

Now we can bound the index of ≈ by a less complicated
term:

Corollary IV.2.1.12.
∣∣∣State�≈∣∣∣ 6 G

(
n/t+L−1
L−1

)t
where t =

L · 2GL(GL−1).
Proof idea. Combine Lems. IV.2.1.9 to IV.2.1.11. �

This helps to bound diamax by a polynomial in n:

Theorem IV.2.1.13. diamax(n) <

G
(n

L·2GL(GL−1)
+L−1

L−1

)L·2GL(GL−1)

= O
(
nL(L−1)2GL(GL−1))

.
Proof idea. Follows from Cor. IV.2.1.12 and Lem. IV.2.1.8.

�

To the best of our knowledge, O(nL(L−1)2GL(GL−1)

) is the
first known explicit polynomial upper bound for diamax.
Comparing the degree L(L− 1)2GL(GL−1) to bounds from
[34] from a theoretical viewpoint, we feel it comforting
to see that our degree is relatively small: it involves only
one exponentiation operation. Tightening Thm. IV.2.1.13 is
an open problem, but we expect that the degree could be
lowered further by reducing E from Def. IV.2.1.5. §§ IV.2.2
and IV.2.3 will be encouraging: in the setups described there
the degree will be provably 1.

Note IV.2.1.14. In the binary case we obtain diamax(n) =
O
(
n2·1·24·3)

= O
(
n213)

, improving over the O
(
n217)

bound
from [20]. The proof of the O

(
n213)

bound shows that a
diamax-realizing program has at most 212 = 4096 different
thread transition relations. The reduction of the degree by
a factor of 16 is a substantial and necessary step in the fol-

9

lowing sense: if anyone aims to understand the structure of
diamax-realizing programs, they have to consider the transi-
tion relations of the threads manually or semi-automatically.
We do not believe it to be doable directly for 216 = 65536
relations as in [20], but we believe that 4096 cases could be
reduced after further optimizations to a manageable number
(and, even in the worst case, such an inspection would be
more elementary than known monster explorations, such as
[35]). �

IV.2.2. Strongly connected subprograms
Now we show a linear upper bound for the family of pro-
grams that have a subprogram with a strongly connected
transition graph.

For a program with transition relation −→ we write
σ −→6k σ′ iff the state σ′ is reachable from σ in at most
k steps. Formally:

−→60 def
== {(σ, σ) | σ ∈ State} and

−→6k def
== −→6k−1 ∪ (−→6k−1 #−→) (k ∈ N+) ,

where # is the left composition.
For the rest of this section, let C be the maximal local

diameter (cf. Def. and Cor. III.9).

Lemma IV.2.2.1. Let h be an m-threaded program whose
transition graph is strongly connected and (g, l) a state
of the program. Then every shared state can be reached
from (g, l) in at most min{C, (G−1)Lm, diam(h)} steps.
Formally: ∀ (g, l) ∈ State, g′∈Glob ∃ l′∈Locm : (g, l)
−→6min{C,(G−1)Lm,diam(h)} (g′, l′).
Proof idea. Take a shortest path from (g, l) to a program
state with the shared part g′. Each state from (Glob\{g′})
× Locm occurs in the path at most once. �

Due to Lem. IV.2.2.1, we can change the shared state
“quickly” in a program with a strongly connected transi-
tion graph.

We define a universal helper of a program p as a subpro-
gram h of p such that the transition graph of h is strongly
connected. The name “universal helper” is motivated by
the fact that such a subprogram may help lifting certain se-
quences of local states of p (that are almost walks in the
transition graph p, but the shared states do not match prop-
erly) to actual walks in the transition graph of p:

Lemma IV.2.2.2. Let n>m>1, and let h be an m-
threaded universal helper of an n-threaded program p. Then
diam(p) 6 (min{C, (G−1)Lm, diam(h)}+1)(L−1)(n−m)
+ diam(h).
Proof idea. Given a walk from one program state of p
to another, construct a (potentially different) path from the
former to the latter state in which transitions induced by h
are interleaved with the transitions that gradually reduce the
number of indices in which the local parts of the two states
differ. �

Let us restate the contents of Lem. IV.2.2.2 in terms of our
diameter bounds.

Theorem IV.2.2.3. Let m > 1 and (pn)n>m be a family of
multithreaded programs such that

• the transition graph of pm is strongly connected, and
• for all n>m, the program pn has exactly n threads, and
• for all n>m, the program pm is a subprogram of pn.
Let d = diam(pm) and c = (min{C, (G−1)Lm, d} + 1)
(L−1). Then ∀n > m : diam(pn) 6 cn− cm+ d.

Notice that this upper bound is linear in n, and the coefficient
c is bounded above by (C+1)(L−1), which does not depend
on the family of programs.

An example of such a family of Thm. IV.2.2.3 would be
a family from the proof of Thm. IV.1.1, in which thread
0 would in addition obtain all the reverse thread transi-
tions; the upper bound then would match the lower bound
of (GL−L+1)(L−1)n + (2−L)(G−1)L. Other examples
can be obtained by adding more threads to N2T6B, N2T7B,
or N3T9 from § II: their transition graphs are strongly con-
nected.

Models of real-world programs may naturally possess uni-
versal helpers. This may be the case when we produce an
abstraction of a system. For example, the coarsest abstract
thread [36] uses only one local state and changes the shared
memory arbitrarily. Another way in which strongly connected
subprograms may occur is via the automatic generation of
models inside abstraction-refinement loops: it starts with the
coarsest thread. Even more-refined thread-abstractions may
have strongly connected graphs, e.g., when we model a re-
active thread running an infinite loop which responds to the
environment by changing the shared state in different ways.

IV.2.3. Probabilistic Analysis
We proceed by considering a random process of creating
a multithreaded program in which each transition of each
thread is chosen independently with a probability that de-
pends only on the thread transition.

First, we show that the existence of a thread with a special
set of transitions leads to a polynomial bound on the diameter
which is linear in n.

Lemma IV.2.3.1. The diameter of a program
with a 1-threaded universal helper does not ex-
ceed (GL−L+1)(L−1)n + (2−L)(G−1)L. Formally,
for every n-threaded program p we have (∃ i<n
∀ g, g′ ∈ Glob, l, l′ ∈ Loc : (g, l) →∗i (g′, l′)) ⇒
diam(p) 6 (GL−L+1)(L−1)n+ (2−L)(G−1)L .

Proof idea. Follows from Lem. IV.2.2.2. �

Lem. IV.2.3.1 is our main ingredient in proving a linear diam-
eter of programs for which the number of threads becomes
sufficiently large—given a rather general probability distri-
bution for the existence of thread transitions as mentioned
before.

Theorem IV.2.3.2. Let π : (Glob× Loc)2 → [0, 1] be a
probability distribution on thread transitions for which ∀
g, g′ ∈ Glob, l, l′ ∈ Loc ∃ k ∈ N>0, (l̃i)

k
i=0 ∈ (Locn)k+1,

(g̃i)
k
i=0 ∈ Globk+1 : (g, l) = (g̃0, l̃0) ∧ (g′, l′) = (g̃k, l̃k)

∧ ∀ i<k : π((g̃i, l̃i), (g̃i+1, l̃i+1)) > 0. Then limn→∞ Prob
(

diam(an n-threaded random program) 6 (GL−L+1)(L−
1)n+ (2−L)(G−1)L

)
= 1.

10

Proof idea. The probability for a thread to satisfy the pre-
requisites for Lem. IV.2.3.1 is positive. �

Note IV.2.3.3. In the above claims, the bound (GL−L+ 1)
(L−1)n + (2−L)(G−1)L on the diameter is linear in the
number of threads, and can be simplified to a mathematically
larger but conceptually easier expression GL2n. �

The probability distribution above is given, e.g., when the
probability of each thread transition is positive, no matter
how small it is.

Informally, the consequence is that trying to find programs
with “large” diameter by generating n-threaded programs,
say, uniformly at random would most likely fail for large n:
we would likely get only at most linear values. In contrast,
the search from [20], for example, is nonrandom, structured,
and informed.

Thm. IV.2.3.2 coarsely models the risks of a large number
of threads being affected externally. Examples are radiation in
high-performance computing and row-hammering attacks on
server memory [37]. Assuming that the operating system with
the scheduler are stored in better-protected memory (which
is a reasonable requirement on system builders) and that user-
space threads are less protected, and assuming sufficiently
long running-times, uncorrectable bit-flips are likely to turn
the threads into random pieces of code while still maintaining
their parallel execution. If particular, Thm. IV.2.3.2 is an
indication that if an “error” program state ever becomes
reachable from the current execution state due to bit-flips, it
is also likely to become reachable “fast,” i.e., in linear time
in n. Of course, the usual caveats apply (the probability of a
thread transition depending only on the thread transition is a
simplification of the reality, and Thm. IV.2.3.2 applies to a
nondeterministic programming-model). A closer examination
of hardware-near execution models might be required to
find out whether the above claim applies to more-realistic
machine-code, revealing additional risks of long-running,
massively parallel software.

V. Complexity of (non-)reachability

Now we determine the complexity of proving or refuting the
reachability of a target program state or a target thread state
from a source program state.

For the purpose of defining these reachability problems as
formal languages, we assume without loss of generality this:
• A shared state is an ordinal below G, and it is encoded in

binary occupying exactly blogGc+ 1 bits.
• A local state is an ordinal below L, and it is encoded in

binary occupying exactly blogLc+ 1 bits.
• A thread identifier is an ordinal below n, and it is encoded

in binary occupying exactly blog nc+ 1 bits.
If some binary number actually needs less bits than allocated,
padding with zeros is used. We consider

Reach
def
=

{
(p, s, s′)

∣∣∣∣p is a program ∧ s, s′ ∈ Statep
∧ dp(s, s

′) <∞

}
,

Reachloc
def
=

{
(p,s,i,τ)

∣∣∣∣p is a program ∧ s∈Statep ∧ i<n
∧ τ ∈ Glob×Loc ∧ dlocp (s,i,τ)<∞

}
,

NonReach
def
=

{
(p, s, s′)

∣∣∣∣p is a program ∧ s, s′ ∈ Statep
∧ dp(s, s

′) =∞

}
,

NonReachloc
def
=

(p,s,i,τ)

∣∣∣∣∣∣
p is a program ∧ s∈Statep
∧ i<n ∧ τ ∈ Glob×Loc
∧ dlocp (s,i,τ) =∞

.
The asymptotic notation hidden in the complexity class defi-
nitions assumes constant G and L and variable n. First, we
deal with program-state–to–program-state reachability:

Theorem V.1. Reach,NonReach ∈ NSpace(log n) .
Proof idea. Nondeterministically search in a Petri net cre-
ated to simulate an input program. In this Petri net, a place
corresponds to the number of threads that started in a par-
ticular local state, have a particular thread transition relation
up to self-loops, and currently have yet another particular
local state (cf. Lem. IV.2.1.6). We keep track of the shared
state separately. �

The nondeterministic logarithmic space complexity of reach-
ability is not unusual; see, e.g., [38, Fig. 2].

For program-state–to–thread-state reachability, recall that
low-complexity problems tend to be sensitive to the input
format. So, we now provide the details of the encoding of
Reachloc and NonReachloc into bitstrings. A thread transition
relation is encoded using a bitstring of length

∣∣(Glob×Loc)2
∣∣

= G2L2. An n-threaded program p is stored as a list of thread
transition relations in a self-delimited way. (For example,
insert 0 between each pair of thread transition relations and
append 1 at the end. This encoding uses (G2L2 + 1)n bits.
Using a slightly more compact self-delimiting encoding [39]
will not change the complexity class.) An element of Locn

is represented as a string of n(blogLc + 1) bits assuming
that n is known. A program state (g, l) ∈ Glob × Locn is
formed by prepending the encoding of g to the the encoding
of l, again assuming that n is known. The number i from the
third component of the quadruple (p, s, i, τ) ∈ Reachloc ∪
NonReachloc is stored in binary (not in a self-delimiting way)
in the bits right after s. The encoding of i is followed by an
encoding of τ using the final

(
blogGc+ 1

)
+
(
blogLc+ 1

)
bits.

We expect that slight encoding variations (e.g., in the self-
delimiting encoding of p) will not change the complexity
class.

Theorem V.2. Reachloc,NonReachloc ∈ NC1 .
Proof idea. The number of threads participating on a path can
be bounded using Def. and Cor. III.9, allowing for storing
a finite table of answers in the state space of a regular
automaton. Syntax checking is done by an NC1-circuit. �

We don’t expect the complexity to drop significantly below
NC1, since checking whether a unary-encoded number is
larger than a binary-encoded number (n > i in the problem
formulation) cannot be performed by a finite automaton.

VI. Related work

In the narrowest sense, little has been published on the com-
plexity of reachability in finite-state shared-memory multi-
threaded programs equipped with the interleaving semantics.

11

The PSPACE-completeness of deciding reachability in multi-
threaded programs follows directly from Lem. 3.2.3 in [16];
this exercise is straightforward (though it is as usual tedious
to argue about logspace reductions) and has not been for-
mally published to the best of our knowledge. As for singling
out the contribution of the number of threads n, already [40,
p. 126] observed that “symmetrization reduces the growth
of [the description of the transition graph] from exponen-
tial with respect to [n] to polynomial with respect to [n].”
To the extent of our knowledge, the polynomial degree has
never been determined precisely in general. In the special
case that all the threads of a program execute the same code,
it has been observed [41–43] that the symmetrized program
has roughly nL states, where L is the number of the local
states.

In a wider sense, a crisp review of search in parametrized
concurrent programs based on only one template is given in
[44, § 3.2]. Relaxing the communication model leads us to
[45–47] (for rendezvous communication) or [48] (for token
ring) among replicated processes.

Local reachability in our setting can be viewed as a conse-
quence of the finite-basis and Petri-net theories [49, 50]. The
set of programs can be viewed as a single well-structured tran-
sition system [51], yielding the decidability of thread-state
reachability via a constant bound on the distances to a target
state. However, [51] fixes the target state and is formulated in
abstract terms rather than in terms of shared-memory multi-
threaded programs equipped with the interleaving semantics;
therefore, additional work has to be invested to prove that the
bound does not depend on the state we start with (whether
initial or target; both depend on n themselves), to transfer
their results into the local-diameter graph-theoretic terminol-
ogy for programs, and to prove the explicit computability of
the local diameter.

Related practical reachability deciders employ symmetry
reductions, which work well if n>L, and counter abstrac-
tion of various kinds. Symmetrization is possible, e.g., in the
context of plain search [52] or in combination with a CE-
GAR loop and context inference [53]. Introducing counters
is the main way symmetrization is implemented; sometimes
the counter is abstracted to reduce the size of the state space
[54]. For parametrized programs, cutoff techniques are ap-
plied. For example, [55] considers a computation model
in which multiple copies of multiple process templates are
concurrently executed, the shared state is absent, but each
process executes specifically guarded transitions of restricted
forms depending on the local state of other processes. Dy-
namically detecting cutoffs for identical copies of a single
thread template which start in a fixed set of initial states is
possible [56]: searching in the parallel composition of infin-
itely many copies can be reduced to searching in the parallel
composition of finitely many copies. The authors of [56] do
not generalize their technique to copies of more than one
template in their paper but say that such generalizations are
possible. A (non–counterexample-based) abstraction refine-
ment for parametrized multithreaded programs consisting of
copies of one thread is shown in [57]. Assuming a bounded
number of shared and local states as well as thread-local

error states, we conjecture that the number of refinements
from [57, Thm. 1] and the cutoff from [56] can roughly be
bounded from above by the maximum local diameter. Search
in multithreaded programs can also be reduced to Petri nets
[58, p. 14].

In general, all practical reachability deciders face the state-
space–explosion problem (in the sense of the exponential
blow-up of the state space in the number of threads); they
exhaust space or time limits in a tool-dependent way or re-
turn an inconclusive answer. (However, on a set of carefully
chosen templates, the tools performing symmetrization some-
times achieve exponential reductions.) We see claims such as
“The main obstacle to finite-state verification of concurrent
systems is the state explosion problem: the number of states
a concurrent system can reach is, in general, exponential in
the number of concurrent processes in the system” [59] and
“For fundamental reasons, we cannot avoid the exponential
explosion in the number of threads” [60] spread throughout
research-level texts. Such claims, if taken literally, lead to
questioning whether the variable number of threads is in the
exponent of a mathematical expression related to the com-
putational difficulty of a reachability problem (rather than
to the running time of a particular tool or to the size of a
particular representation of the state space). This question,
formalized in one particular way as Open Problem 1.12.3
in [23], is resolved in this paper in the negative. We also
show that several other straightforward mathematical formu-
lations of the above claims are all embarrassingly wrong: it
turns out that n is never in the exponent of the expressions
obtained.

The work which is closest to this paper is [20], which han-
dles most topics of the current paper for the special case
of binary programs. For the binary programs (and only for
them), [20] proves a linear lower bound on diamax, a poly-
nomial upper bound on diamax, a linear upper bound on the
diameter for a special class of programs, a linear upper bound
for randomly chosen programs, a constant upper bound on
the local diameter, and nondeterministic logarithmic space
complexity for both reachability and local reachability. How-
ever, the practical applicability of [20] is somewhat limited:
almost no real-world program is binary. The current paper
eliminates this restriction, considering all finite-state multi-
threaded programs equipped with the interleaving semantics.
Further, several results in this paper, when restricted to the
binary case, are stronger than that of [20]. While providing
the full list of differences would immediately break the lim-
its of this paper, we would like to mention several particular
challenges faced during generalization.

As usual with generalizations, given any high-level result
of [20] and its high-level proof idea, it is difficult to say
whether it is generalizable to the nonbinary programs or
whether it is an artifact of the binary ones; we will see both
cases, and one does have to scrutinize every single detail of
the corresponding low-level proof (otherwise, as Gauss said,
1
2 proof = 0). Luckily, it turned out that some results of [20]
need only few new ideas to be generalizable. An example is
the linear lower bound on diamax: the proof of Thm. IV.1.1
is a generalization of the proof of [20, Thm. 5.0.1] (and, a

12

posteriori, no additional ideas are needed), but the amount of
details in the general-case proof is daunting when compared
to the binary-case proof. For this paper, we could additionally
show (cf. Note D.3) that the computation in the lower-bound
proof for the generalization is at its best: a better lower
bound, should it exist, would require a completely different
proof. Another lucky example is the linear upper bound on
the diameter of a randomly chosen program (cf. § IV.2.3): the
proof depends on another result (which was also generalized),
but is a straightforward more-or-less syntactic adaptation of
[20, § 5.3] otherwise.

Apart from these two examples, other results of this paper
did require (a varying amount of) novel ideas beyond [20].
For instance, expressing a general upper bound on diamax
involved deriving a new expression containing a binomial
coefficient (cf. Thm. IV.2.1.13). This expression is tighter
than [20, Thm. 5.1.7]: we reduced the degree of the polyno-
mial representing the upper bound, restricted to the binary
case, by the factor of 16 (cf. Note IV.2.1.14). Before writing
the proofs in full length, we considered certain parts tech-
nically challenging (and, as often, we consider them easy
afterwards):
• Proving that an upper bound on the local diameter is ex-

plicitly constructible (cf. Def. and Cor. III.9), whereas [20,
Thm. 6.2] showed only the existence of the bound.
• Improving the computational complexity of local reacha-

bility from NL in [20, § 7] to NC1 (cf. Thm. V.2).
Most results of the current paper, when restricted to the
binary case, are similarly strong or even stronger than the
results from [20]. Still, there is no free lunch: our bounds
in Lem. IV.2.2.2 and Thm. IV.2.2.3, when restricted to the
binary case, match [20, Thm. 5.2.1, Cor. 5.2.2] only up to
a multiplicative constant. The inequalities in Lem. IV.2.2.2
and Thm. IV.2.2.3 are weaker; a crucial part of the proof of
[20, Thm. 5.2.1] is tied to binary programs. The bounds in
Lem. IV.2.2.2 and Thm. IV.2.2.3 are new in general; they are
a nontrivial extension of the binary-case result. We invested
considerable effort into reducing the multiplicative constant
and do not see how to tighten these inequalities further, so,
we still consider this task a challenge for the future. We
had to pay for an increase in generality also by skipping
the direct computation of the actual values of diamax in
the general case, as the required computational time got
astronomic already in [20, § 8].

Being a generalization, our paper intentionally follows [20]
concerning the structure, terminology, examples, and certain
claims. The reader might find similar or even the same
formulations; however, these formulations are now (unless
otherwise stated) to be interpreted in the parametrized context
rather than in the binary one.

Our solutions have been partially inspired and influenced by
the insights from symmetry reduction [41], process replica-
tion [45], finite-base arguments [49], vector addition systems
and Petri nets [61], counter abstraction [54], low-complexity
arguments in case the shared memory cannot perform a sin-
gle read-and-write atomically [62], pattern-based verification
[63], and linear interfaces [64].

Outside formal methods, the diameter is sometimes de-

fined as the maximal distance, being infinity for not strongly
connected graphs [65] (whereas we consider the maximal
finite distance, as the transition graphs need not be strongly
connected). With wider definitions, the diameter of graphs
is an important notion in, e.g., [66] (standard algorithms
on graphs), [67] (an old survey on diameter-related prob-
lems mostly for undirected graphs), [68] (spectral graph the-
ory, restricted to strongly connected graphs), [69] (strongly
connected Eulerian directed graphs without 2-cycles), [70]
(networks), [71, 72] (centrality computation), and [73] (the
best-case performance of the simplex method in linear pro-
gramming).

VII. Discussion and conclusion

In the present paper, we tackled the case of arbitrary but
constant shared and local state space. We derived the bounds
(GL−L+1)(L−1)n + (2−L)(G−1)L 6 diamax(n) <

G
(
n/t+L−1
L−1

)t
, where t = L2GL(GL−1), on the maximum

diameter of an n-threaded program with G shared states and
L local states for all n. Notice that the exponent does not
depend on the number of threads. The lower bound was
proven by constructing an infinite family of explicit pro-
grams such that the nth program has n threads and diameter
(GL−L+1)(L−1)n+ (2−L)(G−1)L. The upper bound is
both a strengthening and a generalization of the correspond-
ing bound from [20]. The mathematical computations behind
these bounds are tight in the following sense: if better yet
simple bounds exist, they would require genuinely new proof
ideas. Besides the bounds, we have achieved the following
results:
• a polynomial upper bound for the diameter for a subclass

of multithreaded programs; this bound is linear in n and
comes close to the lower bound;
• a polynomial upper bound for a rather general class of

probability distributions and a randomly chosen program;
this bound is linear in n and matches the lower bound;
• an upper bound on the local diameter that does not depend

on n; the function mapping G and L to the least upper
bound is computable, and the computation algorithm can
be readily extracted from the proofs;
• (non-)reachability of target program states from source

program states is decidable in NSpace(log n);
• (non-)reachability of target thread states from source pro-

gram states is decidable in NC1 (which strengthens and
generalizes the corresponding result from [20]).

So far, no infinite family of n-threaded programs with con-
stant shared and local space sizes and superlinear diameter
(in n) is known. This is in stark discrepancy to the presence
of examples of sequential programs whose diameter is expo-
nential in the number of variables and in extreme discrepancy
to the presence of Petri nets computing non-primitive re-
cursive functions [74]. The polynomial bound on diamax
implies that the distances in the transition graph of a pro-
gram are at most polylogarithmic in the size of this graph
(whereas the general upper bound on the distances in an
arbitrary graph is linear rather than polylogarithmic).

13

From a purely theoretical viewpoint, searching for a coun-
terexample (to non-reachability properties) in certain pro-
grams with depth-first search (DFS) can be improved now:
the search depth can be bounded by O(nc) for some c>1
not depending on n for nonlocal properties and by a constant
for local properties. Thus, the worst-case time for look-ups
in the DFS stack can be improved from linear to logarith-
mic or constant in n. If all reachable states up to depth
O(nc) for nonlocal properties are explored, full coverage
holds even if the bug finder at hand thinks that more reach-
able states might still exist, but does not know it for sure
due to, e.g., not having the ability or enough space to store
already visited states. Similarly, if all reachable states up
to some constant depth independent of n are explored, full
coverage for local non-reachability properties is achieved,
making bounded verification complete. Moreover, if a good
upper bound on diamax (or C for local properties) is ever
provided, the modulus of the difference between this upper
bound and the (e.g., default worst-case) search depth of a
bug finder might be used to better estimate the quality of
the bug finder and thus to coarsely rank bug finders.

Low complexity of (non-)reachability has some asymp-
totic ramifications in terms of classical complexity theory
(again, n being the only variable). First, reachability queries
are probably efficiently parallelizable in n due to NC1 ⊆
NSpace(log(input size)) ⊆ NC2. Second, finding bugs in
even huge input programs is probably tractable due to using
only O(log2 n) additional memory cells (because of NC1 ⊆
NSpace(log n) ⊆ DSpace(log2 n)).

From an algorithmic viewpoint, our proofs of the com-
plexity bounds demonstrate that symmetry reduction in tools
is more than just a heuristic: when suitably performed, it
diminishes the resource consumption also in the worst case.

To the practical tool builder, on the one hand, our results
show that implementations could consider paying a little bit
more attention to trying to avoid the state-space explosion
in n in the worst case (since the exponential blow-up in n
is theoretically avoidable in the setting described). On the
other hand, large or unknown constants in our upper bounds
emphasize a well-known warning: theoretical advances pri-
marily say only that certain improvements could probably be
achieved asymptotically in principle, not that any advance
translates into practice directly.

Concerning research on verification, our results show that
if a modeling step bounds the sizes of the shared and thread-
local state spaces in the abstraction when they are unbounded
in the concrete, then unexpected mathematical artifacts may
emerge. One such artifact is that the state-explosion problem
turns out to be asymptotically a nonproblem, informally
speaking. Depending on the application, this artifact might
be considered helpful (e.g., if small values of the fixed
parameters turn out to allow for specialized but fast verifiers)
or detrimental (e.g., hidden large constants might fool the
developers). Also, the widely stated claim that the exponential
blow-up of the state space in the number of threads is a major
obstacle to verification should not be blindly interpreted in
a mathematically straightforward way; sometimes this blow-
up is an empirical phenomenon occurring in the tools that

do not perform symmetry reduction properly or at all, and
sometimes the set of programs on which the state explosion
is observed simply does not have constant local and shared
state spaces.

As next research step in theory, we plan to tighten the
aforementioned inequalities. While we do not know whether
diamax could be bounded from above, say, by a linear func-
tion, we do expect that the upper bound could be lowered in
principle; one way could start with determining a possibly
large class of threads that cannot occur in diamax-realizing
programs and subtracting this class while defining E in
Def. IV.2.1.5. Another goal is to estimate the maximal lo-
cal diameter C (perhaps, using [75]). Locating the general
and local reachability problems in the hierarchy of paramet-
ric complexity classes is a yet another, orthogonal line of
research [24].

Acknowledgments

This work would have been impossible without prior re-
search contributions of Steffen Borgwardt from the University
of Colorado Denver, USA. Financial support of the Software
and Systems Engineering Research Group, led by Manfred
Broy at TUM, Germany, is acknowledged.

References

[0] H. Sutter, “The free lunch is over: a fundamental turn toward concur-
rency in software,” Dr. Dobb’s Journal, vol. 30, no. 3, Mar. 2005.

[1] S. Owens, S. Sarkar, and P. Sewell, “A better x86 memory model:
x86-TSO (extended version),” Univ. of Cambridge, Tech. Rep. UCAM-
CL-TR-745, 2009.

[2] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen,
“x86-TSO: a rigorous and usable programmer’s model for x86 multi-
processors,” CACM, vol. 53, no. 7, pp. 89–97, 2010.

[3] The MITRE corporation. “CWE category: concurrency issues.” (May
2017), [Online]. Available: http://cwe.mitre.org/data/definitions/557.
html.

[4] Insomnia Security. “Concurrency vulnerabilities.” (2011), [Online].
Available: http://www.owasp.org/images/8/8e/OWASP_NZDay_2011_
BrettMoore_ConcurrencyVulnerabilities.pdf.

[5] N. G. Leveson and C. S. Turner, “Investigation of the Therac-25
accidents,” IEEE Computer, vol. 26, no. 7, pp. 18–41, 1993.

[6] K. Poulsen. “Software bug contributed to blackout.” (Feb. 2014), [On-
line]. Available: http://www.securityfocus.com/news/8016.

[7] ——, “Tracking the blackout bug.” (Apr. 2014), [Online]. Available:
http://www.securityfocus.com/news/8412.

[8] P. L. Anderson and I. K. Geckil, “Northeast blackout likely to reduce
US earnings by $6.4 billion,” Tech. Rep., Aug. 2003, http://www.
andersoneconomicgroup.com/Portals/0/upload/Doc544.pdf.

[9] Z. Manna and A. Pnueli, Temporal verification of reactive systems –
safety. Springer, 1995, ISBN: 978-0-387-94459-3.

[10] P. Godefroid, Partial-order methods for the verification of concurrent
systems – an approach to the state-explosion problem, ser. LNCS.
Springer, 1996.

[11] P. Ročkai, “Model checking software,” Ph.D. dissertation, Masaryk
university, Jan. 2015.

[12] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. MIT
Press, Dec. 1999, ISBN: 978-0-262-03270-4.

[13] G. J. Holzmann, “The model checker SPIN,” IEEE TSE, vol. 23, no. 5,
pp. 279–295, May 1997.

[14] ——, The SPIN model checker: primer and reference manual. Addison-
Wesley, 2003, ISBN: 0-321-22862-6.

[15] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008, ISBN: 978-0-262-02649-9.

14

http://cwe.mitre.org/data/definitions/557.html
http://cwe.mitre.org/data/definitions/557.html
http://www.owasp.org/images/8/8e/OWASP_NZDay_2011_BrettMoore_ConcurrencyVulnerabilities.pdf
http://www.owasp.org/images/8/8e/OWASP_NZDay_2011_BrettMoore_ConcurrencyVulnerabilities.pdf
http://www.securityfocus.com/news/8016
http://www.securityfocus.com/news/8412
http://www.andersoneconomicgroup.com/Portals/0/upload/Doc544.pdf
http://www.andersoneconomicgroup.com/Portals/0/upload/Doc544.pdf

[16] D. Kozen, “Lower bounds for natural proof systems,” in FOCS, IEEE,
1977, pp. 254–266.

[17] M. Sipser, Introduction to the theory of computation, 3rd ed. Cengage
learning, 2013.

[18] Wikipedia. “List of PSpace-complete problems.” (Jun. 2019), [Online].
Available: http://en.wikipedia.org/wiki/List_of_PSPACE-complete_
problems.

[19] N. D. Jones, Computability and Complexity. 2006.
[20] A. Malkis and S. Borgwardt, “Reachability in binary multithreaded

programs is polynomial,” in ICDCS, IEEE, Jun. 2017.
[21] A. Malkis. “Sequence A290642 at OEIS.” (Aug. 9, 2017), [Online].

Available: http://oeis.org/A290642.
[22] tombom. “Interrupting query sends wrong thread ID.” (Sep. 21, 2017),

[Online]. Available: http://dba.stackexchange.com/questions/186545/
interrupting-query-sends-wrong-thread-id.

[23] A. Malkis, “Cartesian abstraction and verification of multithreaded
programs,” Ph.D. dissertation, Albert-Ludwigs-Universität Freiburg,
2010.

[24] ——, “Parametrized complexity of reachability in multithreaded pro-
grams,” research rep., 2019, In preparation.

[25] B. K. Szymański, “A simple solution to Lamport’s concurrent pro-
gramming problem with linear wait,” in ICS, ser. ICS ’88, ACM,
1988.

[26] A. Malkis and A. Podelski, “Refinement with exceptions,” University
of Freiburg, research rep., 2008. [Online]. Available: http://www.sec.in.
tum.de/~malkis/MalkisPodelski-refinementWithExceptions_techrep.
pdf.

[27] A. Malkis, A. Podelski, and A. Rybalchenko, “Thread-modular verifi-
cation and Cartesian abstraction,” research rep., 2006, TV’06.

[28] Wikipedia. “Peterson’s algorithm.” (2019), [Online]. Available: http:
//en.wikipedia.org/wiki/Peterson’s_algorithm.

[29] C. Flanagan, S. N. Freund, S. Qadeer, and S. A. Seshia, “Modular
verification of multithreaded programs,” Theoretical Computer Science,
vol. 338, no. 1-3, pp. 153–183, 2005.

[30] H. P. Barendregt and E. Barendsen, “Introduction to λ-calculus,” De-
partment of Computer Science, Radboud University of Nijmegen, Tech.
Rep., 2000.

[31] C. Flanagan and S. Qadeer, “Thread-modular model checking,” in
SPIN, ser. LNCS, vol. 2648, Springer, 2003, pp. 213–224.

[32] N. Bourbaki, Algèbre commutative, chapitres 1 à 4. Springer, 1985,
ISBN: 978-3-540-33937-3.

[33] D. E. Knuth, “Big Omicron and Big Omega and Big Theta,” SIGACT
News, vol. 8, no. 2, Apr. 1976.

[34] S. Schmitz, “Complexity hierarchies beyond elementary,” TOCT, vol. 8,
no. 1, 3:1–3:36, 2016.

[35] D. Gorenstein, R. Lyons, and R. Solomon, The classification of the
finite simple groups, 40.1–40.8 vols. AMS, 1994–2018.

[36] S. K. Lahiri, A. Malkis, and S. Qadeer, “Abstract threads,” in VMCAI,
2010, pp. 231–246.

[37] Y. Kim, R. Daly, J. Kim, C. Fallin, J. Lee, D. Lee, C. Wilkerson, K.
Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
an experimental study of DRAM disturbance errors,” in ISCA’14, 2014,
pp. 361–372.

[38] R. Alur, S. Kannan, and M. Yannakakis, “Communicating hierarchical
state machines,” in ICALP’99, 1999, pp. 169–178.

[39] M. Li and P. M. B. Vitányi, “Kolmogorov complexity and its appli-
cations,” in Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity, J. van Leeuwen, Ed., 1990, pp. 187–254.

[40] B. D. Lubachevsky, “An approach to automating the verification of
compact parallel coordination programs. I,” Acta Inf., pp. 125–169,
1984.

[41] E. A. Emerson and A. P. Sistla, “Symmetry and model checking,”
FMSD, vol. 9, no. 1/2, pp. 105–131, 1996.

[42] G. Basler, M. Mazzucchi, T. Wahl, and D. Kroening, “Symbolic counter
abstraction for concurrent software,” in CAV, 2009.

[43] ——, “Context-aware counter abstraction,” FMSD, 2010.
[44] J. Esparza, “Keeping a crowd safe: on the complexity of parameterized

verification (corrected version),” 2014, Successor to a STACS 2014
paper.

[45] A. P. Sistla and S. M. German, “Reasoning with many processes,” in
LICS, 1987, pp. 138–152.

[46] ——, “Reasoning about systems with many processes,” in JACM, 1992.

[47] E. M. Clarke and O. Grümberg, “Avoiding the state explosion problem
in temporal logic model checking,” in PODC, 1987.

[48] M. C. Browne, E. M. Clarke, and O. Grümberg, “Reasoning about
networks with many identical finite-state processes,” Inf. Comput.,
1989.

[49] G. Higman, “Ordering by divisibility in abstract algebras,” Proc. London
Math. Soc. (3), vol. 2, pp. 326–336, 1952.

[50] R. M. Karp and R. E. Miller, “Parallel program schemata,” JCSS,
vol. 3, no. 2, pp. 147–195, 1969, ISSN: 0022-0000.

[51] P. A. Abdulla, K. Čerāns, B. Jonsson, and Y. Tsay, “General decidability
theorems for infinite-state systems,” in LICS, 1996, pp. 313–321.

[52] A. F. Donaldson and A. Miller, “Automatic symmetry detection for
Promela,” Journal of Automated Reasoning, vol. 41, no. 3–4, pp. 251–
293, 2008.

[53] T. A. Henzinger, R. Jhala, and R. Majumdar, “Race checking by context
inference,” in PLDI, 2004, pp. 1–13.

[54] A. Pnueli, J. Xu, and L. D. Zuck, “Liveness with (0, 1,∞)-counter
abstraction,” in CAV, 2002, pp. 107–122.

[55] E. A. Emerson and V. Kahlon, “Reducing model checking of the many
to the few,” in CADE, 2000, pp. 236–254.

[56] A. Kaiser, D. Kroening, and T. Wahl, “Dynamic cutoff detection in
parameterized concurrent programs,” in CAV, 2010, pp. 645–659.

[57] P. A. Abdulla, F. Haziza, and L. Holík, “All for the price of few,” in
VMCAI, Springer, 2013, pp. 476–495.

[58] H. Zhao, “Using the Karp-Miller tree construction to analyse concurrent
finite-state programs,” M.S. thesis, Trinity College, Oxford, UK, 2009.

[59] S. F. Siegel and G. S. Avrunin, “Improving the precision of INCA by
eliminating solutions with spurious cycles,” IEEE TSE, vol. 28, no. 2,
2002.

[60] A. Farzan, Z. Kincaid, and A. Podelski, “Inductive data flow graphs,”
SIGPLAN Not., vol. 48, no. 1, 2013.

[61] J. Leroux, “Presburger vector addition systems,” in LICS, 2013, pp. 23–
32.

[62] J. Esparza, P. Ganty, and R. Majumdar, “Parameterized verification of
asynchronous shared-memory systems,” JACM, vol. 63, no. 1, 10:1–
10:48, 2016.

[63] J. Esparza, P. Ganty, and T. Poch, “Pattern-based verification for
multithreaded programs,” ACM Trans. Program. Lang. Syst., vol. 36,
no. 3, 9:1–9:29, 2014.

[64] S. La Torre, P. Madhusudan, and G. Parlato, “Model checking param-
eterized concurrent programs using linear interfaces,” in CAV, 2010.

[65] D. B. West, Introduction to graph theory, 2nd ed. Prentice Hall, 2001,
ISBN: 0-13-014400-2.

[66] N. Alon, Z. Galil, and O. Margalit, “On the exponent of the all pairs
shortest path problem,” J. Comput. Syst. Sci., 1997.

[67] F. Chung, “Diameters of communication networks,” in Proc. Sympos.
Appl. Math. 34 Amer. Math. Soc., 1986, pp. 1–18.

[68] ——, “The diameter and Laplacian eigenvalues of directed graphs,”
Electr. J. Comb., vol. 13, no. 1, 2006.

[69] P. Dankelmann, “The diameter of directed graphs,” J. Comb. Theory,
Ser. B, vol. 94, no. 1, pp. 183–186, 2005.

[70] E. Lehman, F. T. Leighton, and A. R. Meyer, Mathematics for computer
science. Jun. 6, 2018, ISBN: 978-988-8407-06-4.

[71] A. Abboud, F. Grandoni, and V. V. Williams, “Subcubic equivalences
between graph centrality problems, APSP and diameter,” in SODA,
2015, pp. 1681–1697.

[72] Q.-S. Hua, H. Fan, M. Ai, L. Qian, Y. Li, X. Shi, and H. Jin, “Nearly
optimal distributed algorithm for computing betweenness centrality,”
in ICDCS, 2016, pp. 271–280.

[73] G. B. Dantzig, Linear programming and extensions, ser. Rand Corpo-
ration Research Study. Princeton Univ. Press, 1963.

[74] E. W. Mayr and A. R. Meyer, “The complexity of the finite containment
problem for Petri nets,” JACM, vol. 28, no. 3, pp. 561–576, 1981.

[75] C. Rackoff, “The covering and boundedness problems for vector addi-
tion systems,” TCS, 1978.

[76] G. A. Grätzer, Universal Algebra. Springer, 2008, Second edition with
updates, ISBN: 978-0-387-77486-2.

[77] CWoo. “Homomorphism between partial algebras, Isomorphism,” Plan-
etmath. (Mar. 22, 2013), [Online]. Available: http://planetmath.org/
homomorphismbetweenpartialalgebras#S0.SS0.SSSx1.p5.

[78] M. Broy, Logische und methodische Grundlagen der Programm- und
Systementwicklung, Datenstrukturen, funktionale, sequenzielle und ob-

15

http://en.wikipedia.org/wiki/List_of_PSPACE-complete_problems
http://en.wikipedia.org/wiki/List_of_PSPACE-complete_problems
http://oeis.org/A290642
http://dba.stackexchange.com/questions/186545/interrupting-query-sends-wrong-thread-id
http://dba.stackexchange.com/questions/186545/interrupting-query-sends-wrong-thread-id
http://www.sec.in.tum.de/~malkis/MalkisPodelski-refinementWithExceptions_techrep.pdf
http://www.sec.in.tum.de/~malkis/MalkisPodelski-refinementWithExceptions_techrep.pdf
http://www.sec.in.tum.de/~malkis/MalkisPodelski-refinementWithExceptions_techrep.pdf
http://en.wikipedia.org/wiki/Peterson's_algorithm
http://en.wikipedia.org/wiki/Peterson's_algorithm
http://planetmath.org/homomorphismbetweenpartialalgebras#S0.SS0.SSSx1.p5
http://planetmath.org/homomorphismbetweenpartialalgebras#S0.SS0.SSSx1.p5

jektorientierte Programmierung, in collab. with A. Malkis. Springer,
2019, ISBN: 978-3-658-26301-0.

[79] M. Alekseyev. “Overapproximating a particular binomial.” (Apr. 17,
2019), [Online]. Available: http://mathoverflow.net/a/328183.

[80] N. Immerman, “Nondeterministic space is closed under complementa-
tion,” SIAM J. Comput., vol. 17, no. 5, pp. 935–938, 1988.

[81] R. Szelepcsényi, “The method of forced enumeration for nondetermin-
istic automata,” Acta Inf., vol. 26, no. 3, pp. 279–284, 1988.

Appendix A.
Notation used in the proofs

The appendices are dedicated to the proofs of the indicated
statements in the main body of the paper and more examples.
Before we begin, let us introduce some notation.

As an aid for the reader, we sometimes put an exclamation
mark above the relation sign of a claim that yet has to be

proven; e.g., X
!
⊆ Y means that we claim that X ⊆ Y holds

and are going to prove it next.
We write 	 to indicate a contradiction.
In a Boolean formula, the underscore _ denotes an inner-

most existentially quantified anonymous variable; different
underscores correspond to different variables. For example,
“ϕ(_, 1) ∧ ψ(_, 0)” means “(∃x : ϕ(x, 1)) ∧ (∃x : ψ(x, 0)).”
Similarly, in general claims that are not formally typeset as
formulas the underscore denotes a value that does not have
to be specified in the context. For example, “the triple is of
the form (0, _, _)” means “there are l1 and l2 such that the
triple is (0, l1, l2).”

Given a partial map f : X 99K Y , we write

dom f
def
== { x ∈ X | ∃ y ∈ Y : (x, y) ∈ f } and

img f
def
== { y ∈ Y | ∃x ∈ X : (x, y) ∈ f }

for the domain and image of f , respectively.
Given a map f and some elements a, b, we write f [a7→b]

for the map which returns the value b for the argument a
and behaves like f for all other arguments. Formally:

f [a7→b] def
== λx ∈ (dom f) ∪ {a}.

{
f(x) , if x 6= a ,

b , if x = a .

Given binary relations f ⊆ X×Y and g ⊆ Y×Z, we write
g ◦ f to denote the right composition “g after f ,” which is
the relation

g ◦ f def
== {(x, z) | ∃ y : (x, y) ∈ f ∧ (y, z) ∈ g} .

“Right” refers to the fact that the right symbol is applied first.
In a context where f and g are even maps, g ◦ f is called
the functional composition of g and f .

Given an equivalence relation ∼ on a set X and some
x ∈ X , we write

[x]∼
def
== {y ∈ X | x ∼ y}

for the equivalence class of x with respect to ∼.
If the index set of a sequence σ is a product, say, I×J ,

we sometimes opt for the double-indexed notation, writing
the (i, j)-th element σ(i,j) as σ[j]

i and
(
σ

[j]
i

)
i∈I
j∈J

for σ.

The cardinality of a sequence is the number of elements
in it:

|(si)i<k|
def
== k .

For an ordinal n and a set X , the set of n-tuples over
X is denoted by Xn, which is simply another expression
for n→X . Thus, here we maintain the convention that the
indexes of the components of a tuple start with 0.

If h = (i)i<m is a subprogram of a program p =
(→i)i<n such that ∀ i<m : i = →f(i) for some injec-
tive map f : m↪→n, such a map is called an embedding of
h into p.

Appendix B.
Proofs of claims from § I.2

Lemma B.1. The subprogram relation is a preorder on the
set of programs.

Proof. Let P be the set of programs. We show two claims
about the subprogram relation.
Reflexivity on P . The identity idn : n ↪→ n is injective.

Moreover, for each (→i)i<n ∈ P we have ∀ i <
n : →i =→idn(i).

Transitivity. Let (0, . . . , m−1) be a subprogram of (→0,
. . . ,→n−1) and (→0, . . . ,→n−1) be a subprogram of
(�0, . . . ,�k−1). Then there are injective maps f :
m ↪→ n and g : n ↪→ k such that ∀ i<m : i =→f(i)

and ∀ j<n : →j = �g(j). Then the map g ◦ f is in-
jective, and for all i<m we have i = →f(i) =
�g(f(i)) =�(g◦f)(i). �

Appendix C.
Proofs of claims from § III

C.1. Preliminaries from general order theory

If a bijective order-homomorphism between preordered
sets (X,.X) and (Y,.Y) exists, we call these preordered
sets order-isomorphic [76, p. 14, Ch. 0]. (In general, an
isomorphism is defined as a bijective homomorphism such
that its inverse is also a homomorphism [77]. In our case,
both definitions lead to the same result [78, Lemma 2.2].)
Proof of Prop. III.1
We prove the statement by induction on m. Let m ∈ N>0

be arbitrary, and assume that for every l<m, all antichains
in Nl>0 are finite.
Case m ∈ {0, 1}. By definition of the empty product,

|N0
>0| = 1, and N1

>0 is order-isomorphic to N>0. Thus
every antichain in Nm>0 is either empty or a singleton.

Case m>2. Let A⊆ Nm>0 be a nonempty antichain. Notice
that for each k∈N>0 and each i<m the set {b∈Nm−1

>0 |
(b1, . . . , bi−1, k, bi+1, . . . , bm−1) ∈ A} is an antichain
in Nm−1

>0 , hence finite, so Ai,k
def
= {a∈A | ai = k} is

finite. Since A is nonempty, some a∈A exists. Let B
=
⋃
{Ai,k | i<m∧k6ai}. Then B is finite. If A were

infinite, some c ∈ A\B would exist. By construction, c
is greater than a in the componentwise partial order on
Nm>0. 	 �

16

http://mathoverflow.net/a/328183

C.2. Well-foundedness and antitone maps

Proposition C.2.1. For each m∈N>0, the componentwise
partial order on Nm>0 is well-founded.

Proof. We write � for the componentwise partial order on
Nm>0. Let Y ⊆Nm>0 be nonempty. Then there is some y∈Y
with the minimal 1-norm. Let z∈Y be arbitrary such that z
�y. Then zi6 yi for all i∈m. Assume for the purpose of
contradiction that z 6=y. Then there is some j∈m such that
zj 6= yj . Then zj <yj . Then ‖z‖1 < ‖y‖1, in contradiction
to the choice of y. Thus, our assumption was wrong and z
=y. �

Proof of Lem. III.2

a) If f is the empty partial map, its image is empty, hence
finite.
Thus, let us assume from now on that f is nonempty.
We write � for the componentwise partial order on Nm>0.

Let A def
= {x ∈ dom f | ∀ y ∈ dom f : y�x ⇒ y=x} be

the set of minimal elements of the domain of f . Then
A is an antichain, hence finite by Prop. III.1. The partial
order � is well-founded by Prop. C.2.1, and dom f is
nonempty. By the definition of well-foundedness, A is
nonempty. Therefore, {f(x) | x∈A} is nonempty; let M
= max{f(x) | x∈A}.
It suffices to show that M is the maximum value of f . So
let x ∈ dom f be arbitrary. Then the set B def

= {y ∈ dom f
| y�x} is nonempty, so it has a minimal element z.
Now we show that z lies in A. From z∈B we get
z ∈ dom f . Let y ∈ dom f be arbitrary such that y�z.
From z∈B we get z�x. By transitivity, y�x. From
y ∈ dom f and y�x we obtain y∈B. From y∈B, y�z,
and the minimality of z we obtain y=z. We have shown
z ∈ dom f ∧ ∀ y ∈ dom f : y�z ⇒ y=z. Hence, z∈A.
From z∈A we obtain f(z) 6 M . From z�x we obtain
f(x) 6 f(z). By transitivity, f(x) 6M .
We have shown that img f ⊆ (M+1), which is a finite
ordinal.

b) We will reuse the definitions of A and M given in the
proof of part a).
Notice that the algorithm from 1) allows, in particular,
• deciding, whether dom f is empty (by choosing I=∅),
• deciding, given a vector a∈Nm>0, the membership a ∈
dom f (by choosing I=m and si = ‘=’ for all i<m),
and
• computing any y from 1) in case of existence (by enu-

merating all the tuples from Nm>0 and, for each tuple,
evaluating the constraint and, if the constraint is satisfied,
checking for the membership in dom f).

Consider the procedure in Alg. 1.
The algorithm first checks whether dom f = ∅; if so, img f
is empty. In this case, the procedure returns “empty”.
Otherwise, a maximal (with respect to subset inclusion)
antichain in dom f is constructed, beginning with an arbi-
trary element x ∈ dom f . This is done as follows. Given
the current antichain stored in the container D, a formula

representing the statement “variable y is incomparable
with each member of D” is constructed; the equivalent
disjunctive normal form is stored in F. We simplify F dur-
ing the conversion process arithmetically and logically:
empty disjuncts of the form

∨
c<0

(yi=c) are replaced with

false, the conjunctions of the form yi > c ∧ yi > c′ are
replaced with yi > max{c, c′}, the conjunctions of the
form yi > c ∧ yi = c′ are replaced with yi = c′ (if c
6 c′) or false (if c > c′), and the conjunctions of the
form yi = c ∧ yi = c′ are replaced with yi = c (if c′
= c) or false (if c′ 6= c) (for c, c′ ∈ N>0 and i < m);
we use the laws of absorption and annihilation (for the
Boolean constant false) and associativity and commuta-
tivity to gain maximal simplification. This simplification
achieves that in each disjunct of F each variable yi occurs
at most once. The resulting disjuncts of F, which are now
of the form yi1(= or>)ai1 ∧ · · · ∧ yik(= or>)aik (for
some k>1, pairwise disjoint i1, . . . , ik < m, and some
ai1 , . . . , aik ∈ N>0), are examined one by one. Among
these disjuncts, we search, using 1), for a disjunct that
can be satisfied by some y ∈ dom f . If such a disjunct is
found, we extend the antichain (stored in D) with any cor-
responding y ∈ dom f and restart the loop from line 5. If
no such disjunct is found, D already represents a maximal
antichain. The outer loop, which extends D to a maximal
antichain, terminates because of Prop. III.1.
After the construction of a maximal antichain is finished,
we notice that each a∈A must be comparable to some b∈D
(since otherwise D could be extended to a larger antichain)
and (because A contains the minimal elements of dom f)
be less than or equal to this b. So, A ⊆ {a ∈ dom f | ∃ b
∈D: a�b}, and the proof of a) implies that it suffices to
evaluate f |{a∈dom f |∃ b∈D : a�b} to find the maximum of
f . The evaluation of f |{a∈dom f |∃ b∈D : a�b} can be done,
e.g., by looping through all b∈D and, for each such b,
looping through all a�b. Since we thereby particularly
evaluate f |A, we necessarily encounter the maximal value
of f in the process. �

C.3. Application of order theory to programs

Proof of Lem. III.3
Since a thread transition relation is a subset of (Glob ×
Loc)2, there are k def

= 2|Glob|
2|Loc|2 different thread transition

relations; we choose some enumeration t0, . . . , tk−1 of these
relations. Let

ϕ : P → Nk>0 \ {k × {0}} ,
(→0, . . . ,→n−1) 7→

(∣∣{ i<n | →i = tr }
∣∣)
r<k

be the map that, loosely speaking, counts how many copies
of each of the k thread transition relations there are in a given
program and that returns the vector of these counts. Since
every program has at least one thread, and since t0, . . . , tk−1

counts all the thread transition relations, the image of ϕ
does indeed not include the zero vector. We write � for the
componentwise partial order on Nk>0 \ {k × {0}}. Now we
prove the claims of the lemma.

17

Algorithm 1: Finding the maximum value of an antitone function Nm>0 → N>0

Output: “empty” or M
Program variables: D, x, grow, F, d, y

1 if any x ∈ dom f exists then // in this case dom f 6= ∅
2 choose any such x;
3 D := {x}; // D always stores an antichain in dom f
4 repeat
5 grow := false;
6 F := a simplification of a disjunctive normal form of

∧
a∈D

∨
i,j<m
i 6=j

((∨
c<ai

(yi = c)
)
∧ yj > aj + 1

)
;

7 while F6=false ∧ F is a nonempty disjunction ∧ ¬grow do
8 d := any disjunct of F;
9 Remove d from F;

10 if ∃ y ∈ dom f : d then // using the algorithm from 1)
11 Compute any such y;
12 grow := true;
13 D := D ∪ {y}

14 until ¬grow; // after the loop, D is a maximal antichain in dom f
15 return max{f(a) | a ∈ dom f ∧ ∃ b∈D: a�b} // explicitly computable, finite set

16 else return “empty” // in this case dom f = ∅

“ϕ is an order-homomorphism.” By definition, ϕ is total. Now
let p = (0, . . . , m−1) and q = (→0, . . . ,→n−1) be
arbitrary members of P . We are going to show:
“If p is a subprogram of q, then ϕ(p) � ϕ(q).” Let p

be a subprogram of q via an embedding f : m↪→n.
Let r<k be arbitrary. The restriction f |{i<m| i=tr}
is still injective, and its image is a subset of {i<n |
→i = tr}. Hence,

∣∣{i<m | i = tr}
∣∣ 6 ∣∣{i<n |

→i = tr}
∣∣. Thus, (ϕ(p))r 6 (ϕ(q))r. Since r was

arbitrary, we obtain ϕ(p) � ϕ(q).
“If ϕ(p) � ϕ(q), then p is a subprogram of q.” So let
ϕ(p) � ϕ(q). For each r<k let Sr = {i<m | i =
tr} and S′r = {i<n | →i = tr}. By the assumption,
|Sr| 6 |S′r| (r<k). Thus, for each r<k there is an
injection fr : Sr ↪→ S′r. We view each map fr as a
set of pairs (r<k) and define f =

⋃
r<k fr. Notice

that the sets Sr for r<k are pairwise disjoint and
that

⋃
r<k Sr = m. Thus, f is a mapping m → n.

Notice that the sets S′r for r<k are also pairwise
disjoint. Thus, f : m↪→n is injective.
Now we prove that ∀ i<m : i =→f(i). Let i<m be
arbitrary. Then there is some r<k such that i = tr.
So i ∈ Sr. Then f(i) = fr(i). From img fr ⊆ S′r
we obtain →f(i) = tr. Combining, we obtain i =
→f(i).

“ϕ is surjective.” Notice that for each vector (a0, a1, . . . ,
ak−1) ∈ Nk>0 one can always create a program with
a0 copies of t0, a1 copies of t1, . . . , ak−1 copies of
tk−1. �

Proof of Lem. III.4
In the following, we write � for the componentwise partial
order on Nk>0 \ {k×{0}} and ≺ for its irreflexive version.

We write er for the unit vector

({
0, if i6=r
1, if i=r

)
i<k

(r<k).

As a preliminary step, we will show:
Claim 1: For all n ∈ N+, p, q ∈ P , if p is n-threaded and

q is an (n−1)-threaded subprogram of p, then there is some
r<k such that ϕ(q) + er = ϕ(p).

To prove it, let p be an n-threaded program and q be
an (n−1)-threaded subprogram of p via some embedding
f . Since ϕ is an order-homomorphism, ϕ(q) � ϕ(p). If
we had ϕ(p) � ϕ(q), then p would be a subprogram of q,
implying the existence of an injective map n ↪→ n−1, 	.
Therefore, ϕ(q) ≺ ϕ(p). Thus, there is some r<k such that
ϕ(q)+er � ϕ(p). Since ϕ is onto, there is some program q′

such that ϕ(q′) = ϕ(q) + er. From ϕ(q) ≺ ϕ(q′) we obtain
that q is a subprogram of q′ but not vice versa. Therefore,
q′ has strictly more than n−1 threads, i.e., at least n threads.
From ϕ(q′) � ϕ(p) we obtain that q′ is a subprogram of p via
some embedding g, and therefore q′ cannot have more than n
threads. Then, g : n↪→n, so, g is a bijection. Therefore, p is a
subprogram of q′ via the embedding g−1. So, ϕ(p) � ϕ(q′).
Therefore ϕ(p) = ϕ(q′), i.e., ϕ(p) = ϕ(q) + er, and Claim
1 is proven.

Now we consider another auxiliary statement:
Claim 2: ϕ maps one-threaded programs to unit vectors.
To prove it, assume for the purpose of contradiction that

some one-threaded p∈P is mapped to a non-unit vector.
Since the zero vector is not in the image of ϕ, there must
be i, j < k such that i6=j and (ϕ(p))i > 1 6 (ϕ(p))j . Then
ei ≺ ϕ(p). Since ϕ is onto, some q∈P satisfies ϕ(q) = ei.
From ϕ(q) ≺ ϕ(p) we obtain that q is a subprogram of p,
but not vice versa. But p is one-threaded, so, q must be
zero-threaded, which we explicitly excluded in § I.2. Thus,
our assumption was wrong, and ϕ(p) is a unit vector, which

18

completes the proof of Claim 2.
Combining the Claims 1 and 2, we obtain by induction:
∀n ∈ N+, n-threaded p ∈ P : ‖ϕ(p)‖1 = n . (1)

Since there are exactly k′ def
=
∣∣∣P((Glob× Loc)2

)∣∣∣ = 2G
2L2

thread transition relations, there are exactly so many one-
threaded programs; they are all incomparable. Thus, the
ϕ-images of the one-threaded programs comprise exactly
k′ pairwise incomparable unit vectors in Nk>0 \ {k×{0}}.
Therefore, k>k′. If k were strictly greater than k′, then Nk>0

\ {k×{0}} would have a unit vector outside the image of
one-threaded programs under ϕ, which, given the fact that ϕ
is onto, would contradict (1). So, k=k′, and the restriction
of ϕ to one-threaded programs is a bijection to the set of
unit vectors of Nk>0 \ {k×{0}}.

For each r<k, we define tr as the unique thread transition
relation for which ϕ((tr)i<1) = er. Now we are going to
prove by induction that ϕ

(
(→i)i<n

) !
=
(∣∣{i<n | →i =

tr}
∣∣)
r<k

for all programs (→i)i<n for all n ∈ N+.
So, let n ∈ N+ be arbitrary and the statement proven for

all m<n. Let p = (→i)i<n ∈ P be arbitrary.
Case n=1. Choose s<k such that ts =→0. Then ϕ(p) = es.

The sth component of es is 1 =
∣∣{i<1 | →i = ts}

∣∣,
and every other rth component of es for r 6=s is 0 =∣∣{i<1 | →i = tr}

∣∣.
Case n>2. Let q = (→i)i<n−1. The induction hypothesis

implies

ϕ(q) =
(∣∣{i < n−1 | →i = tr}

∣∣)
r<k

. (2)

By Claim 1, there is some s<k such that ϕ(p) = ϕ(q)
+ es. There is also some s′<k such that →n−1 = ts′ .
We will show that s and s′ coincide.
Since the one-threaded program (ts′)i<1 is a subpro-
gram of p, we have ϕ

(
(ts′)i<1

)
� ϕ(p), and, there-

fore, es
′ � ϕ(p). Let v def

= ϕ(p) − es
′
. Note that

‖v‖1 = ‖ϕ(p)‖1−1
(1)
= n−1. Since ϕ is onto, ϕ(q′) = v

for some q′ ∈ P . Due to (1), q′ must be (n−1)-threaded.
Let (i)i<n−1 = q′. Note that vs = (ϕ(q′))s = [in-
duction hypothesis]

∣∣{i < n−1 | i = ts}
∣∣. From

ϕ(q′) ≺ ϕ(p) we obtain that q′ is a subprogram of p.
So, p contains at least vs copies of ts.
Now, assume for the purpose of contradiction that s6=s′.
Then, ts 6= →n−1. Together with the definition of q,
we obtain that q still has at least vs copies of ts. By (2),
(ϕ(q))s > vs. The definition of s implies (ϕ(p))s >
vs+1. The definition of v implies vs = (ϕ(p)−es′)s =
(ϕ(p))s − es

′

s > (vs + 1)− 0 = vs + 1, 	.
Thus, our assumption is wrong, and s=s′. Therefore,
→n−1 = ts. Then (ϕ(p))s = (ϕ(q))s+1

(2)
=
∣∣{i < n−1

| →i = ts}
∣∣+ 1 =

∣∣{i<n | →i = ts}
∣∣. For r ∈ k \ {s},

we have (ϕ(p))r = (ϕ(q))r + 0
(2)
=
∣∣{i < n−1 | →i =

tr}
∣∣ = [since tr 6=ts]

∣∣{i<n | →i = tr}
∣∣.

We have proved that for all n ∈ N+ and all n-threaded
(→i)i<n ∈ P we have

ϕ
(
(→i)i<n

)
=
(∣∣{i<n | →i = tr}

∣∣)
r<k

.

The map ϕ is computable by a loop going through all r<k.
To show that the preimage of each vector under ϕ is finite,

assume a ∈ Nk>0 \ {k×{0}}. Each preimage p ∈ ϕ−1(a) is
‖a‖1-threaded due to (1). Since for each n, the number of
n-threaded programs is bounded from above by kn, a has
no more than k‖a‖1 preimages.

To show that the preimage of a vector under ϕ is com-
putable, assume again a ∈ Nk>0 \ {k × {0}}. Construct an
arbitrary program (→i)i<n, where n = ‖a‖1, with a0 copies
of t0, a1 copies of t1, . . . , ak−1 copies of tk−1. For each
permutation σ of n, construct the program (→σ(i))i<n. All
thus created programs together form exactly ϕ−1(a). �

Proof of Thm. III.5
Let f : P 99K N>0 be an antitone partial map.
a) Lem. III.3 implies the existence of some k ∈ N+ and

some order-epimorphism ϕ : P � Nk>0\{k×{0}}, where
the codomain is equipped with the componentwise partial
order, which we write as �.
Let A = {ϕ(p) | p ∈ dom f}.
For a∈A, we write ϕ−1(a) = {p∈P | ϕ(p) = a} for the
preimage of a under ϕ till the end of this proof.
We are going to show that for each a∈A the map f is
constant on (dom f) ∩ ϕ−1(a). For that, let p, q ∈ dom f
with ϕ(p) = ϕ(q) be arbitrary. Then ϕ(p) � ϕ(q) and
ϕ(p) � ϕ(q). Since ϕ is an order-homomorphism, p is a
subprogram of q and vice versa. Since f is antitone, f(p)
> f(q) and f(p) 6 f(q), implying f(p) = f(q). Since p
and q were arbitrary, we have shown that for each a∈A
the map f |(dom f)∩ϕ−1(a) is constant.
Thus, the map
g : A→ N>0, a 7→ f(p) for any p ∈ (dom f)∩ϕ−1(a)

is well defined. It is moreover antitone, so, by Lem. III.2a),
img g is finite. Since ∀ p ∈ dom f : f(p) = g(ϕ(p)), we
obtain

img f ⊆ img g . (3)
Hence, img f is also finite.

b) Consider k, ϕ, g, and its domain A = img(ϕ|dom f) from
above. The very definition of g implies img g ⊆ img f ,
so, using (3), img g = img f . We will apply the algorithm
from Lem. III.2b) to g. To this end, it suffices to supply
the algorithms solving the following problems:
• “Decide, given an arbitrary set I⊆k and a sequence of

pairs (si, ai)i∈I ∈ ({‘=’, ‘>’} × N>0)I , whether some
y ∈ dom g exists satisfying

∧
i∈I

(
(si=‘=’∧yi=ai)∨(si=

‘>’ ∧ yi> ai)
)
.” According to Lem. III.4, there is some

enumeration of thread transition relations t0, . . . , tk−1

such that ϕ
(
(→i)i<n

)
=
(∣∣{i<n | →i = tr}

∣∣)
r<k

for
all programs (→i)i<n.
So, assume that some I⊆k and a sequence of pairs (si,
ai)i∈I ∈ ({‘=’, ‘>’} × N>0)I are given. Let I ′ = {ti |
i∈I} and (s′ti , a

′
ti) = (si, ai) for all i ∈ I . Notice that

there is some y ∈ (dom g) = img(ϕ|dom f) satisfying∧
i∈I

(
(si = ‘=’ ∧ yi = ai) ∨ (si = ‘>’ ∧ yi> ai)

)
iff there

is some (→i)i<n ∈ dom f satisfying
∧
 ∈I′

((
s′ = ‘=’

19

Algorithm 2: Evaluate g
Input: a ∈ A
Output: g(a)
foreach p ∈ ϕ−1(a) do

if p ∈ dom f then return f(p)

∧
∣∣{i<n | →i = }

∣∣ = a′
)
∨
(
s′ = ‘>’ ∧

∣∣{i<n |
→i = }

∣∣ > a′)):

“⇒”: Given a y as stated, let (→i)i<n be an arbitrary
member of ϕ−1(y) ∩ (dom f).

“⇐”: Given a program (→i)i<n as stated, let y =
ϕ
(
(→i)i<n

)
.

An algorithm answering the question “given a set I ′ of
thread transition relations and an I ′-indexed sequence
of pairs (s′ , a

′
) ∈I′ ∈ ({‘=’, ‘>’}×N>0)I

′
, is there

any (→i)i<n ∈ dom f satisfying
∧
 ∈I′

((
s′ = ‘=’ ∧∣∣{i < n | →i = }

∣∣ = a′
)
∨
(
s′ = ‘>’ ∧

∣∣{i < n |
→i = }

∣∣ > a′)) ?” is provided by the assumption of
this theorem.
• “Evaluate g at a point of its domain.” Since the preimage

of a vector under ϕ is computable according to Lem.
III.4, the problem is solvable by Alg. 2. �

Proof of Lem. III.6
Fix arbitrary g, g′ ∈ Glob, a, a′ ∈ Loc, and ⊆ (Glob×
Loc)2. We define f : P99KN>0 with dom f =

{
(→i)i<n ∈P∣∣∣ ∃i<n : →i = ∧ dloc(→i)i<n

(
(g, n×{a}), i, (g′, a′)

)
<∞

}
,

(dom f) 3 (→i)i<n 7→ min
{
dloc(→i)i<n

(
(g, n×{a}), i, (g′, a′)

)∣∣∣ i<n ∧ =→i

}
.

Now we will show that f is antitone. Let p, q ∈ dom f such
that p is a subprogram of q. Let (→i)i<n = p and (�i)i<m
= q. Then there is an injective map h : n↪→m such that for all
i<n we have →i =�h(i). Since p ∈ dom f , there is some
ı̂<n such that =→ı̂ and a path σ in the transition graph
of p such that σ0 = (g, n×{a}), the last state of σ is (g′, l′)
for some l′ ∈ Locn such that l′ı̂ = a′, and length(σ) = f(p).
Informally, we will now lift the path σ from p to q by adding
threads that always stay at the local state a. In the following,
let h−1 : (img h) ↪� n be the inverse of h on its image. We
define a sequence σ̂ = (σ̂k)k6f(p) ∈

(
Glob×Locm

)f(p)+1
by

σ̂k
def
=

̌g[k],

({
ľ
[k]
h−1(j) , if j ∈ img h,

a , otherwise

)
j<m

, where (ǧ[k],

ľ[k])
def
= σk, for all k 6 f(p). Then σ̂ is a path in the transition

graph of q such that σ̂ starts in (g,m×{a}) and ends in a
program state (g′, l′′) for some l′′ ∈ Locm satisfying l′′h(ı̂) =

l′ı̂ = a′. So, dlocq
(
(g,m×{a}), h(̂ı), (g′, a′)

)
<∞. Notice that

 =→ı̂ =�h(ı̂), so q ∈ dom f and f(q) 6 f(p). Since p
and q were arbitrary, we have shown that f is antitone.

Thm. III.5a) implies that f is bounded from above by some
c ∈ N>0.

Now let an arbitrary n ∈ N+, an arbitrary n-threaded
program p = (→i)i<n, an arbitrary i < n such that →i

= and dlocp
(
(g, n×{a}), i, (g′, a′)

)
< ∞ be given. Then

p ∈ dom f . The definition of f implies the existence of
some ı̂<n such that →ı̂= and of some path σ of length
f(p) such that σ starts in (g, n×{a}) and ends in (g′, l′)
for some l′ ∈ Locn satisfying l′ı̂ = a′. Note that threads i
and ı̂ have the same thread transition relation. Swap the
steps of these threads: consider the sequence σ̂ = (σ̂k)k6f(p)

∈ (Glob×Locn)f(p)+1 of program states, defined by σ̂k
def
=̌g[k],



ľ
[k]
j , if j /∈ {i, ı̂},
ľ
[k]
i , if j = ı̂ ,

ľ
[k]
ı̂ , if j = i


j<n

, where
(
ǧ[k], ľ[k]

) def
= σk,

for all k 6 f(p). Then σ̂ is a path in the transition graph
of p of length f(p) that starts in (g, n×{a}) and ends in
(g′, l′′) for some l′′∈Locn such that l′′i =a′. Since length(σ̂)
= f(p) 6 c, we obtain dlocp

(
(g, n×{a}), i, (g′, a′)

)
6 c.

To prove the existence of an explicit algorithm computing
the minimal such c as required, let us assume a tuple (g, g′,
a, a′,) from the finite (!) set S = Glob×Glob×Loc×Loc
×P((Glob×Loc)2) and define f as above. We will apply
Thm. III.5b). To this end, it suffices to supply the algorithms
solving the following problems:

• “Membership of a given program in dom f .” Let p =
(→i)i<n ∈ P be arbitrary. To test whether p belongs to
dom f , we first search for an i<n such that →i =
and return “false” if we found none. If we found one,
we check for this i whether dlocp

(
(g, n×{a}), i, (g′, a′)

)
<∞ by searching in the transition graph of p starting
from (g, n×{a}) for a state with the shared part g′ and
the local part a′ of thread i. We return “true” if we find
such a state and “false” otherwise.
• “Decide, given an arbitrary set I ⊆ P

(
(Glob×Loc)2

)
and an I-indexed sequence of pairs (s�, b�)�∈I ∈
({‘=’, ‘>’} × N>0)I , whether some (→i)i<n ∈ dom f

satisfying
∧
�∈I

((
s� = ‘=’ ∧

∣∣{i < n | →i =�}
∣∣ =

b�
)
∨
(
s�= ‘>’∧

∣∣{i<n | →i=�}
∣∣ > b�)) exists.”

We let k =
∣∣∣P((Glob×Loc)2

)∣∣∣ and choose any enumer-
ation t0, . . . , tk−1 of the thread transition relations.
Let I ⊆ P

(
(Glob×Loc)2

)
and an I-indexed sequence

of pairs (s�, b�)�∈I ∈ ({‘=’, ‘>’}×N>0)I be given
as input.
We now create a Petri net simulating multithreaded
programs as follows.
Without loss of generality, suppose (k×Loc)∩Glob =
∅; otherwise we rename the members of Loc or Glob so
as to attain this disjointness. Choose a fresh individual
start /∈ (k×Loc)∪Glob. We construct the set of Petri
net’s places as the disjoint union (k×Loc) ∪̇ Glob ∪̇
{start}.
Initially, the Petri net has one token in start and btj
tokens in (j, a) for each j <k such that tj ∈ I; there
are no other tokens in the initial marking.
To define the transitions, let Î = P

(
(Glob× Loc)2

)

20

\ {� ∈ I | s� = ‘=’}. First, the Petri net has |Î|
transitions indexed by Î; for each j < k such that tj
∈ Î , the transition with index tj consumes one token
from start, puts one token back into start, and adds
one token to the place (j, a). Second, the Petri net has
a transition that completely leaves start: this transition
consumes a token from start and adds a token to the
place g. Third and finally, the Petri net has transitions
actually simulating the threads: for each j < k and
each thread transition

(
(x, y), (x′, y′)

)
∈ tj , the Petri

net contains a transition removing one token from (j,
y) and one token from x and then placing one token
to (j, y′) and one token to x′.
After having constructed such a Petri net, we check for
the coverability of the marking in which the place g′
has one token, for the unique j<k satisfying tj =
the place (j, a′) has one token, and all the other places
have no tokens. Any coverability procedure (e.g., [50])
would do.
To see the correctness of the construction, notice that
the aforementioned Petri net simulates programs with
at least b� copies of each � ∈ I with s� = ‘>’,
exactly b� copies of each �∈I with s� = ‘=’, and
an arbitrary number of other thread transition relations.
• “Evaluate f at a point of dom f .” Given an n-threaded

program in dom f , perform a breadth-first search from
(g, n×{a}). At each level, watch for the program states
with shared part g′ and check whether in such a program
state any of the threads with the transition relation
has a′ as the local part. As soon as such a program
state is found, stop and return the level number. (Here,
we start counting the level numbers of our breadth-first–
search tree by assigning 0 to the root.)

Since S is finite, the combined algorithm that takes a member
of S and starts the sub-algorithm for the corresponding f is
also explicit. �

Proof of Cor. III.7
According to Lem. III.6, there is a map ζ : Glob×Glob×Loc
×Loc×P((Glob×Loc)2) → N>0 such that for all g, g′ ∈
Glob, a, a′ ∈ Loc, ⊆ (Glob×Loc)2, n∈N+, n-threaded
programs p= (→i)i<n, and all i <n, if →i = and dlocp(
(g, n×{a}), i, (g′, a′)

)
< ∞, then dlocp

(
(g, n×{a}), i, (g′,

a′)
)
6 ζ(g, g′, a, a′,). We choose the pointwise smallest

such ζ; then an explicit algorithm computing ζ exists. Let c
= max(img ζ). This value can be explicitly constructed by
evaluating ζ at all the points of its finite domain and taking
the maximal value.

Now consider an arbitrary program p = (→i)i<n. For all
g, g′ ∈ Glob, a, a′ ∈ Loc, and i<n such that dlocp

(
(g, n×{a}),

i, (g′, a′)
)
< ∞ we have dlocp

(
(g, n×{a}), i, (g′, a′)

)
6 ζ(g,

g′, a, a′,→i) 6 c.
Thus, min

{
ĉ∈N>0

∣∣∣ ∀ g, g′ ∈ Glob, a, a′ ∈ Loc, n∈N+,

n-threaded program p, i < n : dlocp
(
(g, n×{a}), i, (g′, a′)

)
<

∞⇒ dlocp
(
(g, n×{a}), i, (g′, a′)

)
6 ĉ
}
6 c. To show that the

last inequality is actually an equality, let ĉ be the minimum
on the left-hand side. Since c ∈ img ζ, there are some g, g′

∈ Glob, a, a′ ∈ Loc, and ⊆ (Glob×Loc)2 such that ζ(g,
g′, a, a′,) = c.
Case c=0. Then ĉ>c immediately.
Case c>0. Since ζ was chosen pointwise minimal, its defini-

tion implies that there is an n∈N+, an n-threaded pro-
gram p = (→i)i<n, and an i<n such that →i= and
dlocp
(
(g, n×{a}), i, (g′, a′)

)
<∞ and dlocp

(
(g, n×{a}), i,

(g′, a′)
)

= ζ(g, g′, a, a′,), i.e., dlocp
(
(g, n×{a}), i, (g′,

a′)
)

= c. The definition of ĉ implies dlocp
(
(g, n×{a}), i,

(g′, a′)
)
6 ĉ, i.e., c6 ĉ.

In both cases, ĉ> c, proving min
{
ĉ∈N>0

∣∣∣ ∀ g,g′ ∈ Glob,

a,a′ ∈ Loc, n ∈ N+, n-threaded program p, i<n : dlocp
(
(g,

n×{a}), i, (g′, a′)
)
<∞⇒ dlocp

(
(g, n×{a}), i, (g′, a′)

)
6 ĉ
}

= c. �

Before we remove the restriction to uniform program states,
we argue that local distances stay invariant under renaming
of local states. More formally:

Lemma C.3.1. Let p = (→j)j<n be a program. Let for each
j<n a permutation hj : Loc↪�Loc be given. Moreover, let for
each j<n a thread transition relation j ⊆ (Glob×Loc)2

be defined via(
g, hj(l)

)
 j

(
g′, hj(l

′)
) def⇐⇒ (g, l)→j (g′, l′)

for all g, g′ ∈ Glob and l, l′ ∈ Loc; let q = (j)j<n.
Then for all (g, l) ∈ Statep, i<n, g′∈Glob, and b∈Loc we
have
dlocp
(
(g, l), i, (g′, b)

)
= dlocq

((
g, (hj(lj))j<n

)
, i,
(
g′, hi(b)

))
.

Proof. Let (g, l) ∈ Statep, i<n, g′∈Glob, and b∈Loc. We
are going to show the equality in question by separating it
into two inequalities.

“dlocp
(
(g, l), i, (g′, b)

) !
6 dlocq

((
g, (hj(lj))j<n

)
, i,
(
g′, hi(b)

))
”:

If the right-hand side is ∞, the inequality holds triv-
ially. Thus let us assume from now on that the right-
hand side is equal to some k∈N>0. Then there is a
path σ =

((
ĝ[r], l̂[r]

))
r6k

in the transition graph of

q such that ĝ[0] = g, l̂[0] =
(
hj(lj)

)
j<n

, ĝ[k] = g′,

and l̂
[k]
i = hi(b). There is a map t : k→n that tells

us which thread takes a step at each time point, i.e.,
such that for each r<k we have

(
ĝ[r], l̂

[r]
t(r)

)
 t(r)(

ĝ[r+1], l̂
[r+1]
t(r)

)
and ∀ j ∈ n \ {t(r)} : l̂

[r]
j = l̂

[r+1]
j .

Then, for each r<k we have
(
ĝ[r], ht(r)

(
h−1
t(r)

(
l̂
[r]
t(r)

)))
 t(r)

(
ĝ[r+1], ht(r)

(
h−1
t(r)

(
l̂
[r+1]
t(r)

)))
, which, using

the assumption, implies
(
ĝ[r], h−1

t(r)

(
l̂
[r]
t(r)

))
→t(r)(

ĝ[r+1], h−1
t(r)

(
l̂
[r+1]
t(r)

))
. Let ľ[r] def

=
(
h−1
j

(
l̂
[r]
j

))
j<n

for

all r6k. Then, for each r<k we have
(
ĝ[r], ľ

[r]
t(r)

)
→t(r)(

ĝ[r+1], ľ
[r+1]
t(r)

)
and ∀ j ∈ n\{t(r)}: ľ[r]j = h−1

j

(
l̂
[r]
j

)
=

h−1
j

(
l̂
[r+1]
j

)
= ľ

[r+1]
j . Therefore, the sequence σ̌

def
=((

ĝ[r], ľ[r]
))
r6k

is a walk in the transition graph of

21

p. The walk starts in
(
ĝ[0],

(
h−1
j

(
l̂
[0]
j

))
j<n

)
=
(
ĝ[0],

(lj)j<n
)

= (g, l) and ends in the program state
(
ĝ[k],(

h−1
j

(
l̂
[k]
j

))
j<n

)
=

(
g′,
(
h−1
j

(
l̂
[k]
j

))
j<n

)
, whose lo-

cal part of thread i is h−1
i

(
l̂
[k]
i

)
= b. Note that length(σ̌)

= k. Therefore, dlocp
(
(g, l), i, (g′, b)

)
6 k.

“dlocp
(
(g, l), i, (g′, b)

) !
> dlocq

((
g, (hj(lj))j<n

)
, i,
(
g′, hi(b)

))
”:

Analogously as follows. If the left-hand side is ∞,
the inequality holds trivially. Thus let us assume from
now on that the left-hand side is equal to some k∈N>0.
Then there is a path σ =

((
ĝ[r], l̂[r]

))
r6k

in the transi-

tion graph of p such that ĝ[0] = g, l̂[0] = l, ĝ[k] = g′,
and l̂[k]i = b. There is a map t : k→n that tells us which
thread takes a step at each time point, i.e., such that
for each r<k we have

(
ĝ[r], l̂

[r]
t(r)

)
→t(r)

(
ĝ[r+1], l̂

[r+1]
t(r)

)
and ∀ j ∈ n\{t(r)} : l̂

[r]
j = l̂

[r+1]
j . The assumption

implies that for each r<k we have
(
ĝ[r], ht(r)

(
l̂
[r]
t(r)

))
 t(r)

(
ĝ[r+1], ht(r)

(
l̂
[r+1]
t(r)

))
. Let ľ[r] def

=
(
hj
(
l̂
[r]
j

))
j<n

for each r6k. Then, for each r<k we have
(
ĝ[r], ľ

[r]
t(r)

)
 t(r)

(
ĝ[r+1], ľ

[r+1]
t(r)

)
and ∀ j ∈ n\{t(r)} : ľ

[r]
j = hj

(
l̂
[r]
j

)
= hj

(
l̂
[r+1]
j

)
= ľ

[r+1]
j . Therefore, the sequence σ̌

def
=((

ĝ[r], ľ[r]
))
r6k

is a walk in the transition graph of q.

The walk starts in(
ĝ[0],

(
hj
(
l̂
[0]
j

))
j<n

)
=
(
g,
(
hj(lj)

)
j<n

)
and ends in the program state(

ĝ[k],
(
hj
(
l̂
[k]
j

))
j<n

)
=

(
g′,
(
hj
(
l̂
[k]
j

))
j<n

)
,

whose local part of thread i is hi
(
l̂
[k]
i

)
= hi(b). Note

that length(σ̌) = k. Therefore, dlocq
(
(g, (hj(lj))j<n), i,

(g′, hi(b))
)
6 k. �

Proof of Thm. III.8
We fix c to be the smallest constant from Cor. III.7. Let
n ∈ N+. Let p = (→i)i<n be an n-threaded program with
the set of program states State; we are going to show that
the local diameter of p is bounded by c.

Let (g, l) ∈ State, i<n, g′∈Glob, and b∈Loc be arbitrary
such that dlocp

(
(g, l), i, (g′, b)

)
< ∞. It suffices to show that

dlocp
(
(g, l), i, (g′, b)

) !
6 c. For each j<n we let

hj : Loc→ Loc, x 7→


x, if x /∈ {li, lj},
li, if x = lj ,

lj , if x = li

be the permutation that swaps li with lj and leaves all the
other local states invariant. We define(

g̃, hj(l̃)
)
 j

(
g̃′, hj(l̃

′)
) def⇐⇒ (g̃, l̃)→j (g̃′, l̃′)

for all g̃, g̃′ ∈ Glob, l̃, l̃′ ∈ Loc, and j<n. We set
q

def
= (j)j<n. Lem. C.3.1 implies dlocp

(
(g, l), i, (g′, b)

)
= dlocq

(
(g, n×{li}), i, (g′, hi(b))

)
= [since hi = idLoc]

dlocq
(
(g, n×{li}), i, (g′, b)

)
. Therefore, dlocq

(
(g, n×{li}), i,

(g′, b)
)
< ∞. Cor. III.7 implies dlocq

(
(g, n×{li}), i, (g′, b)

)
6 c. Thus, dlocp

(
(g, l), i, (g′, b)

)
6 c.

Since p was arbitrary, we have shown max(img diamaxloc)
6 c. To show that the last inequality is actually an equal-
ity, assume for the purpose of contradiction that max(img
diamaxloc) is strictly less than c. Thus, c > 0. Recall
that c = min

{
c̃∈N>0

∣∣∣∀ g,g′ ∈ Glob, a,a′ ∈ Loc, n∈N+,

n-threaded program p, i<n : dlocp
(
(g, n×{a}), i, (g′, a′)

)
<

∞⇒ dlocp
(
(g, n×{a}), i, (g′, a′)

)
6 c̃
}

. Since c−1 does not
belong to the set over which the minimum is taken, there is
some g, g′ ∈ Glob, a, a′ ∈ Loc, n ∈ N+, n-threaded program
p, and i<n such that dlocp ((g, n×{a}), i, (g′, a′)) < ∞ but
dlocp ((g, n×{a}), i, (g′, a′))
 c−1. Then, dlocp ((g, n×{a}),
i, (g′, a′)) > c in contradiction to our assumption. Thus, our
assumption was wrong and max(img diamaxloc) = c. �

The top level of computing C is Alg. 3, where ζ : Glob×
Glob×Loc×Loc×P((Glob×Loc)2)→ N>0 is the pointwise
smallest function such that for all g, g′ ∈ Glob, a, a′ ∈ Loc,
 ⊆ (Glob×Loc)2 we have: for all n ∈ N+, all n-threaded
programs (→0, . . . ,→n−1), and all i<n, if →i = and
dloc
(
(g, n×{a}), i, (g′, a′)

)
< ∞, then dloc

(
(g, n×{a}), i,

(g′, a′)
)
6 ζ(g, g′, a, a′,). Following the involved lemmas,

this algorithm can be expanded to any depth. For example,
one informal but convenient way to look at the next deeper
level (i.e., computing ζ(g, g′, a, a′,)) would be to apply
the higher-order function defined by Thm. III.5 to the three
closures listed towards the end of Lem. III.6 for the the map
f provided at the beginning of Lem. III.6; the imperative
counterpart to this combined higher-order program can be
obtained by inlining the three closures.

Algorithm 3: Computing the maximal local diameter C
Input: Glob, Loc
Program variables: g, g′, a, a′,
Output: C
C := 0;
foreach g, g′ ∈ Glob, a, a′ ∈ Loc, ⊆ (Glob× Loc)2 do

if ζ(g, g′, a, a′,) > C then C := ζ(g, g′, a, a′,);

return C

Appendix D.
Proofs of claims from § IV.1

Within this section, without loss of generality, let the ele-
ments of Glob be 0, . . . , G−1 and the elements of Loc be
0, . . . , L−1.

We start with a few special cases.

Lemma D.1. If G=16L, then diamax(n) = (L−1)n for
all n∈N+.

22

Proof. Assume G=16L. Let n∈N>0. We split diamax(n)
!
= (L−1)n into two inequalities.
“6”: Take a walk σ of an n-threaded program that realizes

the distance diamax(n), i.e., such that length(σ) =
diamax(n) and σ is a shortest path between its end
nodes. The shared state stays constant throughout σ, so
if somewhere in σ two neighbor thread transitions of
different threads are applied, it is always possible to
change the order of applying these thread transitions
such that the length of the walk and the overall effect of
these two thread transitions are retained. With finitely
many exchanges of this kind one can obtain a walk σ′
such that for all i, j with i<j<n, the thread transitions
of thread i are used before the thread transitions of
thread j, and the final state of σ′ is the same as the final
state of σ. In σ′, the number of used thread transitions
of each thread does not exceed L−1 (otherwise σ′

would have a self-intersection, and throwing the loop
out would result in a shorter walk between the same
end-nodes, contradicting the fact that σ is a shortest
walk between its ends). Then, length(σ′) 6 (L−1)n.
Thus, length(σ) 6 (L−1)n.

“>”: Consider the n-threaded program (→i)i<n such that

→i
def
== { ((0, l), (0, l+1)) | l+1 < L } (i<n).

Each program transition increases some local com-
ponent of a state by 1 and leaves the other compo-
nents unchanged. Thus, traveling from (0, n×{0}) to
(0, n×{L−1}) takes (L−1)n single steps. Therefore,
diamax(n) > (L−1)n. �

Lemma D.2. If L=16G, then diamax(n) = G−1 for all
n ∈ N+.

Proof. Assume L=16G. Let n ∈ N+. We split diamax(n)
!
=

G−1 into two inequalities.
“6”: Take a walk σ of an n-threaded program that realizes

the distance diamax(n), i.e., such that length(σ) =
diamax(n) and σ is a shortest path between its end
points. All the local states stay constant throughout σ,
so inside σ only the shared part changes. There are
exactly G shared parts; any walk using more than G
shared parts would have a self-intersection and could
be shortened. Thus, each shared part is used at most
once in σ, implying length(σ) < G.

“>”: Consider an n-threaded program (→i)i<n such that

→0
def
== { ((g, 0), (g+1, 0)) | g+1 < G } and

→i
def
== ∅ for i ∈ n \ {0} .

Then d
((

0, n×{0}
)
,
(
G−1, n×{0}

))
= G−1. �

Proof of Thm. IV.1.1
The cases L=1 or G=1 have been treated in Lems. D.1
and D.2. From now on, consider the case G,L > 2.

Fix n>1, and consider the following n-threaded program.
We define the set of transitions of thread 0 as
{ ((g, l) ,(g, l+1)) | g < G ∧ l+1 < L } (4)

∪ { ((g, L−1),(g+1, 0)) | g+1 < G } . (5)

For example, for G>5 and L>5 these thread transitions can
be visualized as follows:

0 1 2 L−2 L−1
0

1

2

G−2

G−1

. . .

...

. . .

. . .

...

. . .

. . .

Loc

Glob

Let the transitions of each thread with index from n\{0} be
{((G−1, l), (0, l+1)) | l+1 < L} . (6)

For example, for G>3 and L>5 these thread transitions can
be visualized as follows:

0 1 2 L−2 L−1
0

1

G−1

. . .

...

Loc

Glob

Note that for each i ∈ N>0 there is a unique pair (k,m) ∈
N2
>0 such that i = k((G−1)L+ 1) +m and m 6 (G−1)L.

Moreover, G>2 implies (N>0 ∩ [0, (G−1)L]) =
(
N>0 ∩

[0, L[
)
∪̇
(
N>0 ∩ [L, (G−1)L]

)
. Using these properties, we

define sets Di ⊆ State for i ∈ N>0 as follows. For k ∈ N>0

and m<L let
Dk((G−1)L+1)+m

def
=={

(0, l) ∈ State

∣∣∣∣ l0 = m ∧
n−1∑
t=1

lt = k

}
(7)

∪̇
{

(G−1, l) ∈ State

∣∣∣∣ l0 = m+1 ∧
n−1∑
t=1

lt = k−1

}
,

(8)
and for k,m ∈ N>0 such that L 6 m 6 (G−1)L let

23

Dk((G−1)L+1)+m
def
=={(⌊m

L

⌋
, l
)
∈ State

∣∣∣∣∣ l0 = (m mod L) ∧
n−1∑
t=1

lt = k

}
. (9)

As a preparation step, we claim that these sets are disjoint,
i.e., Dj ∩Di is empty for different i, j ∈ N>0. To prove the
claim, let i, j ∈ N>0 and (g, l) ∈ Di ∩Dj be arbitrary. We
are going to show that i and j coincide. Dividing i and j with
remainder by (G−1)L+ 1, we obtain quotients k, k′ ∈ N>0

and remainders m,m′ ∈ N>0 such that i = k((G−1)L +
1) +m, j = k′((G−1)L+ 1) +m′, and m,m′ 6 (G−1)L.
Case m,m′ < L. Then, (g, l) is in the set (7) or (8).

Case g = 0 and m = l0 = m′ and k =
∑n−1

t=1 lt = k′.
Then k((G−1)L+ 1) +m = k′((G−1)L+ 1) +m′,
and, therefore, i = j.

Case 0 = g = G−1. This would imply G=1. 	
Case g = G−1 and m+1 = l0 = m′+1 and k−1 =∑n−1

t=1 lt = k′−1. Then m=m′ and k=k′. Therefore,
i=j.

Case m < L 6 m′. By (9), g =
⌊
m′

L

⌋
and l0 = (m′ mod L).

From m′>L we obtain g>0. By (8), g = G−1 and l0 =
m+1. Then, m′ > (G−1)L and m+1 = (m′ mod L).
The choice of m′ implies m′ = (G−1)L. Therefore,
(m′ mod L) = 0. Thus, m+1 = 0. 	

Case m′ < L 6 m. By (9), g =
⌊
m
L

⌋
and l0 = (m mod L).

From m>L we obtain g>0. By (8), g = G−1 and l0 =
m′+1. Then, m > (G−1)L and m′+1 = (m mod L).
The choice of m implies m = (G−1)L. Therefore,
(m mod L) = 0. Thus, m′+1 = 0. 	

Case L 6 m,m′. By (9),
⌊
m
L

⌋
= g =

⌊
m′

L

⌋
, (m mod L) =

l0 = (m′ mod L), and k =
∑n−1

t=1 lt = k′. Then, m
= L

⌊
m
L

⌋
+ (m mod L) = L

⌊
m′

L

⌋
+ (m′ mod L) = m′

and k = k′. Therefore, i = j.
Since i, j, and (g, l) were arbitrary, we have shown that the
sets Di for i ∈ N>0 are pairwise disjoint:

∀ i, j ∈ N>0 : Di ∩Dj 6= ∅ ⇒ i = j . (10)
Now, consider the map

depth : State → N>0 ∪̇ {∞},
(g, l) 7→ d

((
0, n×{0}

)
,
(
g, l
))

providing the distance of a state from (0, n×{0}). We claim
that the sets Di and depth−1({i}) are equal (i∈N>0) and are
going to prove this claim by natural induction on i. So, let
i ∈ N>0 be arbitrary, and we assume (which is our induction
hypothesis) ∀ j<i : Dj = depth−1({j}). There is a unique
pair (k,m) ∈ N2

>0 such that i = k((G−1)L+ 1) +m and
m 6 (G−1)L.
Case i=0. We have D0 = {(0, n×{0})} = depth−1({0}).
Case i>1. We will prove Di

!
= depth−1({i}) by showing

the left inclusion and the right inclusion separately.
“⊆”. Let (g, l) ∈ Di. From (10) we obtain (g, l) /∈ Dj

for all j<i. The induction hypothesis implies
∀ j < i : (g, l) /∈ depth−1({j}) . (11)

As the next step, we are going to show that depth(g, l)
does not exceed i. According to the definition of Di,
one of the following situations must hold.

Case (g, l) ∈Di due to (7), i.e., m<L∧g=0∧ l0=m
∧
∑n−1

t=1 lt = k.
Case m=0. Since i>1, we must have k>0. From∑n−1

t=1 lt = k we obtain some t̂ such that
16t̂<n and lt̂>0. Let l̂ = l[t̂ 7→ lt̂−1].
Note that G−1 =

⌊(G−1)L
L

⌋
, l̂0 = 0 =

(((G−1)L) mod L), and
∑n−1

t=1 l̂t = k−1. By
(9), (G−1, l̂) ∈ D(k−1)((G−1)L+1)+(G−1)L

= Di−1. By the induction hypothesis,
depth(G−1, l̂) = i−1. By (6), (G−1, l̂) −→
(0, l).

Case m>1. Let l̂ = l[0 7→m−1]. From (7) we
obtain (0, l̂) ∈ Dk((G−1)L+1)+m−1. The in-
duction hypothesis implies depth(0, l̂) = i−1.
By (4), (0, l̂) −→ (0, l).

In both cases, depth(g, l) 6 i.
Case (g, l) ∈Di due to (8), i.e., m<L∧ g =G−1∧

l0 =m+1 ∧
∑n−1

t=1 lt = k−1. Let l̂ = l[07→m].
Case m=0. Note that G−1 =

⌊(G−1)L
L

⌋
,

l̂0 = 0 =
((

(G−1)L
)

mod L
)

, and∑n−1
t=1 l̂t = k−1. According to (9), (G−1, l̂)

∈ D(k−1)((G−1)L+1)+(G−1)L = Di−1.
Case m>1. Then l̂0 = m− 1︸ ︷︷ ︸

06···<L

+ 1 and∑n−1
t=1 l̂t = k−1. By (8), (G−1, l̂) ∈

Dk((G−1)L+1)+m−1 = Di−1.
The induction hypothesis implies depth(G−1, l̂)
= i−1. By (4), (G−1, l̂) −→ (g, l). Therefore,
depth(g, l) 6 i.

Case (g, l) ∈Di due to (9), i.e., L6m ∧ g =
⌊
m
L

⌋
∧

l0 = (m mod L) ∧
∑n−1

t=1 lt = k. Note that g>1.
Case l0=0. Then m = gL. Let ĝ = g−1 and

l̂ = l[0 7→L−1].
Case ĝ=0. Then (ĝ, l̂) = (0, l̂)

by (7)
∈ Dk((G−1)L+1)+L−1 =
Dk((G−1)L+1)+gL−1.

Case ĝ>1. Note that ĝ = g+
⌊
− 1
L

⌋
=
⌊
g− 1

L

⌋
=
⌊
gL−1
L

⌋
, l̂0 = L−1 = ((g−1)L+L− 1)

mod L) = ((gL − 1) mod L),
∑n−1

t=1 l̂t =
k, and gL− 1 = (ĝ+1)L− 1 > 2L− 1 >
L. By (9), (ĝ, l̂) ∈ Dk((G−1)L+1)+gL−1.

From k((G−1)L + 1) + gL − 1 = i−1 we
obtain (ĝ, l̂) ∈ Di−1. The induction hypoth-
esis implies depth(ĝ, l̂) = i−1. By (5), (ĝ, l̂)
−→ (g, l).

Case l0>1. Let l̂ = l[0 7→ l0−1]. From m =
L
⌊
m
L

⌋
+(m mod L)︸ ︷︷ ︸

0<···<L

we obtain m−1 = L
⌊
m
L

⌋
+ (m mod L)−1︸ ︷︷ ︸

06···<L

. Due to the uniqueness of

the quotient and the remainder,
⌊
m−1
L

⌋
=⌊

m
L

⌋
and ((m−1) mod L) = (m mod L) −

1. Thus, g =
⌊
m−1
L

⌋
and l̂0 = ((m−1)

24

mod L). Moreover,
∑n−1

t=1 l̂t = k. From
(m mod L) > 0 and m>L we obtain m>L
and therefore m−1 > L. By (9), (g, l̂) ∈
Dk((G−1)L+1)+m−1 = Di−1. The induction
hypothesis implies depth(g, l̂) = i−1. By (4),
(g, l̂) −→ (g, l).

In both cases we obtain depth(g, l) 6 i.
We have shown depth(g, l) 6 i. By (11), depth(g, l)
= i.

“⊇”. Let (g, l) ∈ depth−1({i}) be arbitrary. There is
some (ĝ, l̂) ∈ depth−1({i−1}) such that (ĝ, l̂) −→
(g, l). In particular, there is some t̂<n such that (ĝ, l̂t̂)
→t̂ (g, lt̂) and ∀ t ∈ n \ {t̂} : l̂t = lt. The induction
hypothesis implies (ĝ, l̂) ∈ Di−1. We distinguish the
following cases.
Case m=0. We obtain (ĝ, l̂) ∈

D(k−1)((G−1)L+1)+(G−1)L. Since G>2, we
have L 6 (G−1)L. By (9), ĝ = G−1, l̂0 = 0,
and

∑n−1
t=1 l̂t = k−1. We consider all the choices

of the thread t̂ and the corresponding thread
transition that made the step:
Case (4), i.e., t̂=0 ∧ ĝ = g ∧ l̂0+1 = l0. Then,

g = G−1, l0=1, and
∑n−1

t=1 lt = k−1. By (8),
(g, l) ∈ Dk((G−1)L+1).

Case (5), i.e., t̂=0 ∧ ĝ+1 = g ∧ l̂0 = L−1 ∧
l0 = 0. But, above we discovered l̂0 = 0. So,
0 = L−1, contradicting L> 2.

Case (6), i.e., t̂>1 ∧ ĝ = G−1 ∧ l̂t̂+1 = lt̂ ∧
g = 0. Then, l0 = 0 and

∑n−1
t=1 lt = k. By (7),

(g, l) ∈ Dk((G−1)L+1).
Case 0<m<L. We obtain (ĝ, l̂) ∈

Dk((G−1)L+1)+m−1 with 0 6 m−1 < L;
this can happen only due to (7) or (8):
Case (7), i.e., ĝ = 0 ∧ l̂0 =m−1 ∧

∑n−1
t=1 l̂t = k.

We consider all the choices of the thread t̂
and the corresponding thread transition that
made the step:
Case (4), i.e., t̂=0 ∧ ĝ = g ∧ l̂0+1 = l0. Then,
g = 0, l0 = m, and

∑n−1
t=1 lt = k. By (7),

(g, l) ∈ Dk((G−1)L+1)+m.
Case (5), i.e., t̂=0 ∧ ĝ+1 = g ∧ l̂0 = L−1
∧ l0 = 0. Then, m−1 = L−1, implying
m=L, in contradiction to the choice of
m<L in this case of the case split.

Case (6), i.e., t̂>1 ∧ ĝ =G−1 ∧ l̂t̂+1 = lt̂ ∧
g = 0. Then, 0 = ĝ = G−1, contradicting
G>2.

Case (8), i.e., ĝ = G−1 ∧ l̂0 = m ∧∑n−1
t=1 l̂t = k−1. We consider all the choices

of the thread t̂ and the corresponding thread
transition that made the step:
Case (4), i.e., t̂=0 ∧ ĝ = g ∧ l̂0+1 = l0. Then,
g = G−1, l0 = m+1, and

∑n−1
t=1 lt = k−1.

By (8), (g, l) ∈ Dk((G−1)L+1)+m.

Case (5), i.e., t̂=0 ∧ ĝ+1 = g ∧ l̂0 = L−1 ∧
l0 = 0. Then, G = g. 	

Case (6), i.e., t̂>1 ∧ ĝ =G−1 ∧ l̂t̂+1 = lt̂ ∧
g = 0. Then, l0 = m and

∑n−1
t=1 lt = k. By

(7), (g, l) ∈ Dk((G−1)L+1)+m.
Case m=L. We obtain (ĝ, l̂) ∈ Dk((G−1)L+1)+m−1

where, due to L>2, 0 < m−1 < L. More-
over, (m−1) + 1 = L > l̂0. By (8), (G−1, l̂) /∈
Dk((G−1)L+1)+m−1, and so ĝ 6= G−1. By (7),
ĝ = 0, l̂0 = L−1, and

∑n−1
t=1 l̂t = k. We consider

all the choices of the thread t̂ and the correspond-
ing thread transition that made the step:
Case (4), i.e., t̂=0 ∧ ĝ = g ∧ l̂0+1 = l0. Then

l0 = L. 	
Case (5), i.e., t̂=0∧ ĝ+1 = g∧ l̂0 = L−1∧ l0 = 0.

Then, g = 1 =
⌊
m
L

⌋
, l0 = 0 = (m mod

L), and
∑n−1

t=1 lt = k. By (9), (g, l) ∈
Dk((G−1)L+1)+m.

Case (6), i.e., t̂>1∧ ĝ =G−1∧ l̂t̂+1 = lt̂∧g = 0.
Then, 0 = G−1 in contradiction to G>2.

Case m>L. We obtain (ĝ, l̂) ∈ Dk((G−1)L+1)+m−1

where L 6 m−1 < (G−1)L. Then, ĝ =
⌊
m−1
L

⌋
,

l̂0 = ((m−1) mod L), and
∑n−1

t=1 l̂t = k. In par-
ticular, ĝ>1. We consider all the choices of the
thread t̂ and the corresponding thread transition
that made the step:
Case (4), i.e., t̂=0∧ ĝ = g ∧ l̂0+1 = l0. Note that

m = (m−1)+1 =
(
L
⌊
m−1
L

⌋
+
(
(m−1) mod

L
))

+ 1 = Lĝ + l̂0 + 1 = Lg + l0. From
l0<L and the uniqueness of the quotient with
the remainder we obtain g =

⌊
m
L

⌋
and l0

= (m mod L). Finally,
∑n−1

t=1 lt = k. By (9),
(g, l) ∈ Dk((G+1)L+1)+m.

Case (5), i.e., t̂=0∧ ĝ+1 = g∧ l̂0 = L−1∧ l0 = 0.
Then, m = (m−1) + 1 =

(
L
⌊
m−1
L

⌋
+(

(m−1) mod L
))

+ 1 = (Lĝ + l̂0) + 1 =

Lĝ + L − 1 + 1 = L(ĝ+1) = Lg. The
uniqueness of the quotient with the remain-
der implies

⌊
m
L

⌋
= g and (m mod L) = 0

= l0. Finally,
∑n−1

t=1 lt = k. By (9), (g, l) ∈
Dk((G+1)L+1)+m.

Case (6), i.e., t̂>1∧ ĝ =G−1∧ l̂t̂+1 = lt̂∧g = 0.
Then, G−1 =

⌊
m−1
L

⌋
. Since m−1 <

(G−1)L, we must have m−1
L < G−1, and

therefore
⌊
m−1
L

⌋
< G−1. 	

We have shown that in every noncontradictory case,
(g, l) ∈ Dk((G−1)L+1)+m = Di.

We have proven
∀ i ∈ N>0 : Di = depth−1({i}) .

For
d̂

def
==

(
(n−1)(L−1) + 1

)(
(G−1)L+ 1

)
+ L− 2 (12)

we have (G−1, n × {L−1}) ∈ Dd̂ by (8). There-
fore, d̂ = depth

(
G−1, n × {L−1}

)
= d

((
0, n × {0}

)
,

25

(
G−1, n × {L−1}

))
6 diamax(n). Note that d̂ =

(n−1)(L−1)((G−1)L + 1) + (G−1)L + 1 + L − 2 =
(n−1)(L−1)(GL−L+1)+GL−L+L−1 = n(L−1)(GL−
L+ 1)− (L−1)(GL− L+ 1) +GL− 1 = n(L−1)(GL−
L + 1) − (GL2 − L2 + L − GL + L − 1) + GL − 1 =
n(L−1)(GL−L+ 1)−GL2 +L2 +GL−2L+ 1 +GL−1
= n(L−1)(GL − L + 1) − GL2 + L2 + 2GL − 2L
= n(L−1)(GL − L + 1) + (−L(G−1) + 2(G−1))L =
n(L−1)(GL− L+ 1) + (2−L)(G−1)L. �

Note D.3. The above proof computed the distance d̂ between
two states of a particular n-threaded program (n > 1). It
is worth asking whether there are states at a larger finite
distance in this program. Now we show that the proof has
reached its own limit, i.e., that it’s impossible to obtain any
larger distance in the transition graph of this program.

To this end, we first claim that, in the context of the
above proof, each successors of a state in Di lies in Di+1

(i ∈ N>0). To prove this, let i ∈ N>0 and (g, l) ∈ Di be
arbitrary. Division with remainder gives us k ∈ N>0 and
m 6 (G−1)L such that i = k((G−1)L+1)+m. Let (g′, l′)
be an arbitrary successor of (g, l). There is some j < n such
that (g, lj)→j (g′, l′j) and ∀ ̂ ∈ n\{j} : l̂ = l′̂. We consider
three cases concerning how (g, l) ∈ Di originated:

Case (7), i.e., m<L∧ g = 0∧ l0 = m∧
∑n−1

t=1 lt = k. Since
only thread 0 has thread transitions starting with the
shared state 0, we must have j=0. Thus, l′t = lt for
t ∈ N+ ∩ [1, n[, and so

∑n−1
t=1 l

′
t = k. Thread 0 has

transitions of two kinds:
Case (4), i.e., g′ = g ∧ l′0 = l0+1. Then, g′ = 0 and
m+1 = l′0 < L 6 (G−1)L. By (7), (g′, l′) ∈
Dk((G−1)L+1)+m+1.

Case (5), i.e., g′ = g+1 ∧ l0 = L−1 ∧ l′0 = 0. From
g′ = 1 and m+1 = l0+1 = L 6 (G−1)L we obtain
g′ =

⌊
m+1
L

⌋
, l′0 = ((m+1)mod L). By (9), (g′, l′) ∈

Dk((G−1)L+1)+m+1.
In both cases above we have (g′, l′) ∈
Dk((G−1)L+1)+m+1 = Di+1.

Case (8), i.e., m<L ∧ g = G−1 ∧ l0 = m+1 ∧
n−1∑
t=1
lt = k−1.

Since g+1 = G, the transition (5) of thread 0 cannot be
taken from (g, l), and so there may be only two cases
for j and the thread transition taken:
Case (4), i.e., j=0 ∧ g′ = g ∧ l′0 = l0+1. From g′ =
G−1, (m+1)+1 = l′0 6 L 6 (G−1)L, and∑n−1

t=1 l
′
t =

∑n−1
t=1 lt = k−1 we obtain (g′, l′) ∈

Dk((G−1)L+1)+m+1 by (8).
Case (6), i.e., j>1 ∧ g′ = 0 ∧ l′j = lj+1. From m+1 =

l′0 < L and
∑n+1

t=1 l
′
t = 1 +

∑n+1
t=1 lt = k we obtain

(g′, l′) ∈ Dk((G−1)L+1)+m+1 by (7).
In both cases above, (g′, l′) ∈ Dk((G−1)L+1)+m+1 =
Di+1.

Case (9), i.e., m>L∧ g =
⌊
m
L

⌋
∧ l0 = (mmod L)∧

∑n−1
t=1 lt

= k. All three cases for j and the transition taken are
possible:

Case (4), i.e., j=0 ∧ g = g′ ∧ l′0 = l0+1. From j = 0
we obtain

∑n−1
t=1 l

′
t = k. We distinguish two subcases:

Case m < (G−1)L. So, L < m+1 6 (G−1)L.
Note that m+1 =

(
L
⌊
m
L

⌋
+ (mmod L)

)
+ 1 =

Lg+ l0 +1 = Lg′+ l′0. From 0 6 l′0 < L and the
uniqueness of the quotient with the remainder we
obtain g′ =

⌊
m+1
L

⌋
and l′0 =

(
(m+1) mod L

)
.

By (9), (g′, l′) ∈ Dk((G−1)L+1)+m+1.
Case m = (G−1)L. Then, g = G−1 ∧ l0 = 0. So,

g′ = G−1 ∧ l′0 = 1. For k′ = k+1 and m′

= 0 we obtain l′0 = m′+1 ∧
∑n−1

t=1 l
′
t = k′−1.

By (8), (g′, l′) ∈ Dk′((G−1)L+1)+m′ . Note that
k′((G−1)L+1)+m′ = (k+1)((G−1)L+1)+0
= k((G−1)L+1)+(G−1)L+1 = k((G−1)L+
1) +m+ 1. Thus, (g′, l′) ∈ Dk((G−1)L+1)+m+1.

In both cases above, (g′, l′) ∈ Dk((G−1)L+1)+m+1 =
Di+1.

Case (5), i.e., j=0 ∧ g+1 = g′ ∧ l0 = L−1 ∧ l′0 = 0.
Since (mmod L) = L−1 > 1, we obtain that
m cannot be divisible by L. So, m < (G−1)L.
Let m′ = m+1; then m′ 6 (G−1)L. Note that
m′ = m+1 =

(
L
⌊
m
L

⌋
+ (mmod L)

)
+ 1 =

(Lg + l0) + 1 = Lg + L − 1 + 1 = Lg + L =
L(g+1) = Lg′. Therefore, g′ =

⌊
m′

L

⌋
and 0 =

(m′ mod L). Thus, l′0 = (m′ mod L). Moreover,
from j = 0 we obtain

∑n−1
t=1 l

′
t = k. By (9), (g′, l′)

∈ Dk((G−1)P+1)+m′ = Di+1.
Case (6), i.e., j>1 ∧ g =G−1 ∧ g′ = 0 ∧ l′j = lj+1.

If m were smaller than (G−1)L, then we would
have m

L < G−1 = g =
⌊
m
L

⌋
6 m

L , 	. There-
fore, m = (G−1)L. Thus, l0 = 0. Let m′ = 0
and k′ = k+1; then m′ = l0 = l′0 and

∑n−1
t=1 l

′
t

= 1 +
∑n−1

t=1 lt = k+1 = k′. By (7), (g′, l′) ∈
Dk′((G−1)L+1)+m′ = [since k′((G−1)L + 1) + m′

= k′((G−1)L+1) = k((G−1)L+1)+(G−1)L+1
= k((G−1)L+ 1) +m+ 1 = i+1] Di+1.

In all three cases above we have (g′, l′) ∈ Di+1.
We have shown that successors of states of Di lie in Di+1

(i ∈ N>0), or, more formally:
∀ i ∈ N>0, s ∈Di, s′ ∈ State : s−→s′ ⇒ s′ ∈Di+1 .

(13)
Second, we claim that all states lie in

⋃
i∈N>0

Di. To prove
this, let (g, l) ∈ State be arbitrary. For each of the follow-
ing cases, we find k,m ∈ N>0 so that m 6 (G−1)L and
(g′, l′) ∈ Dk((G−1)L+1)+m:
Case g = 0. Choose m = l0 and k =

∑n−1
t=1 lt. Noting that

m<L, apply (7).
Case 0 < g < G−1. Choose m = gL+ l0 and k =

∑n−1
t=1 lt.

Note that L 6 m 6 (G−2)L+ L− 1 = (G−1−1)L+
L−1 = (G−1)L−L+L−1 = (G−1)L−1 < (G−1)L
and apply (9).

Case g =G−1 ∧ l0 = 0. Choose m = gL and k =
∑n−1

t=1 lt.
Note that L 6 m = (G−1)L and apply (9).

Case g =G−1 ∧ l0 > 1. Choose m = l0−1 and k = 1 +∑n−1
t=1 lt. Note that m < L and apply (8).

26

We have shown
State ⊆

⋃
i∈N>0

Di . (14)

Third, we obtain Dk((G−1)L+1)+m = ∅ (at least) for the
following (k,m) ∈ N2

>0 such that m 6 (G−1)L:
• k = (L−1)(n−1) + 1 and m = L−1 according to (7)

and (8),
• k = (L−1)(n−1) + 1 and m > L according to (9),
• k > (L−1)(n−1) + 2 according to (7), (8), and (9).

Therefore:
Di=∅ for all i > ((L−1)(n−1)+1)((G−1)L+1)+L−1 .

(15)
Now, let s, s′ ∈ State be arbitrary such that s −→∗ s′.

By (14), there are some i, j ∈ N>0 such that s ∈ Di and
s′ ∈ Dj . By (12) and (15), i, j 6 d̂. By (13), d(s, s′) =
j−i 6 j 6 d̂. Since s, s′ were arbitrary, the diameter of
the program is at most d̂. Since the proof of Thm. IV.1.1
provided us with two states at this distance, d̂ is the exact
value of the diameter of the program. �

Appendix E.
Proofs of claims from § IV.2.1

Proof of Lem. IV.2.1.3
Let ϕ : n ↪� n be ∼-invariant.

Let i<n be arbitrary. Let j def
= ϕ−1(i). Then j ∼ ϕ(j).

Therefore, i = ϕ(ϕ−1(i)) = ϕ(j) [since ∼ is symmetric] j
= ϕ−1(i).

Summarizing, i ∼ ϕ−1(i) for all i<n. �

Proof of Lem. IV.2.1.4
We show:
“≈ is reflexive on State”: Due to the ∼-invariance of the

identity idn : n ↪� n.
“≈ is symmetric”: Let (ĝ, l̂) ≈ (ǧ, ľ). Then ĝ=ǧ. Choose

some ∼-invariant ϕ : n↪�n such that ∀ i<n : l̂i = ľϕ(i).
Lem. IV.2.1.3 implies that ϕ−1 is ∼-invariant. Also,
∀ i<n : l̂ϕ−1(ϕ(i)) = ľϕ(i). The surjectivity of ϕ implies
that ∀ j<n : l̂ϕ−1(j) = ľj . Summarizing, (ǧ, ľ) ≈ (ĝ, l̂).

“≈ is transitive”: Let (ĝ, l̂)≈(ǧ, ľ)≈(g, l). Then ĝ=ǧ=g and
some ∼-invariant ϕ,ψ : n↪�n exist such that ∀ i<n :
l̂i=ľϕ(i) and ∀ j<n : ľj=lψ(j). Then ψ◦ϕ is ∼-invariant
and ∀ i<n : l̂i ∼ lψ(ϕ(i)). Therefore, (ĝ, l̂) ≈ (g, l). �

Proof of Lem. IV.2.1.6
Let ĝ, ǧ ∈ Glob and l̂, ľ ∈ Locn be arbitrary. We show the two
directions of the aforementioned bi-implication separately.
“⇒”: We assume the left-hand side (ĝ, l̂) ≈ (ǧ, ľ). Then ĝ=ǧ,

and some ∼-invariant ζ : n ↪� n exists such that
∀ i < n : l̂i = ľζ(i) . (16)

The ∼-invariance of ζ means
∀ i < n : i ∼ ζ(i) . (17)

Let a, b ∈ Loc and ∈ E. We claim that the map
ζ̄ : {t<n | lt=a ∧ →t\D = ∧ l̂t=b} → {t<n |
lt=a ∧→t\D = ∧ ľt=b}, t 7→ ζ(t) is well defined
and a bijection. We prove this claim now:

“ζ̄ is well defined”: Let t∈n be such that lt=a ∧
→t\D = ∧ l̂t=b. From (16) we obtain ľζ(t)=b.
From (17) we obtain lζ(t)=a and →ζ(t)\D = .
Therefore, ζ(t) ∈ {t<n | lt=a∧→t\D = ∧ ľt=b}.

“ζ̄ is injective”: Follows from the injectivity of ζ.
“ζ̄ is surjective”: Let t∈n be given such that lt=a ∧
→t\D = ∧ ľt = b. Then ζ−1(t) ∈ n, and lζ−1(t)

= [due to (17)] lζ(ζ−1(t)) = lt = a, and →ζ−1(t)\D
= [due to (17)] →ζ(ζ−1(t))\D = →t\D = , and
l̂ζ−1(t) = [due to (16)] ľζ(ζ−1(t)) = ľt = b. So,
ζ−1(t) ∈ dom ζ̄. Also, ζ̄(ζ−1(t)) = t.

We have shown that ζ̄ is a well-defined bijection. There-
fore, |dom ζ̄| = |img ζ̄|.

“⇐”: We assume the right-hand side, i.e., ĝ=ǧ and ∀a, b ∈
Loc, ∈E :

∣∣{t<n | lt=a ∧ →t\D = ∧ l̂t=b}
∣∣

=
∣∣{t<n | lt=a ∧ →t\D = ∧ ľt=b}

∣∣. Then, for
each triple (a, , b) ∈ Loc×E×Loc there is a bijection
γa, ,b : {t<n | lt=a ∧→t\D = ∧ l̂t=b} ↪� {t<n |
lt=a∧→t\D = ∧ ľt=b}. These bijections have pair-
wise disjoint domains. The images of these bijections
are also pairwise disjoint. The union of the domains is
n, and the union of the images is also n. Consider the
map

ζ
def
=

⋃
a,b∈Loc, ∈E

γa, ,b .

Then ζ is a permutation of n. If i<n is arbitrary, then
ζ(i) = γli,→i\D,l̂i(i), and so li = lγli,→i\D,l̂i

(i) = lζ(i),
and →i\D = →γli,→i\D,l̂i

(i)\D = →ζ(i)\D, and

l̂i = ľγli,→i\D,l̂i
(i) = ľζ(i). So, ζ is ∼-invariant, and

∀ i<n : l̂i = ľζ(i). Thus, (ĝ, l̂) ≈ (ǧ, ľ). �

Proof of Lem. IV.2.1.7
We will show the claim by induction on min{d((g, l),
s), d((g, l), s′)}, proving ∀ m ∈ N>0 ∪̇ {∞} :
∀ s, s′ ∈ State : (s≈s′ ∧ min{d((g, l), s), d((g, l), s′)}
= m) ⇒ d((g, l), s) = d((g, l), s′).

So, let an arbitrary m ∈ N>0 ∪̇ {∞} be given, and assume
that ∀m′<m : ∀ s, s′ ∈ State : (s≈s′ ∧ min{d((g, l), s),
d((g, l), s′)} = m′) ⇒ d((g, l), s) = d((g, l), s′). Let
s, s′ ∈ State be given such that s≈s′ and min{d((g, l), s),
d((g, l), s′)} = m. Three cases can occur: m is zero, m is
a positive natural number, or m is infinity.
Case m=0.

Case d
(
(g, l), s

)
= 0. Then s = (g, l). Let (ǧ, ľ) = s′.

From s≈s′ we obtain g=ǧ and some ∼-invariant
permutation ϕ : n↪�n such that ∀ i<n : li=ľϕ(i). The
definition of ∼ implies ∀ i<n : li=lϕ(i). Therefore,
∀ i<n : lϕ(i)=ľϕ(i). Since ϕ is onto, ∀ j<n : lj=ľj .
So, l = ľ. Thus, s = s′. Hence, d((g, l), s) =
d((g, l), s′).

Case d
(
(g, l), s′

)
= 0. We have s′ = (g, l). Now,

let (ǧ, ľ) = s. From s≈s′ we obtain ǧ=g
and some ∼-invariant permutation ϕ : n↪�n such
that ∀ i<n : ľi=lϕ(i). The definition of ∼ implies
∀ i<n : li=lϕ(i). Therefore, ∀ i<n : ľi=li. So, ľ=l.
Thus, s=s′. Hence, d((g, l), s) = d((g, l), s′).

27

Case 0<m<∞. Let (ǧ, ľ) = s and (ĝ, l̂) = s′. From s≈s′ we
obtain ǧ=ĝ and some ∼-invariant permutation ϕ : n↪�n
such that ∀ i<n : ľi=l̂ϕ(i).
Case d

(
(g, l), s

)
= m. Choose a predecessor (ǧ′, ľ′) of

(ǧ, ľ) such that
d
(
(g, l), (ǧ′, ľ′)

)
= m− 1 . (18)

Let l̂′ = λ i∈n. ľ′ϕ−1(i). Then ∀ j<n : l̂′ϕ(j) =

ľ′ϕ−1(ϕ(j)) = ľ′j . So, (ǧ′, ľ′) ≈ (ǧ′, l̂′). The induction

hypothesis implies d
(
(g, l), (ǧ′, l̂′)

)
= m−1. Choose

some t∈n such that (ǧ′, ľ′t)→t (ǧ, ľt)∧∀ t̄ ∈ n\{t} :
ľ′t̄ = ľt̄. Due to (18) and the distance condition
in this branch of the case split, (ǧ′, ľ′t) 6= (ǧ, ľt).
Since t ∼ ϕ(t), we have →t\D = →ϕ(t)\D. Thus,
(ǧ′, ľ′t) →ϕ(t) (ǧ, ľt). Knowing in addition l̂′ϕ(t)=ľ

′
t

and ľt=l̂ϕ(t), we get (ǧ′, l̂′ϕ(t)) →ϕ(t) (ǧ, l̂ϕ(t)).
Moreover, ∀ t̄ ∈ n\{ϕ(t)} : l̂′t̄ = ľ′ϕ−1(t̄) = [from
t̄ 6= ϕ(t) we get ϕ−1(t̄) 6= t] ľϕ−1(t̄) = l̂t̄. Com-
bining, (ǧ′, l̂′) −→ (ǧ, l̂) = (ĝ, l̂). Thus, d

(
(g, l),

(ĝ, l̂)
)
6 m = min

{
d
(
(g, l), (ǧ, ľ)

)
, d
(
(g, l), (ĝ, l̂)

)}
6 d
(
(g, l), (ĝ, l̂)

)
. Therefore, d

(
(g, l), (ĝ, l̂)

)
= m =

d
(
(g, l), (ǧ, ľ)

)
.

Case d
(
(g, l), s′

)
= m. Analogously as follows. Choose

a predecessor (ĝ′, l̂′) of (ĝ, l̂) such that
d
(
(g, l), (ĝ′, l̂′)

)
= m− 1 . (19)

Let ľ′ = λ i∈n. l̂′ϕ(i). Due to Lem. IV.2.1.3, ϕ−1 is ∼-
invariant. Moreover, ∀ j<n : ľ′ϕ−1(j) = l̂′ϕ(ϕ−1(j)) =

l̂′j . So, (ĝ′, l̂′) ≈ (ĝ′, ľ′). The induction hypothe-
sis implies d

(
(g, l), (ĝ′, ľ′)

)
= m−1. Choose some

t∈n such that (ĝ′, l̂′t) →t (ĝ, l̂t) and ∀ t̄ ∈ n\{t} :
l̂′t̄ = l̂t̄. Due to (19) and the distance condition
in this branch of the case split, (ĝ′, l̂′t) 6= (ĝ, l̂t).
Note that t ∼ ϕ−1(t); thus, →t\D = →ϕ−1(t)\D.
Thus, (ĝ′, l̂′t) →ϕ−1(t) (ĝ, l̂t). Knowing in addi-
tion ľ′ϕ−1(t) = l̂′t and l̂t = l̂ϕ(ϕ−1(t)) = ľϕ−1(t),
we get (ĝ′, ľ′ϕ−1(t)) →ϕ−1(t) (ĝ, ľϕ−1(t)). Moreover,
∀ t̄ ∈ n \ {ϕ−1(t)} : ľ′t̄ = l̂′ϕ(t̄) = [since t̄ 6=
ϕ−1(t), we have ϕ(t̄) 6= t] l̂ϕ(t̄) = ľt̄. Combin-
ing, (ĝ′, ľ′) −→ (ĝ, ľ) = (ǧ, ľ). Thus, d

(
(g, l), (ǧ, ľ)

)
6 m = min

{
d
(
(g, l), (ǧ, ľ)

)
, d
(
(g, l), (ĝ, l̂)

)}
6

d
(
(g, l), (ǧ, ľ)

)
. Therefore, d

(
(g, l), (ǧ, ľ)

)
= m =

d
(
(g, l), (ĝ, l̂)

)
.

Case m=∞. Then, both d
(
(g, l), s

)
and d

(
(g, l), s′

)
must

be ∞. In particular, they are equal. �

Proof of Lem. IV.2.1.8
Let s∈State have a finite distance from (g, l). Take a shortest
walk (σ[0], . . . , σ[k]) in the program’s transition graph such
that σ[0] = (g, l) and σ[k] = s. Then k = d

(
(g, l), s

)
. Note

that ∀ i6k : d
(
(g, l), σ[i]

)
= i. Lem. IV.2.1.7 implies that

σ[i] 6≈ σ[j] for all i, j ∈ N>0 such that i, j 6 k and i6=j.

Thus, the relation ≈ has at least k+1 equivalence classes.
That is,

∣∣State�≈∣∣ > d
(
(g, l), s

)
+ 1 > d

(
(g, l), s

)
. �

Proof of Lem. IV.2.1.9
Recall that V is the set of all maps

f : (Loc×E)→ Loc→ N>0

such that for all a∈Loc and all ∈ E we have
‖f(a,)‖1 =

∣∣{t<n | lt=a ∧→t\D = }
∣∣ . (20)

Let ϕ : Locn → (Loc×E) → Loc → N>0, l̂ 7→ λ (a,) ∈
Loc×E. λ b∈Loc.

∣∣{t<n | lt=a ∧→t\D = ∧ l̂t=b}
∣∣.

First, we show that imgϕ
!
⊆ V . For that, let l̂∈Locn be

arbitrary; it suffices to show that ϕ(l̂)
!
∈ V . Note that ϕ(l̂)

∈
(
(Loc×E)→ Loc→ N>0

)
. Now, let a∈ Loc and ∈ E.

Then, ‖ϕ(l̂)(a,)‖1 =
∑
b∈Loc

∣∣{t<n | lt=a ∧→t\D = ∧

l̂t=b}
∣∣ =

∣∣{t<n | lt=a∧→t\D = }
∣∣. So, ϕ(l̂) ∈ V . Since

l̂ was arbitrary,
imgϕ ⊆ V. (21)

Next, we show that imgϕ
!
⊇ V . As a preparation step, we

are going to enumerate the members of Loc by a bijection
enlo : L ↪� Loc. (The term enlo means “enumerate locals.”)
The members of each equivalence class c ∈ n�∼ will be
enumerated by a bijection encl(c) : c ↪� |c|. (The term encl
means “enumerate class.”)

Now, let f∈V be arbitrary. For each t∈n, the set
{
m̄<L∣∣ ∑

m<m̄
f(lt,→t\D)(enlo(m)) 6 encl([t]∼)(t)

}
is finite and

nonempty (as it contains zero). Thus, the map

l̂ = λ t ∈ n. enlo
(

max
{
m̄ < L

∣∣∣∑
m<m̄

f(lt,→t\D)(enlo(m)) 6 encl([t]∼)(t)
})

(22)

is well defined. We are going to prove that l̂ is the preimage
of f under ϕ.

First of all, notice that l̂ ∈ domϕ.
To show ϕ(l̂)

!
= f , let a ∈ Loc and ∈ E be arbitrary.

We are going to prove that ϕ(l̂)(a,)
!
= f(a,). Let g =

f(a,) ◦ enlo and
c = {t < n | lt = a ∧ →t\D = } (23)

(which is an equivalence class with respect to thread con-
fusion or empty). Note that

∑
m<L

g(m) = ‖g‖1 = ‖f(a,) ◦

enlo‖1 = [since enlo is a bijection and by the definition of
the 1-norm] ‖f(a,)‖1

by (20)
=

∣∣{t<n | lt=a∧→t\D = }
∣∣

by (23)
= |c|. In summary,∑

m<L

g(m) = |c| . (24)

Let h : c ↪� |c| be the map

h =

{
encl(c), if c 6= ∅,
the empty map, if c = ∅.

Let b ∈ Loc be arbitrary and b̄ = enlo−1(b). Before proving
ϕ(l̂)(a,)(b)

!
= f(a,)(b), we will show two auxiliary

28

statements. First, from
∑
m6b̄

g(m) 6
∑
m<L

g(m)
by (24)

= |c| we

obtain [∑
g(m)

m<b̄

,
∑

g(m)
m6b̄

[
⊆ |c| . (25)

Second, we show

b̄ = max
{
m̄<L

∣∣ ∑
m<m̄

g(m) 6 h(t)
} !⇔∑

m<b̄

g(m) 6 h(t) <
∑
m6b̄

g(m) (t ∈ c) .

We prove the two directions of this bi-implication for an
arbitrary t∈c separately:

“⇒”: We assume b̄ = max
{
m̄<L

∣∣ ∑
m<m̄

g(m) 6 h(t)
}

. Then,

this set contains b̄. So,
∑
m<b̄

g(m) 6 h(t). Now we show

h(t)
!
<
∑

m6b̄ g(m) :
Case b̄+1 < L: Since b̄ is the maximum of

{
m̄<L

∣∣∑
m<m̄

g(m) 6 h(t)
}

, this set doesn’t contain b̄+1. Since

b̄+1 < L, we must have h(t) <
∑

m<b̄+1

g(m) =
∑
m6b̄

g(m).

Case b̄+1 = L: Then h(t) < |c| = [using (24)]
∑
m<L

g(m)

= [since b̄+1 = L]
∑
m6b̄

g(m).

“⇐”: We assume
∑
m<b̄

g(m) 6 h(t) <
∑
m6b̄

g(m). Then, b̄ be-

longs to the set over which the maximum is taken, so,
b̄ 6 max

{
m̄<L

∣∣ ∑
m<m̄

g(m) 6 h(t)
}

.

Case b̄+1 < L: Let m̄<L be arbitrary such that∑
m<m̄

g(m) 6 h(t). Since h(t) <
∑
m6b̄

g(m) =
∑

m<b̄+1

g(m),

we have
∑
m<m̄

g(m) <
∑

m<b̄+1

g(m) by transitivity. Since all

members of these two sums are nonnegative, we must
have m̄ < b̄+1, i.e., m̄ 6 b̄. Since m̄ was arbitrary,
max

{
m̄<L

∣∣ ∑
m<m̄

g(m) 6 h(t)
}
6 b̄.

Case b̄+1 = L: Then, b̄ is already the largest number
below L, in particular, greater than or equal to any
number m̄<L satisfying

∑
m<m̄

g(m) 6 h(t).

We have shown

b̄ = max
{
m̄<L

∣∣ ∑
m<m̄

g(m) 6 h(t)
}
⇔ (26)∑

m<b̄

g(m) 6 h(t) <
∑
m6b̄

g(m) (t ∈ c) .

After these preparations, we obtain the following chain of
equations:
ϕ(l̂)(a,)(b) =

∣∣{t<n | lt=a ∧ →t\D = ∧ l̂t=b}
∣∣

by (23)
=

∣∣{t∈c | l̂t=b}∣∣ by (22)
=

∣∣∣∣∣
{
t∈c

∣∣∣∣ b̄ = max
{
m̄<L

∣∣∣
∑
f
(
lt,→t\D

)(
enlo(m)

)
m<m̄

6 encl
(
[t]∼
)(
t
)}}∣∣∣∣∣ by (23)

=

∣∣∣∣∣
{
t∈c

∣∣∣∣ b̄ = max
{
m̄<L

∣∣∣ ∑ f
(
a,

)(
enlo(m)

)
m<m̄

6 encl(c)(t)
}}∣∣∣∣∣

=

∣∣∣∣{t∈c ∣∣∣ b̄ = max
{
m̄<L

∣∣ ∑ g(m)
m<m̄

6 h(t)
}}∣∣∣∣ by (26)

=∣∣∣{t∈c ∣∣ ∑ g(m)
m<b̄

6 h(t) <
∑
g(m)

m6b̄

}∣∣∣ =

∣∣∣∣h−1
([∑

g(m)
m<b̄

,∑
g(m)

m6b̄

[)∣∣∣∣ = [using (25) and the fact that h : c ↪� |c| is

a bijection]
∣∣∣[∑ g(m)
m<b̄

,
∑
g(m)

m6b̄

[∣∣∣ =
∑
g(m)

m6b̄
−
∑
g(m)

m<b̄

=

g(b̄) = f(a,)(enlo(b̄)) = f(a,)(b).
Since b was arbitrary, ϕ(l̂)(a,) = f(a,).
Since a and were arbitrary, ϕ(l̂) = f .
So, f ∈ imgϕ.
Since f∈V was arbitrary, we get V ⊆ imgϕ.
Together with (21), we obtain

imgϕ = V . (27)

Lem. IV.2.1.6 implies

∀ ḡ∈Glob, l̂, ľ ∈ Locn : (ḡ, l̂) ≈ (ḡ, ľ) ⇔ ϕ(l̂) = ϕ(ľ) .

Due to this fact and (27), the map

ψ : State�≈ → Glob×V,
[
(ḡ, l̄)

]
≈ 7→

(
ḡ, ϕ(l̄)

)
is well defined and a bijection. �

Proposition E.1. There are
(
k+m−1

k

)
ways to arrange k

indistinguishable balls into m distinguishable baskets. For-
mally:∣∣∣{g : m→ N>0

∣∣ ∑
c<m

g(c) = k
}∣∣∣ =

(
k +m− 1

k

)
.

(Remark: this is a standard combinatorial lemma. In the above formulation,
g(c) is the number of balls in basket c, where the baskets are enumerated
by integers from 0 up to but not including m.)

Proof. Any arrangement of k balls into m baskets can be
written as a string over � and |, e.g., ��|�||���|||�|,
where � denotes a ball, | separates the baskets, and there
are k symbols � and m−1 delimiters |. The example string
above, processed from left to right, shows two balls in the
first basket, one ball in the second, none in the third, three
in the fourth, none in the sixth, none in the seventh, one in
the eighth, and none in the ninth. This mapping of arrange-
ments to strings is injective. Moreover, this mapping is also
surjective: each string over k symbols � and m−1 symbols
| can be interpreted as an arrangement of k balls into m
baskets. Therefore, it suffices to count the number of such
strings, which is

(
k+m−1

k

)
. �

Proof of Lem. IV.2.1.10
Let ka,

def
=
∣∣{t∈n | lt=a ∧→t\D = }

∣∣ for each a ∈ Loc

and ∈ E. Prop. E.1 implies that
∣∣∣{g ∈ (Loc → N>0)∣∣ ∑

c∈Loc g(c) = ka,
}∣∣∣ =

(
ka, +L−1

ka,

)
=
(
ka, +L−1

L−1

)
for

29

each a ∈ Loc and ∈ E. Thus,∏
a∈Loc
 ∈E

∣∣∣{g ∈ (Loc→N>0)
∣∣ ∑
c∈Loc

g(c) = ka,
}∣∣∣

=
∏
a∈Loc
 ∈E

(
ka, + L− 1

L− 1

)
. (28)

The left-hand side of (28) is equal to
∣∣∣∣ ∏
a∈Loc
 ∈E

{
g ∈

(Loc→N>0)
∣∣ ∑

c∈Loc
g(c) = ka,

}∣∣∣∣ =

∣∣∣∣{f ∈(
(Loc×E) → Loc → N>0

) ∣∣∣ ∀ a∈Loc, ∈E :∑
c∈Loc

f(a,)(c) = ka,

}∣∣∣∣ = |V |. Since
∑
a∈Loc
 ∈E

ka, = n,

the right-hand side of (28) is bounded above by max
{∏

a∈Loc
 ∈E

(
k̂a, +L−1

L−1

) ∣∣ (k̂a,)a∈Loc, ∈E ∈ (N>0)Loc×E ∧

∑
a∈Loc
 ∈E

k̂a, = n
}

=
[
knowing that |Loc×E| = L ·

2G
2L2−GL = L · 2GL(GL−1)

]
max

{∏
i<L·2GL(GL−1)(

k̂i+L−1
L−1

) ∣∣ (k̂i)i<L·2GL(GL−1) ∈ (N>0)L·2
GL(GL−1) ∧∑

i<L·2GL(GL−1) k̂i = n
}

. Therefore,

|Glob×V | 6 G ·max

{ ∏
i<L·2GL(GL−1)

(
k̂i+L−1

L− 1

) ∣∣∣∣∣
(k̂i)i<L·2GL(GL−1) ∈ (N>0)L·2

GL(GL−1)

∧
∑

i<L·2GL(GL−1)

k̂i = n

}
.

�

Proof of Lem. IV.2.1.11
We are going to prove a generalization of the claim (namely,
where ki are relaxed to be nonnegative rationals) by induction
on
∣∣{i<t | ki 6= n

t }
∣∣. More precisely, we are going to

show ∀ r∈N>0 : ∀ (ki)i<t ∈ Qt>0 :
(∣∣{i<t | ki 6= n

t }
∣∣ =

r ∧
∑

i<t ki = n
)
⇒
∏
i<t

(
ki+m
m

)
6
(
n/t+m
m

)t
.

So let r ∈ N>0 and (ki)i<t ∈ Qt>0 be given such
that

∣∣{i<t | ki 6= n
t }
∣∣ = r and

∑
i<t ki = n, and the

induction hypothesis is satisfied, i.e., ∀ r̃<r : ∀ (k̃i)i<t ∈
Qt>0 :

(∣∣{i<t | k̃i 6= n
t }
∣∣ = r̃ ∧

∑
i<t k̃i = n

)
⇒∏

i<t

(
k̃i+m
m

)
6
(
n/t+m
m

)t
.

If r=0, then ∀ i<t : ki = n
t , and so

∏
i<t

(
ki+m
m

)
=(

n/t+m
m

)t
.

So, we assume from now on that r>0. Since ∃ i<t : ki 6= n
t

and
∑

i<t ki = n, there must be i, j < t such that ki < n
t <

kj . Let

δ
def
== min

{ n
t
− ki, kj −

n

t

}
and

k̃h
def
==


kh , if i 6= h 6= j ,

kh + δ , if h = i ,

kh − δ , if h = j

(h < t).

Then
∑

h<t k̃h = n and
∣∣{h<t | k̃h 6= n

t }
∣∣ < r. The induc-

tion hypothesis implies∏
h<t

(
k̃h +m

m

)
6

(
n/t+m

m

)t
. (29)

Note that (k̃i+m
m)(k̃j+m

m)
(ki+m

m)(kj+m
m)

is well defined and equal to(∏
h<m

k̃i+m−h

h+1

)(∏
h<m

k̃j+m−h

h+1

)
(∏

h<m

ki+m−h

h+1

)(∏
h<m

kj+m−h

h+1

) =
∏
h<m

(k̃i+m−h)(k̃j+m−h)
(ki+m−h)(kj+m−h) =

m∏
r=1

(k̃i+r)(k̃j+r)
(ki+r)(kj+r) =

m∏
r=1

(ki+r+δ)(kj+r−δ)
(ki+r)(kj+r) =

m∏
r=1

(ki+r)(kj+r)+δ(kj+r)−δ(ki+r)−δ2
(ki+r)(kj+r) =

m∏
r=1

(
1 +

δ(kj−ki)−δ2
(ki+r)(kj+r)

)
=

m∏
r=1

(
1 + δ

kj−ki−δ
(ki+r)(kj+r)

)
>

[since kj − ki − δ = kj − n
t + n

t − ki − δ > δ + δ − δ = δ
> 0]
m∏
r=1

(
1 + δ2

(ki+r)(kj+r)

)
> 1.

Therefore, (ki+m
m)(kj+m

m)
(k̃i+m

m)(k̃j+m
m)

6 1, and so∏
h<t

(
kh+m
m

)
=

(ki+m
m)(kj+m

m)
(k̃i+m

m)(k̃j+m
m)

∏
h<t

(
k̃h+m
m

)
6
∏
h<t

(
k̃h+m
m

)
6

[using (29)]
(
n/t+m
m

)t
. �

(An aside is worth to be made. A mathematically inclined
reader could notice that

(n
t +m
m

)t
< [using [79]] enHm for all

m,n, t ∈ N+, where Hm =
∑m

i=1
1
i is the mth Harmonic

number. Omitting intermediate computations, this inequality
would lead to diamax(n) < GenHL−1 . Such an upper bound
would be exponential in n, and it would be possible to
asymptotically reduce it to O

(
(1 + ε)n

)
for an arbitrarily

small ε ∈ R+ at the cost of arbitrarily large constants hidden
in the asymptotic notation.)
Proof of Cor. IV.2.1.12∣∣∣State�≈∣∣∣ = [according to Lem. IV.2.1.9] |Glob×V | 6 [us-

ing Lem. IV.2.1.10] G · max
{∏

i<L·2GL(GL−1)

(
ki+L−1
L−1

) ∣∣
k0, . . . , kL·2GL(GL−1)−1 ∈ N>0 ∧

∑
i<L·2GL(GL−1) ki = n

}
6 [applying Lem. IV.2.1.11 to m = L−1 and t = L ·

2GL(GL−1)] G
(n
L·2GL(GL−1) + L− 1

L− 1

)L·2GL(GL−1)

. �

Proposition E.2. ∀x ∈ Q, m ∈ N>0 :
(
x+m
m

)
=
∏m
j=1

x+j
j .

(Remark: This is a standard, simple combinatorial lemma.)

Proof. Let x ∈ Q and m ∈ N>0. Then
(
x+m
m

)
=∏

i<m
x+m−i
i+1 =

∏
i<m(x+m−i)∏

i<m(i+1) = [changing the index
i = m−r in the enumerator and i = h−1 in the denomina-
tor]

∏m
r=1(x+r)∏m

h=1 h
=
∏m
j=1

x+j
j . �

Proof of Thm. IV.2.1.13
In this proof, we use the fact that the n-threaded program

30

as well as the initial state assumed for the prior claims in
§ IV.2.1 were arbitrary.

We have diamax(n) = max{diam(p) | p is an n-threaded
program} = max{(img dp) \ {∞} | p is an n-threaded
program} < [using Lem. IV.2.1.8] max

{∣∣State�≈∣∣ ∣∣∣ ∃
an n-threaded program p : State is the set of states of
p and ≈ is defined as in Def. IV.2.1.1 for p

}
6 [using

Cor. IV.2.1.12] G
(n
L·2GL(GL−1) + L− 1

L− 1

)L·2GL(GL−1)

= [us-

ing Prop. E.2] G

(
L−1∏
r=1

n
L·2GL(GL−1) + r

r

)L·2GL(GL−1)

6 [for

L=1, the product in the last line is empty and has value
1, and for L>2, 1 6 r 6 L−1, and n>1 , we have

n

L·2GL(GL−1)
+r

r = n
L·2GL(GL−1)·r + 1 6 n

2·21·2(1·2−1)·1 + 1 =
n

2·22 + 1 = n
8 + 1 6 2n] G(2n)(L−1)L·2GL(GL−1)

. �

Appendix F.
Proofs of claims from § IV.2.2

Proof of Lem. IV.2.2.1
Let (g, l) ∈ State and g′ ∈ Glob.

If g=g′, take l′=l and obtain (g, l)
−→6min{C,(G−1)Lm,diam(h)} (g′, l′) in zero steps.

Otherwise, g′ 6=g. Since the transition graph is strongly
connected, there is a walk from (g, l) to some state (g′, _).
Among all such walks, we choose a shortest one, say,
σ = (σj)j6k; then σ is a path and k > 1. Let l′

be such that (g′, l′) = σk. By the definition of C, we
have dloc((g, l), 0, (g′, l′0)) 6 C. According to the defini-
tion of local distances, there is a walk σ̂ = (σ̂j)j6k̂ and
l̂ ∈ Locm such that σ̂0 = (g, l) ∧ σ̂k̂ = (g′, l̂) ∧ l̂0 = l′0
∧ k̂ = dloc((g, l), 0, (g′, l′0)). The choice of σ implies
length(σ) 6 length(σ̂), which in turn implies k 6 k̂ 6 C.

Since σ is shortest, it contains no repetitions of states.
Thus, each state from (Glob \ {g′})× Locm occurs in σ at
most once. Assume for the purpose of contradiction that
k > (G − 1)Lm. Then (σj)j6(G−1)Lm is a strict prefix of
σ and contains at least (G− 1)Lm + 1 different states, so
it contains at least one state outside (Glob \ {g′})× Locm,
i.e., a state of the form (g′, _). This is a contradiction to the
minimality of k. Thus our assumption was false and k 6
(G− 1)Lm. Since σ is a shortest path from (g, l) to (g′, l′),
we have k 6 diam(h). Notice that (g, l) −→6k (g′, l′).
Hence, (g, l) −→6min{C,(G−1)Lm,diam(h)} (g′, l′). �

Lemma F.1. Let h be an m-threaded subprogram of an n-
threaded program p = (→0, . . . ,→n−1) via an embedding f ,
and the transition graph of h be strongly connected. Let −→
be the transition relation of p, i ∈ n \ (img f), (g, l) a
state of p, k ∈ N>0, σ =

(
σ[j]
)
j6k

a sequence of local
states that starts with li and satisfies ∀ j < k :

(
_, σ[j]

)
→i(

_, σ[j+1]
)
∨ σ[j] = σ[j+1]. Then there is a state (ĝ, l̂) of p

such that l̂|n\((img f)∪{i}) = l|n\((img f)∪{i}), σ[k] = l̂i, and
(g, l) −→6(min{C,(G−1)Lm,diam(h)}+1)(L−1) (ĝ, l̂).

Proof. If σ[0] = σ[k], the lemma is proven by setting (ĝ, l̂) =
(g, l). Thus, from now on we consider the case σ[0] 6= σ[k].

Informally, we are now going to shorten σ, producing a se-
quence θ containing no repetitions. Formally, the contraction
is performed by Alg. 4.

Algorithm 4: Contracting σ into θ.
Input: σ, k
Program variables: nonnegative integers s, j,

sequence θ over Loc
Output: s, θ
s := k;
θ := σ;
j := 0;
while j < s do

if there is some t such that j < t 6 s and θ[t] = θ[j]

then
let t be the largest integer such that t 6 s and
θ[t] = θ[j];

remove the subsequence θ[j+1] . . . θ[t] from θ;
s := s− (t− j)

j := j + 1

The following loop invariant holds:
• j 6 s = length(θ) ,
• θ[0] = σ[0] ∧ θ[s] = σ[k] ,
• for all ̄ < j, the local state θ[̄] occurs in θ exactly

once, and
• ∀ ̄ < s : (_,θ[̄])→i (_,θ[̄+1]) ∨ θ[̄] = θ[̄+1] .

Thus, we obtain the following postcondition of the program:
• j = s = length(θ),
• θ[0] = σ[0] ∧ θ[s] = σ[k] ,
• for all ̄ < s, the local state θ[̄] occurs in θ exactly

once, and
• ∀ ̄ < s : (_,θ[̄])→i (_,θ[̄+1]) .

Since in each iteration s−j strictly decreases and stays non-
negative, the program always terminates.

Let θ be the last value of the program variable θ and s
the last value of the program variable s. As all the elements
at positions smaller than s occur in θ exactly once, the last
element must occur in θ also exactly once. So, θ contains no
repetitions at all, implying s<L. Since θ[0] = σ[0] 6= σ[k] =
θ[s], we must have s6=0, so s>1.

According to the postcondition, there are families
(
ě[j]
)
j<s

and
(
ê[j]
)
j<s

over Glob such that for each j<s we have
(
ě[j],

θ[j]
)
→i

(
ê[j], θ[j+1]

)
. Let be the transition relation of h

and δ = min{C, (G−1)Lm, diam(h)}. Since the transition
graph of h is strongly connected, Lem. IV.2.2.1 implies
that one can recursively construct a sequence τ =

(
τ [j]
)
j<s

∈ (Locm)s of states of h such that
(
g, (lf(r))r<m

)
6δ(

ě[0], τ [0]
)

and
(
ê[j], τ [j]

)
6δ
(
ě[j+1], τ [j+1]

)
for all j <

s−1.
Now consider the sequence

(
(ḡ[j], ϕ[j])

)
j62s

of program
states of p, defined as follows:
• ḡ[0] = g, ϕ[0] = l,

31

• for odd j < 2s let ḡ[j] = ě[(j−1)/2], ϕ[j]
i = θ[(j−1)/2],

ϕ
[j]
f(r) = τ

[(j−1)/2]
r (r<m), and ϕ[j]|n\((img f)∪{i}) =

l|n\((img f)∪{i}),
• for even j 6 2s with j > 2 let ḡ[j] = ê[j/2−1], ϕ[j]

i =

θ[j/2], ϕ[j]
f(r) = τ

[j/2−1]
r (r<m), and ϕ[j]|n\((img f)∪{i})

= l|n\((img f)∪{i}).
Note:
• Since s > 1, we obtain

(
ḡ[0], (ϕ

[0]
f(r))r<m

)
=(

g, (lf(r))r<m
)

6δ (ě[0], τ [0]) =
(
ḡ[1], (ϕ

[1]
f(r))r<m

)
,

ϕ
[0]
i = li = σ[0] = θ[0] = ϕ

[1]
i , ϕ[0]|n\((img f)∪{i}) =

l|n\((img f)∪{i}) = ϕ[1]|n\((img f)∪{i}), and so (ḡ[0], ϕ[0])
−→6δ (ḡ[1], ϕ[1]).
• For odd j < 2s we have

(
ḡ[j], ϕ

[j]
i

)
=(

ě[(j−1)/2], θ[(j−1)/2]
)
→i

(
ê[(j−1)/2], θ[(j+1)/2]

)
=(

ḡ[j+1], ϕ
[j+1]
i

)
, ϕ[j]

u = τ
[(j−1)/2]
f−1(u) = ϕ

[j+1]
u (for all

u ∈ img f), ϕ[j]|n\((img f)∪{i}) = l|n\((img f)∪{i})
= ϕ[j+1]|n\((img f)∪{i}), and so

(
ḡ[j], ϕ[j]

)
−→(

ḡ[j+1], ϕ[j+1]
)
.

• For even j < 2s such that j 6= 0 we have(
ḡ[j],

(
ϕ

[j]
f(r)

)
r<m

)
=

(
ê[j/2−1], τ [j/2−1]

)
[since j

6 2s − 2, we get j
2 6 s−1, and so j

2 − 1 <

s− 1] 6δ
(
ě[j/2], τ [j/2]

)
=
(
ḡ[j+1],

(
ϕ

[j+1]
f(r)

)
r<m

)
,

ϕ
[j]
i = θ[j/2] = ϕ

[j+1]
i , ϕ[j]|n\((img f)∪{i}) =

l|n\((img f)∪{i}) = ϕ[j+1]|n\((img f)∪{i}), and so(
ḡ[j], ϕ[j]

)
−→6δ

(
ḡ[j+1], ϕ[j+1]

)
.

• Finally, ϕ[2s]
i = θ[s] = σ[k] and ϕ[2s]|n\((img f)∪{i}) =

l|n\((img f)∪{i}).
The above implies, particularly,

(
ḡ[0], ϕ[0]

)
−→∗(

ḡ[2s], ϕ[2s]
)
. The number of odd positive integers below

2s is
∣∣{i | i odd ∧ 1 6 i 6 2s− 1}

∣∣ = (2s−1)−1
2 + 1 = s.

The number of even positive integers below 2s is∣∣{i | i even ∧ 2 6 i 6 2s− 2}
∣∣ = (2s−2)−2

2 + 1 = s−1.
Thus, the length of the just mentioned walk is at most
δ + s + δ(s−1) = (δ+1)s 6 (δ+1)(L−1). We set
(ĝ, l̂)

def
=
(
ḡ[2s], ϕ[2s]

)
. �

Proof of Lemma IV.2.2.2
If n=m, both sides of the inequality in question coincide;
thus assume from now on that n>m. Let (→0, . . . ,→n−1) =
p, and let −→ be the transition relation of p. Let f be the em-
bedding of h into p. Let ζ = (min{C, (G−1)Lm, diam(h)}+
1)(L−1).

Consider program states (g, l), (g′, l′) of p such that
(g, l) −→∗ (g′, l′). Let A = {i ∈ n \ (img f) | li 6=l′i} be the
set of identifiers of threads outside the embedded program
h whose initial and final local states differ.

We start by considering the special case that A is
empty. Then l|n\(img f) = l′|n\(img f). Since the transition
graph of h is strongly connected, it exhibits a path τ
from

(
g, (lf(r))r<m

)
to
(
g′, (l′f(r)

)
r<m

) of length at most
diam(h). We lift τ to a path τ̂ from (g, l) to (g′, l′) in
the transition graph of p by reindexing the local states

in τ according to f and adding a tuple of local states
(lr)r∈n\(img f) to each state in τ . Certainly, length(τ̂) 6
diam(h) 6 ζ(n−m) + diam(h), and the lemma is proven.

From now on we consider the other case that A is nonempty.
Take any path σ = (σ[j])j6k in p from (g, l) to (g′, l′).
Enumerate the elements of A in ascending order by i0 <
· · · < is−1 for s = |A|. We are going to recursively construct
nonempty paths ϕ0, . . . , ϕs−1 in the transition graph of p
such that the initial state of ϕ0 is (g, l), length(ϕ0) 6 ζ , and
for all j<s we have:
• ϕj is nonempty,
• j > 0 ⇒ length(ϕj) < ζ,
• the concatenated sequence ϕ0 . . . ϕj is a walk, and
• the final state of ϕj is of the form_,




_ , if r ∈ img f ,

l′r , if r /∈ img f ∧ r 6 ij ,
lr , if r /∈ img f ∧ ij < r


r<n

.

For this purpose, let j<s be arbitrary, and assume that for
all j′<j the paths ϕj′ as above are already constructed.
Case j = 0. Notice that σ[0]

i0
= li0 and ∀ ̄ < k : (_, σ[̄]

i0
)→i0

(_, σ[̄+1]
i0

) ∨ σ
[̄]
i0

= σ
[̄+1]
i0

. By Lem. F.1, there is a
program state (ĝ, l̂) of p such that (g, l) −→6ζ (ĝ, l̂),
σ

[k]
i0

= l̂i0 , and l̂|n\((img f)∪{i0}) = l|n\((img f)∪{i0}). We
define ϕ0 as a path of length 6ζ that takes (g, l) to (ĝ, l̂).
Certainly, ϕ0 is nonempty. Now consider an arbitrary
r ∈ n \ (img f).
Case r 6 i0. If r /∈ A, we have especially r ∈ n \

((img f)∪{i0}) and therefore l̂r = lr = l′r. If r ∈ A,
we have r = i0 and therefore l̂r = l̂i0 = σ

[k]
i0

= l′i0 =
l′r.

Case i0 < r. Then r ∈ n \ ((img f) ∪ {i0}), and so
l̂r = lr.

Case j > 0. Let (ǧ, ľ) be the final state of ϕj−1, which ex-
ists because ϕj−1 is nonempty. Note that ľr = l′r
for r ∈ n \ (img f) ∧ r 6 ij−1, ľr = lr for
r ∈ n \ (img f) ∧ r > ij−1, σ[0]

ij
= lij = ľij , and

∀ ̄ < k : (_, σ[̄]
ij

) →ij (_, σ[̄+1]
ij

) ∨ σ
[̄]
ij

= σ
[̄+1]
ij

.
Lem. F.1 implies the existence of a program state
(ĝ, l̂) of p such that

(
ǧ, ľ
)
−→6ζ

(
ĝ, l̂
)
, σ[k]

ij
= l̂ij ,

and l̂|n\((img f)∪{ij}) = ľ|n\((img f)∪{ij}). We define
ϕj as a path obtained from an evidence path for
(ǧ, ľ) −→6ζ (ĝ, l̂) by stripping the source state. Now
let r ∈ n \ (img f).
Case r 6 ij .

Case r 6 ij−1. Then r ∈ n \ ((img f) ∪ {ij}), and
so l̂r = ľr = l′r.

Case r > ij−1. If r /∈ A, we have r ∈ n \ ((img f)∪
{ij}) and so l̂r = ľr = lr = l′r. If r ∈ A, then
r = ij and so l̂r = l̂ij = σ

[k]
ij

= l′ij = l′r.
Case ij < r. Then r ∈ n\((img f)∪{ij}) and r > ij−1,

so we have l̂r = ľr = lr.
Since l̂ij = l′ij 6= lij = ľij , we obtain that ϕj is
nonempty.

After construction we thus obtain a walk of length not ex-

32

ceeding ζs from (g, l) to a state of the form_,




_ , if r ∈ img f ,

l′r , if r /∈ (img f) ∧ r6 is−1 ,

lr , if r /∈ (img f) ∧ is−1<r


r<n

,

which is by definition of s and A of the form(
_,

({
_ , if r ∈ img f ,

l′r , otherwise.

)
r<n

)
. Since the transi-

tion graph of h is strongly connected, it exhibits a path
τ from the h-components of the last state of ϕs−1 to(
g′,
(
l′f(r)

)
r<m

)
of length at most diam(h). We lift τ to a

path τ̂ from the last state of ϕs−1 to (g′, l′) in the transition
graph of P by reindexing the local states in τ according to f
and adding the constant tuple of local states (l′r)r∈n\(img f)

to each state in τ . Certainly, length(τ̂) 6 diam(h). Let ψ be
τ̂ without its initial state. Then the walk ϕ0 . . . ϕs−1ψ has
length at most ζs+ diam(h) 6 ζ(n−m) + diam(h). �

Appendix G.
Proofs of claims from § IV.2.3

Proof of Lem. IV.2.3.1
Consider an n-threaded program p = (→i)i<n such that
for some i<n, the graph (Glob×Loc,→i) is strongly con-
nected. Notice that this graph has GL nodes, so any
path (which is, by definition, not self-intersecting) in this
graph has at most GL − 1 edges. In particular, if h
is the program consisting of only the thread →i, then
diam(h) 6 GL − 1. Lem. IV.2.2.2 implies diam(p) 6
(min{(G−1)L,GL − 1} + 1)(L−1)(n−1) + GL − 1 =
(min{GL − L,GL − 1} + 1)(L−1)(n−1) + GL − 1 6
((GL − L) + 1)(L−1)(n−1) + GL − 1 = (GL − L +
1)(L−1)n− (GL− L+ 1)(L−1) +GL− 1 = (GL− L+
1)(L−1)n− (GL2 − L2 + L−GL + L− 1) + GL− 1 =
(GL−L+1)(L−1)n−(GL2−L2−GL+2L−1)+GL−1
= (GL−L+1)(L−1)n−GL2 +L2 +GL−2L+1+GL−1
= (GL − L + 1)(L−1)n − GL2 + L2 + 2GL − 2L
= (GL − L + 1)(L−1)n + (−GL + L + 2G − 2)L =
(GL − L + 1)(L−1)n + (−L(G − 1) + 2(G − 1))L =
(GL− L+ 1)(L−1)n+ (2−L)(G−1)L. �

Proof of Thm. IV.2.3.2
The probability for a thread to satisfy the prerequisites for
Lem. IV.2.3.1, i.e., have a strongly connected graph of thread
transitions, is strictly positive. With a growing n, the proba-
bility that a random n-threaded program does not contain
such a thread approaches 0. �

Proof of Note IV.2.3.3
Let e = (GL−L+1)(L−1)n+ (2−L)(G−1)L.
Case L=1. Then e = 0n+ (G−1) < GL2n.
Case L>2. Then e < (GL)Ln+ 0 = GL2n. �

Appendix H.
Proof of claims from § V

Proof of Thm. V.1
From a high-level view, our algorithm is going to perform a

nondeterministic search in the Petri net obtained by a sym-
metry reduction of an input program using state confusion
≈ in its reformulation from Lem. IV.2.1.6. The Turing ma-
chine M that we are going to construct will implement this
search.

Given an input on the read-only Turing tape, M first syn-
tactically checks whether the input is a properly encoded
triple of a program and two of its states. Then M determines
the number of threads n and stores it in binary on the work-
ing tape. If n=1, the problem is solved by looking up in a
constant table; thus, we assume n>2 from now on.

To explain our procedure further, we let (→i)i<n = p
be the program, (g, l) = s the source program state, and
(g′, l′) = s′ the target one. Next, we allocate L22GL(GL−1)

counters of dlog(n+ 1)e bits each on the working tape of
M . We will refer to these counters as ca, ,b for a, b ∈ Loc
and ∈ E, where E has been defined in Def. IV.2.1.5. In
the following state exploration, a newly reached program
state (ĝ, l̂) will be tracked in these counters: ca, ,b will store∣∣{t<n | lt=a∧→t\D = ∧ l̂t=b}

∣∣ for each a, b ∈ Loc and
 ∈ E. The machine also allocates dlog(G+1)e bits for
storing the shared state ĝ. Initially, the shared state g will be
stored there, while each counter ca, ,b will be initialized to∣∣{t<n | lt=a=b ∧→t\D= }

∣∣ for a, b ∈ Loc and ∈ E.
In addition, we allocate an extra counter, called v, which
stores the number of visited equivalence classes wrt. ≈; this
counter is initialized to 1.

After initialization, M performs a nondeterministic search
in a loop as follows. First of all, M checks whether v ex-
ceeds G(2n)L(L−1)2GL(GL−1)

. If so, M halts, since it has
visited some equivalence class twice (according to the proof
of Thm. IV.2.1.13 in the appendix). Otherwise, M contin-
ues and checks whether s′ has been reached. To do this, M
checks whether g′ is equal to the current shared part and
l′ has exactly as many threads of different classes as de-
scribed by the counters ca, ,b for a, b ∈ Loc and ∈ E.
If it is the case, M accepts: then an execution from s to s′
exists. Otherwise, M nondeterministically chooses a thread
index i<n and a non-loop thread transition from →i, say,(
(ĝ, a), (ĝ′, a′)

)
∈ →i\D. Examining the counters and the

shared-state variable, M determines whether the thread tran-
sition is applicable: M tests whether the shared-state variable
stores ĝ and whether cli,→i\D,a > 0. If the result of this test
is negative, M halts, otherwise M updates the shared-state
variable and the counters according to the thread transition.
Such an update stores ĝ′, decrements cli,→i\D,a, and incre-
ments cli,→i\D,a′ . Moreover, M increments v. After that,
M goes to the loop start.

To show that all program states reachable from s are
explored by M , note that M examines an overapproximating
abstraction:
• confusable states are not distinguished, and
• at each loop iteration, all applicable non-loop thread

transitions are available for the nondeterministic choice,
so M considers all successors of the current state.

To show that only program states that are reachable from s
are explored, notice that in each loop iteration, if a currently
considered program state s̃ is reachable from s, all program

33

states that are confusable with s̃ are also reachable from s
according to Lem. IV.2.1.7. So, the analysis has no chance
to jump to an unreachable program state from s̃.

Thus, M explores exactly the states reachable from s.
Throughout any execution of M , the sum

∑
a,b∈Loc, ∈E

ca, ,b

remains constant; therefore, O(log n) space suffices for each
of the L22GL(GL−1) counters. Taking into account also the
shared-state variable of size dlog(G+1)e on the working
tape, M consumes O(log n) space on the working tape re-
gardless of the computation branch and always halts (whether
accepting or not). Since the input size is proportional to n,
we have shown Reach ∈ NSpace(log n).

Since NSpace(log n) is closed under complementation
[80, 81], the non-reachability problem also belongs to
NSpace(log n). �

Proof of Thm. V.2
We will describe of a logspace-uniform family of circuits
that will recognize Reachloc similarly to how the machine
M from the proof of Thm. V.1 does it. Given m ∈ N>0, we
now describe a circuit with m inputs, polynomial size in m,
and O(logm) depth that recognizes all words in Reachloc of
length m. A part of this circuit guesses n < m by a balanced
OR tree and then checks, by a logarithmically deep circuit,
that p is indeed a description of an n-threaded program (with
the aforementioned self-delimited encoding, a balanced AND
tree can check that positions (G2L2+1)j−1 contain zeros for
positive j < n and one for j = n). For each valid choice of n,
interpret the blog2Gc+1+(blog2 Lc+1)n bits following the
description of p as a description of s ∈ Glob× Locn. Then,
interpret all the bits at positions (G2L2+1)n+blog2Gc+1+
(blog2 Lc+ 1)n =

(
G2L2 + blog2 Lc+ 2

)
n+ blog2Gc+ 1

till m −
((
blog2Gc + 1

)
+
(
blog2 Lc + 1

))
− 1 = m −

blog2Gc−blog2 Lc−3 as the binary encoding of i. Interpret
the remaining positions m−blog2Gc−blog2 Lc−2 till m−1
as τ . Check that i < n by a logarithmically deep circuit. (For
example, convert n into binary by a recursive three-integers–
to–two-integers addition, find the most significant bit position
in which the binary representations of n and i differ, and
check that in that position, the bit of the representation of n
is larger than the corresponding bit of i.)

Now, we fix an arbitrary pair (n, i) ∈ N+×N>0 such that
i < n. We are left with the problem of describing an NC1

circuit that determines whether dlocp (s, i, τ) < ∞. We are
going to show how a Turing machine with a read-only input
tape and a space-bounded read-write output tape, which we
will construct and call M loc, would decide this problem. In
the following explanation, (→i)i<n = p will be the program,
(g, l) = s the source program state, and (g′, l′) = τ the target
thread state. The machine M loc allocates L2GL(GL−1) binary
counters on the working tape; each binary counter has a width
of blog2 Cc+ 1 bits, where C is the maximal local diameter
(cf. Def. and Cor. III.9). We will refer to these counters as
c̃a, for a ∈ Loc and ∈ E. The machine also copies the
shared state g, the thread transition relation →i\D, and the
target thread state τ to the working tape. In the abstract,
M loc would need to explore the state space of a program that

starts in the shared state g and has c̃a, 6 C threads starting
in the local state a and having the transition relation (for
a ∈ Loc and ∈ E); the goal is to decide on the reachability
of τ in any thread with the transition relation→i\D. Instead
of actually performing the search, M loc uses the fact that
the number of decision questions of the above kind is finite
(namely, below G · (C+ 1)L·2

GL(GL−1) · 2GL(GL−1) ·GL), so
M loc simply looks up in a table stored in the machine state.
(Notice: although we do not know the actual yes/no answers
to these decision questions, we still know that such a finite
table of answers exists.)

To see that M loc is sound with respect to the reachability
question for the original program p, note that if M loc answers
“reachable”, then the thread state τ of the ith thread is indeed
reachable from s in p: adding more threads beyond C that
do not take any steps would not destroy reachability.

To see that M loc is complete with respect to the reachability
question for the original program p, note that if in p there
is a walk from the program state s to the thread state τ of
the thread i, there is also a path of length not exceeding C
from s to the thread state τ of the thread i. Therefore, at
most C threads of any equivalence class from n�∼ take steps
in this path; all the other threads do not perform any steps.
Throwing out these other “lazy” threads, we obtain a path
from a “sub-state” of s to the thread state τ of thread i in a
program in which there are no more than C threads of any
equivalence class from n�∼. The existence of this path will
be reported by M loc due to its construction.

Thus, M loc recognizes Reachloc.
Since M loc takes bounded working-tape space, M loc can

be converted into a finite automaton, which uses zero space
on the working tape. The existence of an accepting path in
the finite automaton from the initial state to the final state can
be decided with an NC1 circuit using the standard recursive
divide-and-conquer construction.

As for NonReachloc, the proof is almost the same as above,
except that M loc, instead of asking dlocp (s, i, τ) < ∞, now
asks dlocp (s, i, τ) =∞. �

34

