
Hiding in the Shadows:
Empowering ARM for Stealthy Virtual Machine Introspection
ACSAC 2018

Sergej Proskurin, 1 Tamas Lengyel, 3 Marius Momeu, 1

Claudia Eckert, 1 and Apostolis Zarras 2

1Technical University of Munich
2Maastricht University
3The Honeynet Project

6th of December 2018

S. Proskurin et al. ACSAC 2018 1 / 15



Stealthy malware analysis on ARM!

S. Proskurin et al. ACSAC 2018 2 / 15



Motivation & Background
Virtual Machine Introspection Recap

Technical
University
of Munich

Isolation Inspection

Interposition

VMI-based Monitor

Guest VM

Isolation Inspection

Interposition

Isolation Inspection

Interposition

thread_info
state
stack
usage...

task_structIsolation Inspection

Interposition

Isolation Inspection

Interposition Stealth

User-Space:

Kernel-Space:

Virtual Machine Monitor

S. Proskurin et al. ACSAC 2018 3 / 15



Motivation & Background
Virtual Machine Introspection Recap

Technical
University
of Munich

Isolation Inspection

Interposition

VMI-based Monitor

Guest VM

Isolation Inspection

Interposition

Isolation Inspection

Interposition

thread_info
state
stack
usage...

task_structIsolation Inspection

Interposition

Isolation Inspection

Interposition Stealth

User-Space:

Kernel-Space:

Virtual Machine Monitor

S. Proskurin et al. ACSAC 2018 3 / 15



Motivation & Background
Virtual Machine Introspection Recap

Technical
University
of Munich

Isolation Inspection

Interposition

VMI-based Monitor Guest VM

Isolation Inspection

Interposition

Isolation Inspection

Interposition

thread_info
state
stack
usage...

task_structIsolation Inspection

Interposition

Isolation Inspection

Interposition Stealth

User-Space:

Kernel-Space:

Virtual Machine Monitor

S. Proskurin et al. ACSAC 2018 3 / 15



Motivation & Background
Virtual Machine Introspection Recap

Technical
University
of Munich

Isolation Inspection

Interposition

VMI-based Monitor Guest VM

Isolation Inspection

Interposition

Isolation Inspection

Interposition

thread_info
state
stack
usage...

task_structIsolation Inspection

Interposition

Isolation Inspection

Interposition Stealth

User-Space:

Kernel-Space:

Virtual Machine Monitor

20 00 00 00 00 00 00 00
FF FF FF FF FF FF 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 80 54 0C 00 00 FF FF
02 00 00 00 00 01 40 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
01 00 00 00 01 00 00 00
10 00 00 00 00 00 00 00
BA EC FE FF 00 00 00 00
80 CF 66 28 00 80 FF FF

S. Proskurin et al. ACSAC 2018 3 / 15



Motivation & Background
Virtual Machine Introspection Recap

Technical
University
of Munich

Isolation Inspection

Interposition

VMI-based Monitor Guest VM

Isolation Inspection

Interposition

Isolation Inspection

Interposition

thread_info
state
stack
usage...

task_struct

Isolation Inspection

Interposition

Isolation Inspection

Interposition Stealth

User-Space:

Kernel-Space:

Virtual Machine Monitor

20 00 00 00 00 00 00 00
FF FF FF FF FF FF 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 80 54 0C 00 00 FF FF
02 00 00 00 00 01 40 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
01 00 00 00 01 00 00 00
10 00 00 00 00 00 00 00
BA EC FE FF 00 00 00 00
80 CF 66 28 00 80 FF FF

S. Proskurin et al. ACSAC 2018 3 / 15



Motivation & Background
Virtual Machine Introspection Recap

Technical
University
of Munich

Isolation Inspection

Interposition

VMI-based Monitor Guest VM

Isolation Inspection

Interposition

Isolation Inspection

Interposition

thread_info
state
stack
usage...

task_struct

Isolation Inspection

Interposition

Isolation Inspection

Interposition Stealth

User-Space:

Kernel-Space:

Virtual Machine Monitor

[...]
mov rax, 0x1
syscall

__x64_sys_read:
mov rdx, [rdi+0x60]
mov rsi, [rdi+0x68]
mov rdi, [rdi+0x70]
jmp <ksys_read>

S. Proskurin et al. ACSAC 2018 3 / 15



Motivation & Background
Virtual Machine Introspection Recap

Technical
University
of Munich

Isolation Inspection

Interposition

VMI-based Monitor Guest VM

Isolation Inspection

Interposition

Isolation Inspection

Interposition

thread_info
state
stack
usage...

task_struct

Isolation Inspection

Interposition

Isolation Inspection

Interposition Stealth

User-Space:

Kernel-Space:

Virtual Machine Monitor

[...]
mov rax, 0x1
syscall

__x64_sys_read:
int3
mov rsi, [rdi+0x68]
mov rdi, [rdi+0x70]
jmp <ksys_read>

S. Proskurin et al. ACSAC 2018 3 / 15



Motivation & Background
Virtual Machine Introspection Recap

Technical
University
of Munich

Isolation Inspection

Interposition

VMI-based Monitor Guest VM

Isolation Inspection

Interposition

Isolation Inspection

Interposition

thread_info
state
stack
usage...

task_struct

Isolation Inspection

Interposition

Isolation Inspection

Interposition Stealth

User-Space:

Kernel-Space:

Virtual Machine Monitor

[...]
mov rax, 0x1
syscall

__x64_sys_read:
int3
mov rsi, [rdi+0x68]
mov rdi, [rdi+0x70]
jmp <ksys_read>

S. Proskurin et al. ACSAC 2018 3 / 15



Motivation & Background
Virtual Machine Introspection Recap

Technical
University
of Munich

Isolation Inspection

Interposition

VMI-based Monitor Guest VM

Isolation Inspection

Interposition

Isolation Inspection

Interposition

thread_info
state
stack
usage...

task_structIsolation Inspection

Interposition

Isolation Inspection

Interposition Stealth

User-Space:

Kernel-Space:

Virtual Machine Monitor

[...]
mov rax, 0x1
syscall

__x64_sys_read:
int3
mov rsi, [rdi+0x68]
mov rdi, [rdi+0x70]
jmp <ksys_read>

S. Proskurin et al. ACSAC 2018 3 / 15



Motivation & Background
Virtual Machine Introspection Recap

Technical
University
of Munich

Isolation Inspection

Interposition

VMI-based Monitor Guest VM

Isolation Inspection

Interposition

Isolation Inspection

Interposition

thread_info
state
stack
usage...

task_structIsolation Inspection

Interposition

Isolation Inspection

Interposition Stealth

User-Space:

Kernel-Space:

Virtual Machine Monitor

[...]
mov rax, 0x1
syscall

__x64_sys_read:
mov rdx, [rdi+0x60]
mov rsi, [rdi+0x68]
mov rdi, [rdi+0x70]
jmp <ksys_read>

S. Proskurin et al. ACSAC 2018 3 / 15



The Need for Stealthy Monitoring Technical
University
of Munich

Split-personality malware
▸ Employ anti-virtualization to reveal a VMM (red pills)

Perfect VM transparency is not feasible
▸ Insufficient to reveal virtual environments alone!

More interesting to know whether the system is being analyzed
→ Hide analysis artifacts from the guest

S. Proskurin et al. ACSAC 2018 4 / 15



Requirements for Stealthy Monitoring Technical
University
of Munich

¶ Intercept the guest in kernel-space

· A stealthy single-stepping mechanism

¸ Execute-only memory

S. Proskurin et al. ACSAC 2018 5 / 15



Req. 1: Implementing Kernel Tap Points Technical
University
of Munich

User-Space:

Kernel-Space:

Use instructions as a trigger to trap into the VMM
▸ E.g., software breakpoints (BRK/BKPT instruction)

Better: Secure Monitor Call instruction (SMC)
▸ Guest is not able to subscribe to SMC traps
▸ SMC traps do not have to be re-injected into the guest
▸ Can only be executed in the guest’s kernel

Issues: How to remain stealthy and in control?
� Removing tap points introduces race conditions
� No hardware support for stealthy single-stepping

[...]
mov x8, #0x3f
svc #0x0

SyS_read:
stp x29, x30, [sp, #-64]!
mov x29, sp
stp x21, x22, [sp, #32]
[...]

S. Proskurin et al. ACSAC 2018 6 / 15



Req. 1: Implementing Kernel Tap Points Technical
University
of Munich

User-Space:

Kernel-Space:

Use instructions as a trigger to trap into the VMM
▸ E.g., software breakpoints (BRK/BKPT instruction)

Better: Secure Monitor Call instruction (SMC)
▸ Guest is not able to subscribe to SMC traps
▸ SMC traps do not have to be re-injected into the guest
▸ Can only be executed in the guest’s kernel

Issues: How to remain stealthy and in control?
� Removing tap points introduces race conditions
� No hardware support for stealthy single-stepping

[...]
mov x8, #0x3f
svc #0x0

SyS_read:
smc #0x0
mov x29, sp
stp x21, x22, [sp, #32]
[...]

S. Proskurin et al. ACSAC 2018 6 / 15



Req. 1: Implementing Kernel Tap Points Technical
University
of Munich

User-Space:

Kernel-Space:

Use instructions as a trigger to trap into the VMM
▸ E.g., software breakpoints (BRK/BKPT instruction)

Better: Secure Monitor Call instruction (SMC)
▸ Guest is not able to subscribe to SMC traps
▸ SMC traps do not have to be re-injected into the guest
▸ Can only be executed in the guest’s kernel

Issues: How to remain stealthy and in control?
� Removing tap points introduces race conditions
� No hardware support for stealthy single-stepping

[...]
mov x8, #0x3f
svc #0x0

SyS_read:
smc #0x0
mov x29, sp
stp x21, x22, [sp, #32]
[...]

S. Proskurin et al. ACSAC 2018 6 / 15



Req. 2: (Stealthy) Single-Stepping
Novel Single-Stepping Mechanism

Technical
University
of Munich

ARM does not support stealthy single-stepping
▸ Attackers can reveal the analysis framework
→ We need a novel, stealthy single-stepping scheme

Leverage the fixed-width ISA for single-stepping
▸ Locate instruction boundaries without a disassembler
▸ Use two SMCs to single-step one instruction
→ Multi-vCPU safe!

How do we hide injected SMC instructions?
▸ Employ Second Level Address Translation (SLAT)

S. Proskurin et al. ACSAC 2018 7 / 15



Req. 2: (Stealthy) Single-Stepping
Novel Single-Stepping Mechanism

Technical
University
of Munich

ARM does not support stealthy single-stepping
▸ Attackers can reveal the analysis framework
→ We need a novel, stealthy single-stepping scheme

Leverage the fixed-width ISA for single-stepping
▸ Locate instruction boundaries without a disassembler
▸ Use two SMCs to single-step one instruction
→ Multi-vCPU safe!

How do we hide injected SMC instructions?
▸ Employ Second Level Address Translation (SLAT)

S. Proskurin et al. ACSAC 2018 7 / 15



Req. 2: (Stealthy) Single-Stepping
Novel Single-Stepping Mechanism

Technical
University
of Munich

ARM does not support stealthy single-stepping
▸ Attackers can reveal the analysis framework
→ We need a novel, stealthy single-stepping scheme

Leverage the fixed-width ISA for single-stepping
▸ Locate instruction boundaries without a disassembler
▸ Use two SMCs to single-step one instruction
→ Multi-vCPU safe!

How do we hide injected SMC instructions?
▸ Employ Second Level Address Translation (SLAT)

S. Proskurin et al. ACSAC 2018 7 / 15



Req. 2: (Stealthy) Single-Stepping
Novel Single-Stepping Mechanism

Technical
University
of Munich

ARM does not support stealthy single-stepping
▸ Attackers can reveal the analysis framework
→ We need a novel, stealthy single-stepping scheme

Leverage the fixed-width ISA for single-stepping
▸ Locate instruction boundaries without a disassembler
▸ Use two SMCs to single-step one instruction
→ Multi-vCPU safe!

How do we hide injected SMC instructions?
▸ Employ Second Level Address Translation (SLAT)

S. Proskurin et al. ACSAC 2018 7 / 15



Req. 2: (Stealthy) Single-Stepping
Novel Single-Stepping Mechanism

Technical
University
of Munich

ARM does not support stealthy single-stepping
▸ Attackers can reveal the analysis framework
→ We need a novel, stealthy single-stepping scheme

Leverage the fixed-width ISA for single-stepping
▸ Locate instruction boundaries without a disassembler
▸ Use two SMCs to single-step one instruction
→ Multi-vCPU safe!

How do we hide injected SMC instructions?
▸ Employ Second Level Address Translation (SLAT)

S. Proskurin et al. ACSAC 2018 7 / 15



Req. 2: (Stealthy) Single-Stepping
Novel Single-Stepping Mechanism

Technical
University
of Munich

ARM does not support stealthy single-stepping
▸ Attackers can reveal the analysis framework
→ We need a novel, stealthy single-stepping scheme

Leverage the fixed-width ISA for single-stepping
▸ Locate instruction boundaries without a disassembler
▸ Use two SMCs to single-step one instruction
→ Multi-vCPU safe!

How do we hide injected SMC instructions?
▸ Employ Second Level Address Translation (SLAT)

S. Proskurin et al. ACSAC 2018 7 / 15



Req. 2: (Stealthy) Single-Stepping
Novel Single-Stepping Mechanism

Technical
University
of Munich

ARM does not support stealthy single-stepping
▸ Attackers can reveal the analysis framework
→ We need a novel, stealthy single-stepping scheme

Leverage the fixed-width ISA for single-stepping
▸ Locate instruction boundaries without a disassembler
▸ Use two SMCs to single-step one instruction
→ Multi-vCPU safe!

How do we hide injected SMC instructions?
▸ Employ Second Level Address Translation (SLAT)

S. Proskurin et al. ACSAC 2018 7 / 15



Req. 2: (Stealthy) Single-Stepping
Xen p2m Subsystem

Technical
University
of Munich

Xen physical to machine (p2m) subsystem
▸ Uses Second Level Address Translation (SLAT)
▸ Translates guest-physical to machine-physical addresses
▸ Represents a single view on the guest’s physical memory

Xen p2m allows to control access permissions of the guest’s physical memory
▸ Hide injected SMC instructions by withdrawing read-permissions

Issue: On integrity-checks permissions must be relaxed
� Walking the page tables is slow
� Another vCPU can access the memory without notifying the VMM

S. Proskurin et al. ACSAC 2018 8 / 15



Req. 2: (Stealthy) Single-Stepping
Xen p2m Subsystem

Technical
University
of Munich

Xen physical to machine (p2m) subsystem
▸ Uses Second Level Address Translation (SLAT)
▸ Translates guest-physical to machine-physical addresses
▸ Represents a single view on the guest’s physical memory

Xen p2m allows to control access permissions of the guest’s physical memory
▸ Hide injected SMC instructions by withdrawing read-permissions

Issue: On integrity-checks permissions must be relaxed
� Walking the page tables is slow
� Another vCPU can access the memory without notifying the VMM

S. Proskurin et al. ACSAC 2018 8 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem

Technical
University
of Munich

Xen alternate p2m (altp2m) subsystem
▸ Maintains different views on the guest’s physical memory
▸ Allows to allocate and assign different memory views to vCPUs
→ Switch views instead of relaxing permissions in a global view!

Issue: No ARM support
� Xen altp2m exclusively used on Intel CPUs

S. Proskurin et al. ACSAC 2018 9 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem

Technical
University
of Munich

Xen alternate p2m (altp2m) subsystem
▸ Maintains different views on the guest’s physical memory
▸ Allows to allocate and assign different memory views to vCPUs
→ Switch views instead of relaxing permissions in a global view!

Issue: No ARM support
� Xen altp2m exclusively used on Intel CPUs

S. Proskurin et al. ACSAC 2018 9 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem

Technical
University
of Munich

Xen alternate p2m (altp2m) subsystem
▸ Allows to remap same guest-physical to different machine-physical page frames
→ Facilitates, e.g., SMC injections in selected views

Issue: No ARM support
� Xen altp2m exclusively used on Intel CPUs

S. Proskurin et al. ACSAC 2018 9 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem

Technical
University
of Munich

Issue: No ARM support
� Xen altp2m exclusively used on Intel CPUs

S. Proskurin et al. ACSAC 2018 9 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem on ARM

Technical
University
of Munich

S. Proskurin et al. ACSAC 2018 10 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem on ARM

Technical
University
of Munich

(a) Without Xen altp2m.

S. Proskurin et al. ACSAC 2018 11 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem on ARM

Technical
University
of Munich

(a) Without Xen altp2m.

S. Proskurin et al. ACSAC 2018 11 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem on ARM

Technical
University
of Munich

(a) Without Xen altp2m.

S. Proskurin et al. ACSAC 2018 11 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem on ARM

Technical
University
of Munich

(a) Without Xen altp2m.

S. Proskurin et al. ACSAC 2018 11 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem on ARM

Technical
University
of Munich

(a) Without Xen altp2m.

S. Proskurin et al. ACSAC 2018 11 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem on ARM

Technical
University
of Munich

(a) Without Xen altp2m. (a) With Xen altp2m.

S. Proskurin et al. ACSAC 2018 11 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem on ARM

Technical
University
of Munich

(b) Without Xen altp2m. (b) With Xen altp2m.

S. Proskurin et al. ACSAC 2018 11 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem on ARM

Technical
University
of Munich

(b) Without Xen altp2m. (b) With Xen altp2m.

S. Proskurin et al. ACSAC 2018 11 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem on ARM

Technical
University
of Munich

(b) Without Xen altp2m. (b) With Xen altp2m.

S. Proskurin et al. ACSAC 2018 11 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem on ARM

Technical
University
of Munich

(b) Without Xen altp2m. (b) With Xen altp2m.

S. Proskurin et al. ACSAC 2018 11 / 15



Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem on ARM

Technical
University
of Munich

(b) Without Xen altp2m. (b) With Xen altp2m.

S. Proskurin et al. ACSAC 2018 11 / 15



Req. 3: Execute-only Memory on AArch64
Stealthy Single-Stepping

Technical
University
of Munich

Putting everything together (on AArch64)
▸ Allocate two additional views:

Execute- and Step-View
▸ Duplicate the original page twice

▸ Replace instr 1 with SMC in shadow-copy’
▸ Replace instr 2 with SMC in shadow-copy”

▸ Map both duplicates as execute-only

On read-requests, switch to the Original-View
▸ Satisfies integrity checks

S. Proskurin et al. ACSAC 2018 12 / 15



Requirements for Stealthy Monitoring on ARM Technical
University
of Munich

¶ Intercept the guest in kernel-space
3 Secure Monitor Call (SMC) instruction

· A stealthy single-stepping mechanism
7 ARM has no hardware support for stealthy single-stepping
3 Stealthy single-stepping via Xen altp2m (when combined with execute-only memory)

¸ Execute-only memory
3 AArch64
7 AArch32 lacks execute-only memory
3 Splitting the TLBs to hide injected tap points on AArch32

S. Proskurin et al. ACSAC 2018 13 / 15



Evaluation
System Setup

Technical
University
of Munich

Build the foundation for stealthy monitoring on ARM
▸ Implement Xen altp2m for ARM
▸ Equip DRAKVUF and LibVMI with our single-stepping primitives

Use DRAKVUF to trace system calls inside the guest VM
▸ HiKey LeMaker development board
▸ Guest runs a Linux v4.15 kernel
▸ Xen v4.11

S. Proskurin et al. ACSAC 2018 14 / 15



Evaluation
Performance Evaluation

Technical
University
of Munich

Table: Monitoring overhead (OHD) of DRAKVUF utilizing Hardware-SS, Double-SMC-SS, and
Split-TLB-SS primitives measured by Lmbench 3.0, in msec.

Benchmark w/o Hardware (OHD) Double-SMC Split-TLB
Step-View (OHD) Backup Page (OHD) Step-View (OHD) Backup Page (OHD)

fork+execve 1383.33 6053.67 4.38 × 5567.33 4.02 × 6033.00 4.36 × 26690.66 19.29 × 17057.00 12.33 ×
fork+exit 377.43 835.52 2.21 × 787.14 2.09 × 924.83 2.45 × 5910.83 15.66 × 4225.83 11.20 ×
fork+/bin/sh 3249.17 12542.00 3.86 × 11672.67 3.59 × 12737.33 3.92 × 53134.66 16.35 × 34231.33 10.54 ×
fstat 0.62 94.94 152.57 × 78.65 126.40 × 84.20 135.81 × 103.52 166.97 × 75.33 121.06 ×

mem read 1745.00 1692.33 0.97 × 1692.33 0.97 × 1738.00 1.00 × 1730.33 0.99 × 1735.33 0.99 ×
mem write 4687.67 4310.00 0.92 × 4308.33 0.92 × 4715.00 1.00 × 4575.33 0.98 × 4602.00 0.98 ×
open/close 5.44 202.67 37.25 × 158.33 29.11 × 179.26 35.95 × 269.67 49.57 × 184.65 33.94 ×
page fault 1.49 1.72 1.15 × 1.74 1.16 × 1.62 1.09 × 1.90 1.28 × 1.91 1.28 ×
pipe lat 12.26 371.92 30.34 × 344.83 28.13 × 425.28 34.69 × 955.53 77.94 × 482.60 39.36 ×
read 0.67 95.21 141.14 × 79.10 117.27 × 84.06 125.46 × 99.34 148.27 × 75.39 111.77 ×
select 500 fd 28.33 124.62 4.40 × 110.23 3.89 × 114.51 4.04 × 124.47 4.39 × 113.85 4.02 ×
signal handle 4.34 189.67 43.70 × 150.33 34.64 × 154.13 35.51 × 178.00 41.01 × 158.33 36.48 ×
signal install 0.51 95.00 186.27 × 72.00 141.18 × 75.13 147.31 × 89.07 174.65 × 73.73 144.58 ×
stat 2.63 99.97 38.06 × 80.73 30.74 × 85.30 32.43 × 105.58 40.14 × 83.57 31.82 ×
syscall 0.31 94.21 299.05 × 75.15 238.55 × 83.49 269.32 × 98.48 317.68 × 78.84 250.26 ×
write 0.47 95.34 203.32 × 76.82 163.81 × 83.86 178.43 × 103.22 219.62 × 73.77 157.31 ×

S. Proskurin et al. ACSAC 2018 15 / 15



Conclusion Technical
University
of Munich

Establish the foundation for stealthy malware analysis on ARM
▸ Introduce Xen altp2m to ARM
▸ Stealthy single-stepping approach for AArch{32|64}
▸ De-synchronize the TLB architecture on AArch32

DRAKVUF on ARM is open-source:
▸ https://github.com/drakvuf-on-arm/drakvuf-on-arm
▸ https://youtu.be/mfhZBBdC-Jg (Demo!)

S. Proskurin et al. ACSAC 2018 16 / 15

https://github.com/drakvuf-on-arm/drakvuf-on-arm
https://youtu.be/mfhZBBdC-Jg


Appendix 0: (Stealthy) Single-Stepping
Single-Stepping on ARM

Technical
University
of Munich

ARM does not support stealthy single-stepping
→ Attackers can infer the presence of the analysis framework

AArch32: Use hardware breakpoints (“mismatching”) for single-stepping
▸ CPU generates a debug event on instructions following the breakpoint
� Finite number of hardware breakpoints

AArch64: Use Software-Step exceptions (set MDSCR_EL1.SS and PSTATE.SS of EL1)
▸ ARM forbids access to PSTATE.SS in all exception levels
� Spill PSTATE.SS into the guest-accessible SPSR_EL1

S. Proskurin et al. ACSAC 2018 1 / 3



Appendix 1: Xen altp2m Subsytem on Intel Technical
University
of Munich

Xen altp2m exclusively used on Intel
▸ The VMCS has capacity for up to 512 EPTPs (memory views)
▸ Introduced to Xen to add support for the EPTP Switching functionality

▸ Combine VMFUNC instruction with Virtualization Exceptions #VE
→ No additional VM Exit overhead on memory violations!

External monitors can use altp2m
→ Unique tool for VMI applications

S. Proskurin et al. ACSAC 2018 2 / 3



Appendix 2: No Execute-only Memory on AArch32
Splitting the TLBs

Technical
University
of Munich

AArch32 does not support execute-only memory
▸ Code-pages must be executable and readable

ARM uses VMIDs as TLB-tags to isolate translations
▸ Allocate two views with same VMID to

de-synchronize the iTLB from the dTLB
Prime the TLBs in Original-View:
▸ iTLB holds the SMC from Execute-View
▸ dTLB holds instr 1 from Original-View

S. Proskurin et al. ACSAC 2018 3 / 3



Appendix 2: No Execute-only Memory on AArch32
Splitting the TLBs

Technical
University
of Munich

AArch32 does not support execute-only memory
▸ Code-pages must be executable and readable

ARM uses VMIDs as TLB-tags to isolate translations
▸ Allocate two views with same VMID to

de-synchronize the iTLB from the dTLB
Prime the TLBs in Original-View:
▸ iTLB holds the SMC from Execute-View
▸ dTLB holds instr 1 from Original-View

S. Proskurin et al. ACSAC 2018 3 / 3


	Motivation & Background
	Virtual Machine Introspection Recap

	The Need for Stealthy Monitoring
	Requirements for Stealthy Monitoring
	Req. 1: Implementing Kernel Tap Points
	Req. 1: Implementing Kernel Tap Points
	Req. 2: (Stealthy) Single-Stepping
	Single-Stepping on ARM
	Novel Single-Stepping Mechanism
	Xen altp2m Subsystem
	Xen altp2m Subsystem on ARM

	Req. 3: Execute-only Memory
	Req. 3: Execute-only Memory on AArch64
	Stealthy Single-Stepping

	Requirements for Stealthy Monitoring on ARM
	Evaluation
	System Setup
	Performance Evaluation

	Conclusion
	Appendix
	Appendix 0: (Stealthy) Single-Stepping
	Single-Stepping on ARM

	Appendix 1: Xen altp2m Subsytem on Intel
	Appendix 2: No Execute-only Memory on AArch32
	Splitting the TLBs



