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Stealthy malware analysis on ARM!
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The Need for Stealthy Monitoring Technical
University
of Munich

Split-personality malware
▸ Employ anti-virtualization to reveal a VMM (red pills)

Perfect VM transparency is not feasible
▸ Insufficient to reveal virtual environments alone!

More interesting to know whether the system is being analyzed
→ Hide analysis artifacts from the guest
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Requirements for Stealthy Monitoring Technical
University
of Munich

¶ Intercept the guest in kernel-space

· A stealthy single-stepping mechanism

¸ Execute-only memory
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Req. 1: Implementing Kernel Tap Points Technical
University
of Munich

User-Space:

Kernel-Space:

Use instructions as a trigger to trap into the VMM
▸ E.g., software breakpoints (BRK/BKPT instruction)

Better: Secure Monitor Call instruction (SMC)
▸ Guest is not able to subscribe to SMC traps
▸ SMC traps do not have to be re-injected into the guest
▸ Can only be executed in the guest’s kernel

Issues: How to remain stealthy and in control?
� Removing tap points introduces race conditions
� No hardware support for stealthy single-stepping

[...]
mov x8, #0x3f
svc #0x0

SyS_read:
stp x29, x30, [sp, #-64]!
mov x29, sp
stp x21, x22, [sp, #32]
[...]
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Req. 2: (Stealthy) Single-Stepping
Novel Single-Stepping Mechanism

Technical
University
of Munich

ARM does not support stealthy single-stepping
▸ Attackers can reveal the analysis framework
→ We need a novel, stealthy single-stepping scheme

Leverage the fixed-width ISA for single-stepping
▸ Locate instruction boundaries without a disassembler
▸ Use two SMCs to single-step one instruction
→ Multi-vCPU safe!

How do we hide injected SMC instructions?
▸ Employ Second Level Address Translation (SLAT)
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Req. 2: (Stealthy) Single-Stepping
Xen p2m Subsystem

Technical
University
of Munich

Xen physical to machine (p2m) subsystem
▸ Uses Second Level Address Translation (SLAT)
▸ Translates guest-physical to machine-physical addresses
▸ Represents a single view on the guest’s physical memory

Xen p2m allows to control access permissions of the guest’s physical memory
▸ Hide injected SMC instructions by withdrawing read-permissions

Issue: On integrity-checks permissions must be relaxed
� Walking the page tables is slow
� Another vCPU can access the memory without notifying the VMM
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Req. 2: (Stealthy) Single-Stepping
Xen altp2m Subsystem

Technical
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of Munich

Xen alternate p2m (altp2m) subsystem
▸ Maintains different views on the guest’s physical memory
▸ Allows to allocate and assign different memory views to vCPUs
→ Switch views instead of relaxing permissions in a global view!

Issue: No ARM support
� Xen altp2m exclusively used on Intel CPUs
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Req. 3: Execute-only Memory on AArch64
Stealthy Single-Stepping

Technical
University
of Munich

Putting everything together (on AArch64)
▸ Allocate two additional views:

Execute- and Step-View
▸ Duplicate the original page twice

▸ Replace instr 1 with SMC in shadow-copy’
▸ Replace instr 2 with SMC in shadow-copy”

▸ Map both duplicates as execute-only

On read-requests, switch to the Original-View
▸ Satisfies integrity checks
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Requirements for Stealthy Monitoring on ARM Technical
University
of Munich

¶ Intercept the guest in kernel-space
3 Secure Monitor Call (SMC) instruction

· A stealthy single-stepping mechanism
7 ARM has no hardware support for stealthy single-stepping
3 Stealthy single-stepping via Xen altp2m (when combined with execute-only memory)

¸ Execute-only memory
3 AArch64
7 AArch32 lacks execute-only memory
3 Splitting the TLBs to hide injected tap points on AArch32
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Evaluation
System Setup

Technical
University
of Munich

Build the foundation for stealthy monitoring on ARM
▸ Implement Xen altp2m for ARM
▸ Equip DRAKVUF and LibVMI with our single-stepping primitives

Use DRAKVUF to trace system calls inside the guest VM
▸ HiKey LeMaker development board
▸ Guest runs a Linux v4.15 kernel
▸ Xen v4.11
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Evaluation
Performance Evaluation

Technical
University
of Munich

Table: Monitoring overhead (OHD) of DRAKVUF utilizing Hardware-SS, Double-SMC-SS, and
Split-TLB-SS primitives measured by Lmbench 3.0, in msec.

Benchmark w/o Hardware (OHD) Double-SMC Split-TLB
Step-View (OHD) Backup Page (OHD) Step-View (OHD) Backup Page (OHD)

fork+execve 1383.33 6053.67 4.38 × 5567.33 4.02 × 6033.00 4.36 × 26690.66 19.29 × 17057.00 12.33 ×
fork+exit 377.43 835.52 2.21 × 787.14 2.09 × 924.83 2.45 × 5910.83 15.66 × 4225.83 11.20 ×
fork+/bin/sh 3249.17 12542.00 3.86 × 11672.67 3.59 × 12737.33 3.92 × 53134.66 16.35 × 34231.33 10.54 ×
fstat 0.62 94.94 152.57 × 78.65 126.40 × 84.20 135.81 × 103.52 166.97 × 75.33 121.06 ×

mem read 1745.00 1692.33 0.97 × 1692.33 0.97 × 1738.00 1.00 × 1730.33 0.99 × 1735.33 0.99 ×
mem write 4687.67 4310.00 0.92 × 4308.33 0.92 × 4715.00 1.00 × 4575.33 0.98 × 4602.00 0.98 ×
open/close 5.44 202.67 37.25 × 158.33 29.11 × 179.26 35.95 × 269.67 49.57 × 184.65 33.94 ×
page fault 1.49 1.72 1.15 × 1.74 1.16 × 1.62 1.09 × 1.90 1.28 × 1.91 1.28 ×
pipe lat 12.26 371.92 30.34 × 344.83 28.13 × 425.28 34.69 × 955.53 77.94 × 482.60 39.36 ×
read 0.67 95.21 141.14 × 79.10 117.27 × 84.06 125.46 × 99.34 148.27 × 75.39 111.77 ×
select 500 fd 28.33 124.62 4.40 × 110.23 3.89 × 114.51 4.04 × 124.47 4.39 × 113.85 4.02 ×
signal handle 4.34 189.67 43.70 × 150.33 34.64 × 154.13 35.51 × 178.00 41.01 × 158.33 36.48 ×
signal install 0.51 95.00 186.27 × 72.00 141.18 × 75.13 147.31 × 89.07 174.65 × 73.73 144.58 ×
stat 2.63 99.97 38.06 × 80.73 30.74 × 85.30 32.43 × 105.58 40.14 × 83.57 31.82 ×
syscall 0.31 94.21 299.05 × 75.15 238.55 × 83.49 269.32 × 98.48 317.68 × 78.84 250.26 ×
write 0.47 95.34 203.32 × 76.82 163.81 × 83.86 178.43 × 103.22 219.62 × 73.77 157.31 ×
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Conclusion Technical
University
of Munich

Establish the foundation for stealthy malware analysis on ARM
▸ Introduce Xen altp2m to ARM
▸ Stealthy single-stepping approach for AArch{32|64}
▸ De-synchronize the TLB architecture on AArch32

DRAKVUF on ARM is open-source:
▸ https://github.com/drakvuf-on-arm/drakvuf-on-arm
▸ https://youtu.be/mfhZBBdC-Jg (Demo!)
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Appendix 0: (Stealthy) Single-Stepping
Single-Stepping on ARM

Technical
University
of Munich

ARM does not support stealthy single-stepping
→ Attackers can infer the presence of the analysis framework

AArch32: Use hardware breakpoints (“mismatching”) for single-stepping
▸ CPU generates a debug event on instructions following the breakpoint
� Finite number of hardware breakpoints

AArch64: Use Software-Step exceptions (set MDSCR_EL1.SS and PSTATE.SS of EL1)
▸ ARM forbids access to PSTATE.SS in all exception levels
� Spill PSTATE.SS into the guest-accessible SPSR_EL1
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Appendix 1: Xen altp2m Subsytem on Intel Technical
University
of Munich

Xen altp2m exclusively used on Intel
▸ The VMCS has capacity for up to 512 EPTPs (memory views)
▸ Introduced to Xen to add support for the EPTP Switching functionality

▸ Combine VMFUNC instruction with Virtualization Exceptions #VE
→ No additional VM Exit overhead on memory violations!

External monitors can use altp2m
→ Unique tool for VMI applications
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Appendix 2: No Execute-only Memory on AArch32
Splitting the TLBs

Technical
University
of Munich

AArch32 does not support execute-only memory
▸ Code-pages must be executable and readable

ARM uses VMIDs as TLB-tags to isolate translations
▸ Allocate two views with same VMID to

de-synchronize the iTLB from the dTLB
Prime the TLBs in Original-View:
▸ iTLB holds the SMC from Execute-View
▸ dTLB holds instr 1 from Original-View
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