OpenSGX: An Open Platform for SGX Research

Peng Xu

November 13, 2018

Table of Contents

» Introduction

» Background

» System Overview
> Design

» Case Studies

» Evaluation

» Conclusion

Introduction

1. Why TEE is necessary?

2. How to adopt the traditional software development into TEE
model?

3. Access to the SGX platform is (currently) limited [2016]

Introduction

1. Why TEE is necessary?

2. How to adopt the traditional software development into TEE
model?

3. Access to the SGX platform is (currently) limited [2016]
4. openSGX

4.1 Emulates Intel SGX

4.2 Implements on Instruction-level

4.3 Extends open-sourced QEMU emulator

4.4 Includes emulator, emulated OS layer, enclave program
loader/package, user library, debugging supporting and
performance monitoring

Background

1. Intel SGX
1.1 SGX memory protection : enclave model
1.2 Enclave Page Cache (EPC)
1.3 Instruction Set Architecture (ISA)
1.4 User-level and privileged instruction

Background

1. Intel SGX
1.1 SGX memory protection : enclave model
1.2 Enclave Page Cache (EPC)
1.3 Instruction Set Architecture (ISA)
1.4 User-level and privileged instruction
2. OpenSGX Specification
2.1 Faithfully implements the Intel SGX specification
2.2 Extends to support OS, debugging and monitoring
2.3 Not implement all Intel SGX's instruction

Background

1. Intel SGX
1.1 SGX memory protection : enclave model
1.2 Enclave Page Cache (EPC)
1.3 Instruction Set Architecture (ISA)
1.4 User-level and privileged instruction
2. OpenSGX Specification
2.1 Faithfully implements the Intel SGX specification
2.2 Extends to support OS, debugging and monitoring
2.3 Not implement all Intel SGX's instruction

3. Threats
3.1 Assumes an adversary can control all software components

3.2 Considers the thwart attacks mounted by system software
3.3 Denial-of-service is our of scope

System Overview - Components

o s~ =

Emulated Intel SGX hardware

OS Emulation

Enclave program loader

OpenSGX user library (sgxlib)

Debugger support

Performance monitoring

Enclave

Wrapper
i 1 I H 1
|initEntryP | | sgelib || Trampoline E | st |
! [' } '

; h
| Code ;i Lib 1!
1l !

Data | i
I

L
Stack }i Heap |
i

SGX OS Emulation (Privileged instructions)

QEMU SGX (SGX instruction, SGX

key, EPC, data

Design - Hardware Emulation

1. Instruction Set Architecture (ISA): User and Super privilege
2. Enclave Page Cache (EPC)
2.1 A contiguous memory region
2.2 Sgx_init() allocates and initializes the system-wide EPC pages
3. EPC access protection
3.1 An enclave accesses only its own EPC pages
3.2 Enclave Page Cache Map (EPCM): maintains these access
permissions
3.3 Enclave and non-enclave accesses
4. EPC encryption

5. Data structure and SGX

Design - OS Emulation

1. Bootstrapping: sys_init()

2. Enclave initialization
2.1 SGX Instruction: ECREATE, EADD, EEXTEND and EINIT
2.2 sys_create_enclave()

3. EPC page translation: virtual address to physical address

4. Dynamic EPC page allocation
4.1 EAUG, EACCEPT
4.2 sys_add_epc()

5. Performance monitor
5.1 Custom identifier (Keid)
5.2 sys_stat_enclave()

6. System call emulation
6.1 Emulates system call as a function call
6.2 Context switching
6.3 State Save Area (SSA)
6.4 sgx_add_epc()

Design - Loader

1. Compilation

1.1 Toolchain: opensgx generates an enclave program
1.2 Structure of enclave program: code, data sections, linked libs

2. Loader
2.1 Determines the memory layout of code, data, stack and heap
sections
2.2 Obtains the information about code and data as well as base
address

2.3 Forwards the memory layout information to the OS emulation

Design - User library

1. User-level library - sgxlib
2. Host APIs and ENCLAVE APlIs

Type

APL

Description

HOST
HOST
HOST
HOST
HOST
HOST

void sgx_init(void)

void sgx_enter(tes_t tcs, void (*aep)())
void sgx_resume(tcs_t tcs, void (Faep)(Q)
int sgx_host_read(void *buf, int len)
int sgx_host_write(void *buf, int len)
void launch_guoting_enclave(void)

Perform system initialization
EENTER wrapper

ERESUME wrapper

Read from enclave

Write to enclave

Launch quoting enclave

ENCL
ENCL
ENCL
ENCL
ENCL
ENCL
ENCL
ENCL
ENCL
ENCL
ENCL
ENCL
ENCL

void sgx_exit(void *addr)

void sgx_remote(const struct sockaddr *target_addr, socklen_t addrlen)
void sgx_getkey(keyrequest_t keyreq, void *key)

void sgx_getreport(targetinfo_t info, reportdata_t data, report_t *report)
int sgx_enclave_read(void *buf, int len)

int sgx_enclave_write(void *buf, int len)

void *sgx_memcpy(void *dest, const void *src, size_t size)

void *sgx_memmove(void *dest, const void *src, size_t size)

void sgx_memset(void *ptr, int value, size_t num)

int sgx_memcmp(const void *ptrl, const void *ptr2, size_t num)

size_t sgx_strlen(const char *string)

int sgx_strcmp(const char *pl, const char *p2)

int sgx_printf(const char *format, ...)

EEXIT wrapper

Request remote attestation
EGETKEY wrapper

EREPORT Wrapper

Read from host

Write to host

Memory copy

Memory copy

Memory set to the specified value
Memory comparison

Get string length

String comparison

Write formatted data to standard

Design - User library

No o s b=

User-level library - sgxlib

Custom in enclave library

Shared code and data memory trampoline and stub
Enclave - Host communication: Pipe-liked mechanism
Dynamic memory allocation

Defense against malicious host apps and OS

Remote attestation

Design - Defense against malicious host apps and OS

1. Memory-related operations (MEM)
2. Network and I/O services (IO/NET)
3. Non-determinism and resources (DBG, TIME, RAND)

Debugging

1. Debugging hardware
2. Debugging enclaves: gdb-stub

3. New gdb commands: info epc, info epcm, info secs and list
enclaves

Design - Performance Monitoring

o L=

Enclave descriptor: stores TCS and usage statistics
Number of context switches

Entires/exits of the OS emulation layer

Number of TLB flushes

Number of dynamically allocated EPC

Case studies - Shielding Tor Nodes

1. Attacks on Tor

1.1 Manipulating Tor Components
1.2 Manipulating routing

2. Benéefits of applying TEE

2.1 Attestation of software components

2.2 Protection against tampered OS

2.3 contains all critical operations that use private data structures
in Tor-enclave

2.4 expose an RPC interface to Tor-non-enclave

Secure 1/0O Path

1. Allows secure communication between the CPU/memory and
devices

2. Emulates the encrypted communication channel with message
authentication

Performance Profiling

Environment setup

The number of EPC pages used
Additional CPU cycles

Context switch overhead

The number of RPC calls

AN .

Questions?

