Aufgabe 1
Zu zeigen: $2n^2 = O(n^3)$

$O(g(n)) = \exists f(n): es existieren positive Konstanten c und n_0$, sodass $0 \leq f(n) \leq cg(n)$ für alle $n \geq n_0$.

$0 \leq 2n^2 \leq Cn^3$. Für $C=2$ und $n_0=1$ sind die Ungleichungen erfüllt.

Zu zeigen: $\sqrt[3]{n} = \Omega(lg n)$

$\Omega(g(n)) = \{ f(n): es existieren positive Konstanten c und n_0, sodass 0 \leq cg(n) \leq f(n)$ für alle $n \geq n_0 \}$

$0 \leq c \lg n \leq \sqrt[3]{n}$. Es gilt (vergl. Seite 513, (3.10))

$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + ...$ und für $x \geq 0$

$e^x \geq 1 + x + \frac{x^2}{2}$. Hieraus erhält man

$e^{\sqrt[3]{n}} \geq 1 + 2\sqrt[3]{n} + \left(\frac{2\sqrt[3]{n}}{2}\right)^2 \geq n$ für alle $n \geq 1$

und somit

$2\sqrt[3]{n} = \lg n \Rightarrow \sqrt[3]{n} \geq \frac{1}{2} \lg n$ für alle $n \geq 1$.

Für $C=\frac{1}{2}$ und $n_0=1$ sind die Ungleichungen

$0 \leq c \lg n \leq \sqrt[3]{n}$ erfüllt.
zu zeigen: \(\frac{n^2}{2} - 2n = \Theta(n^2) \)

\[\Theta(g(n)) = \frac{1}{2} f(n) : \text{es existieren positive Konstanten } C_1, C_2 \text{ und } n_0, \text{so dass } 0 \leq C_1 g(n) \leq f(n) \leq C_2 g(n) \]

für alle \(n \geq n_0 \).

\[0 \leq C_1 n^2 \leq \frac{n^2}{2} - 2n \leq C_2 n^2. \]

\[C_1 n^2 \leq \frac{n^2}{2} - 2n \]

\[\Rightarrow C_1 \leq \frac{1}{2} - \frac{2}{n}. \text{ Für } C_1 = \frac{1}{4} \text{ und } n_0 = 8 \text{ ist die Ungleichung erfüllt.} \]

\[\frac{n^2}{2} - 2n \leq C_2 n^2 \]

\[\Rightarrow \frac{1}{2} - \frac{2}{n} \leq C_2. \text{ Für } C_2 = \frac{1}{2} \text{ und } n_0 = 8 \text{ ist die Ungleichung erfüllt und somit erfüllt } C_1 = \frac{1}{4}, C_2 = \frac{1}{2} \text{ und } n_0 = 8 \text{ die Ungleichungen } 0 \leq C_1 n^2 \leq \frac{n^2}{2} - 2n \leq C_2 n^2. \]
Aufgabe 2

REVERSE-INSERTION-SORT(A)
1 for $i \leftarrow 2$ to $\text{länge}[A]$
2 do schlüssel $\leftarrow A[i]$
3 $i \leftarrow i-1$
4 while $i > 0$ und $A[i] <$ schlüssel
5 do $A[i+1] \leftarrow A[i]$
6 $i \leftarrow i-1$
7 $A[i+1] \leftarrow$ schlüssel
Aufgabe 3

Es ist zu zeigen, dass es Konstanten $c_1, c_2, n_0 > 0$ gibt, sodass

$$0 \leq c_1 n^b \leq (n+a)^b \leq c_2 n^b$$

für alle $n \geq n_0$.

Es gilt

$$n+a \leq n+|a|$$

$$\leq 2n \quad \text{für } |a| \leq n$$

und

$$n+a \geq n-|a|$$

$$\geq \frac{1}{2}n \quad \text{für } |a| \leq \frac{1}{2}n.$$

Für $n \geq 2|a|$ gilt somit

$$0 \leq \frac{1}{2} n \leq n+a \leq 2n.$$

Für $b > 0$ gilt dann

$$0 \leq \left(\frac{1}{2} n\right)^b \leq (n+a)^b \leq (2n)^b$$

$$\Rightarrow 0 \leq \left(\frac{1}{2}\right)^b n^b \leq (n+a)^b \leq 2^b n^b.$$

Somit sind die Ungleichungen erfüllt für

$$c_1 = \left(\frac{1}{2}\right)^b, \quad c_2 = 2^b \quad \text{und } n_0 = 2|a|.$$
Aufgabe 4

Um zu zeigen, dass \(2^{n+1} = O(2^n)\) müssen wir Konstante \(c, n_0 > 0\) finden, sodass \(0 \leq 2^{n+1} \leq c \cdot 2^n\) für alle \(n \geq n_0\) gilt.

\[2^{n+1} = 2^n \cdot 2\]
und somit sind die Ungleichungen

für \(c=2\) und \(n_0 = 1\) erfüllt.

Angenommen \(2^n = O(2^n)\), dann gibt es Konstanten \(c, n_0 > 0\), so dass

\[0 \leq 2^{2n} \leq 2^n\]
für alle \(n \geq n_0\) gilt.

\[2^{2n} = 2^n \cdot 2^n \leq c \cdot 2^n \Rightarrow 2^n \leq c\]
Widerspruch.

Keine Konstante \(c\) ist jemals größer als alle \(2^n\).

Folglich ist \(2^{2n} \neq O(2^n)\).