14.11.2018

Florian Olschewski

OUTLINE

Introduction
Trustzone
Threat Model
Overview
Runtime System
Implementation

Evaluation

Future Work

1) INTRODUCTION

Rapid evolution of IOT-Devices

Problem: compromised OS

Leak of sensitive Data

TrustShadow(TS): shields applications from untrusted OS

TS uses ARM-Trustzone
Normal world 2> OS

Secure world = TEE : critical application

Secure world is managed by a leightweight runtime system(RTS)

Forwards system calls + verifies responses

2) TRUSTZONE - ARCHITECTURE

Partition of SoC- hardware + software in secure and normal world

PI’OCGSSOI’ can enter normdl qnd secure state
Normal state: access to resources in normal world

Secure state: access to all resources
To check permissions: Non-Secure bit

Monitor mode software to switch between the worlds

2) TRUSTZONE - ADDRESS SPACE CONTROLLER +
MEMORY MANAGEMENT UNIT(MMU)

Set-up security access permissions for address regions

Controls data transfer between processor and Dynamic Memory Controller

NS-bit must equal the security setting of memory region

MMU: Translation of virtual to physical addresses

Memory splitted in 2 worlds = 2 MMU’s for independent memory mapping
Normal world: only access to memory in non-secure state

Secure world: access to both memory states by tuning NS-bit

3) THREAT MODEL

Shielding applications from completely hostile OS
Memory disclosure
Code injection attacks
Change program behavior

Side channel attacks (e.g. observe page fault pattern)

No prevention for
DoS-attacks: OS refuses to boot / decline time slices for a process

Side channel like timing and power analysis

4) OVERVIEW

Trusted application:
Customized system call:

»,zombie" HAP: normal world, never
scheduled ,,;shadow* HAP: secure world,
ran by TrustShadow

RTS forwards exceptions to Linux

Data structures task _shared / task_private

Trusted

Secure World

.........
OOOOOOOOOO

Untrusted

!!!!!

Marshaling
21 Buffer
Normal World

C I -
@ Shadow Zombie ™ RERRLE
| ™ HAP | S
)
- I
Context Switch X |
ret_to_user
3 Exception Dispatcher .
= & try-common.S
& | Internal Exception Handler External Exception Handler Q entry -
3 r————— r—— 7 T T T 7 1 g a = T
z|! - - | 'l others (Page fault, |! Sl |2 < g
o : S z : : File I/O, Syscall, : = ° S @
W = @)
| X Interrupt) | § 5 g o 9
Lo — — — I [- ° T 2 %
=}) S 2
- = =3 =.
Monitor Mode n o n 0
Forwarder o) 0!
Software - @ w
Runtime System Linux Kernel
CPU Secure RAM] [Normal RAM| | FLASH | Hardware

Figure 1: Architecture of TrustShadow

5) RTS - MEMORY MANAGEMENT

3 partitions of physical memory:
Non-secure: ZONE_NORMAL - Linux OS

Secure: ZONE_TZ_RT — for runtime system
ZONE_TZ_ APP - shadow-HAP's

Virtual memory:
user /kernel memory split of secure world equals Linux

— execution of legacy code in secure world
RTS maps itself to ZONT_TZ_RT
maps memory holding Linux in the virtual address space

— efficiently locate shared Data from OS

Secure World Virtual Memory

A4G

N: Linux OS

S: Runtime System

aordg Jasn aoseds pula
- r_)l S b
()

YOG

S: User Space
(maps to
ZONE_TZ_APP)

P
2
%
»%
&

Physical Memory

ZONE_TZ_APP

ZONE_NORMAL [

ZONE_TZ RT

Normal World Virtual Memory

4GA

aoedg Jaulay

vmalloc
lowmem
N
N
el
&
Q@b
User Space
(maps to

Figure2: physical + virtual memory layout

ZONE_NORMAL)

)
®
-

N

aoedg Jas

o
)
-

5) RTS - FORWARDING EXCEPTIONS

Exception handling of ARM-Processors: Reproduction by RTS (e.g. svc)

Pe points exception vector table Set spsr in monitor mode to represent target

store previous cpsr to spsr mode (svc)
Every processor mode has its own spsr . .
register (banked Register) Switch to target mode (svc) + set it’s spsr to

Setting cpsr to indicate the target mode represent User-Mode

Spsr reveals information of pre-exception Switch back to monitor mode
processor mode

Issue movs instruction
Jump to target exception handler
Copy spsr from current mode in cpsr

OS catches exception at correct address +
in the right mode (svc, step1)

Spsr indicates: exception comes from user mode
(step 2)

current program status register (cpsr)
saved program status register (spsr)

5) RTS - HANDLING PAGE FAULT

Exception by MMU 2 no page table entry for accessed memory
OS maintains page tables

RTS maintains own page table in secure world
Uses Linux page fault handler for updating

For TS, the Linux handler was modified: it stores the updated entry value to task_shared
Basic Page Table update:

Anonymous memory
RTS verifies that the provided entry of task_shared is within ZONE_TZ_APP

RTS duplicates page table entry

5) RTS - HANDLING PAGE FAULT

1: Untrusted OS installs PT Physical Memory

2: Runtime system installs PT
3: Runtime system copies the
N-page to the S-page ZONE TZ APP
4: Hash validation e e
: | Spage |
4
«40000000 3
(vaddr, hash)
[_ Npage _]
Trusted Page Table 2 ZONE_NORMAL Untrusted Page Table
0x403E1000| RX 1— 0x32A32000 RX
- x3
RX ZONE_TZ_RT RX
RX RX
Px10000000]

Figure3: PageTableUpdate with integrity check

5) RTS - HANDLING PAGE FAULT

1: Untrusted OS installs PT
2: Runtime system installs PT
3

: Runtime system decrypts the

N-page to the S-page
: Hash validation
: HAP updates the S-page

o O bh

updates the hash value

7: Runtime system encrypts the

S-page back to the N-page
Trusted Page Table
0x403E1000] RW

: On unmapping, runtime systé;u.[

Physical Memory

-

ZONE_TZ_APP

S-page

2

RW

RW

o SEPORE .
ZONE_NORMAL

>(offset, hash)

ZONE_TZ_RT

Figure4: PageTableUpdate for Protected Files

x40000000 3
Untrusted Page Table
1— Ox32A32000 | RW
x30
RW
RW
PXx10000000]

5) RTS - INTERVENING SYSTEM CALLS

OS has no access to user data from shadow HAP

system call parameters are values = RTS forwards them directily
Pointers: RTS marshals them in a world shared buffer

—>OS gets temporary access to the system call parameters

procedures for signal handling and coordinating Futex

Defeating lago Attacks

Manipulate return of system call 2 leak used for return oriented programming

RTS checks the results for memory overlaps
If one is found: = HAP is killed

5) RTS - INTERNAL EXCEPTION HANDLING

Floating Point Computation

Multiple processes enter VFP — Linux maintains VFP context for each process

Leaks User Data
RTS duplicates code handling VFP
Random Number Generator
Random numbers very important for cryptographic operations

OS should not know key materials

RTS utilizes on-board hardware RNG4

5) RTS - MANIFEST DESIGN

Each HAP is bundled with a manifest

Provides meta data for security features
Per application secret key
Integrity metadata (vaddr, hash)

List of filenames that should be protected

Manifest is stored on persistent storage
Encrypt per-application key by per-device public key
Append digital signature

6) IMPLEMENTATION

Normal World — changes on linux

Added parameter to indicate ZONE_TZ_APP -> pages for HAPs come from this region
Added a flag -> OS can distinguish HAPs

New System call to start HAPs

Changed ret_to_user -> OS pass execution back to shadow instead of zombie

Hooked page fault handler

Modifeid code handling signals

—> 300 LOC

6) IMPLEMENTATION

Secure World
= 4.5 k LOC in C + 0,8k LOC of assembly
Applicable for manual review or formal verification

In addition: secure boot mechanism

7) EVALUATION

Microbenchmarks

Overhead imposed by system
calls

Ran each benchmark with 1,000
iterations -> took average

Latency (us) Overhead

Test case Linux [rust Lrust InkTag Virtual

Shadow Shadow Ghost
null syscall 0.7989 1.6048 2.0Ix | 55.80x 3.90x
open/close 29.2168 40.7886 1.40x 4.83x 7.95x
mmap (64m) 559.0000 784.0000 1.40x 4.70x 9.94x
pagefault 4.7989 7.9764 1.66x 1.15x 7.50x
signal handler 1.6257 3.8294 2.36x 3.24x -
install
signal handler 51.6111 57.0349 1.11x 1.61x -
delivery
fork+exit 987.0000 | 2328.6000 | 2.36x 4.40x 5.74x
fork+exec 1060.3333 | 2509.0000 | 2.37x 4.20x 3.04x
select (200fd) 15.0707 18.8649 1.25x 3.40x -
ctxsw 2p/0k 30.3700 32.7100 1.08x - 1.41x

7) EVALUATION

File Operations 700
128 files, each 8Mb j
o 600 -
Sequential + random write o i
Caching disabled E 900
File protection on = high overhead ; 400
a i
Encryption + hashing 5, 300 -
- i
Solution: better cryptographic o 200 -
. c

engine — i
100 -

0

249.12
TS
IRKKS
00,
IR
00008
SRS
XX

NN

777

7] Linux

[\.~] TrustShadow_w/o_Protection
618.64 RO Trustshadow

612.44

%
o e%%

AU

P24.52

|
Sequential Write

Random Write

7) EVALUATION

] 1.100x
1.10 - 1.097x
Embedded Web Server] 1-0.3?}/."""1'092 087x HTTP Overhead
I —e— HTTPS Overhead
Impact on real world application 1.08 5
Respond with HTML files in different size geo) I \062x
% 106 | __105?}(
Small files: reduce troughput ~ 6-10% E
> 1.04
Big files: only ~2% from 256 kb O
HTTPS: TS-overhead overwhelmed by 1.02-
int . i hi i 1 002x 1.001x
intensive cryptographic operations 1 00— . . o o . e
Latency: almost no overhead — T T T T T T T

L L
1 2 4 8 16 32 64 128 256 512 1024
File Size (KB)

20

8) FUTURE WORK

Remaining Attack Surface
DoS-attacks: process sceduling / start application in normal world

Manipulation of Manifest
Roll-back attack possible
Future: version number in manifest

Side channel attacks still are possible
It is possible to adopt known techniques for prevention

E.g. cryptographic libraries like OpenSSL

Physical attacks
Solution: store sensitive data on SoC components: harder to compromise

Future: extend iRAM

21

THANK YOU

Application

System level views

BACKUP —

Privilegg\d modes
Exceplion modes

User | System Hyp Supervisor | Monitor Abort Undefined IRQ FlQ

mode | mode mode ! mode mode mode mode mode mode
RO RO_usr
R1 R1_usr
R2 R2_usr
R3 R3 _usr
R4 R4 _usr
R5 R5_usr
R6 R_E':'_usr
R7 R7_usr
R8 R8_usr R8_
R9 RS_usr RS
R10 R10_usr R10_
R11 R11_usr R11_fiq
R12 R12_usr R12 fig
SP SP_usr SP hyp' | SP svc | SP_mon® | SP_abt SP und | SP_irg SP fiq
LR LR _usr N LR svc | LR mon® | LR abt LR_und LR_irg LR fiq
PC PC
[APSR |[CPSR

SPSR_hyp'| SPSR_svc [SPSR_mon*| SPSR_abt | SPSR_und | SPSR_ irg |SPSR fig
ELR_hyp'

1 Hyp mode and the associated banked registers are implemented only as part of the Virtualization Extensions

1 Monitor mode and the associated banked registers are implemented only as part of the Security Extensions

23

SECURE BOOT

Proprietary
Boot ROM

PASS
Y
Boot Runtime
System
Initialization 4.| Uboot
Protected +
device
Decrypt rivate Boot Linux
Device Key | key and Kernel
+ Manifests
Install Resume

24

