
Hacking in Darkness:
Return-oriented Programming against Secure Enclaves

Dominik Pham

Technical University of Munich

December 2, 2018

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 1 / 23

Structure

1 Technical Background
Intel SGX
The ROP Attack

2 Dark-ROP Attack Design
Finding a vulnerability
Finding useful gadgets

3 The SGX Malware
Extracting hidden binary from enclave
Hijacking remote attestation as MitM

4 Mitigations

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 2 / 23

Technical Background

Intel SGX

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 3 / 23

Intel SGX - Security Features

Memory encryption/isolation

Program integrity through attestation

Data sealing

Deploying encrypted binary to enclave memory

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 4 / 23

Intel SGX - Instruction Specifications

User Instruction Description

ENCLU[EENTER] enter an enclave

ENCLU[EEXIT] exit an enclave

ENCLU[EGETKEY] create a cryptographic key

ENCLU[EREPORT] create a cryptographic report

ENCLU[ERESUME] re-enter an enclave

Table: The ENCLU instruction (index has to be stored in register rax).

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 5 / 23

Return Oriented Programming

find function in with exploitable (buffer overflow) vulnerability

exploit vulnerability to overwrite return address
→ attacker can execute any existing code (gadget)
→ attacker can chain gadgets to a ROP chain

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 6 / 23

ROP Attack against SGX

Problems:

determine location of vulnerability in encrypted enclave is difficult

determine location of gadgets in encrypted enclave is difficult

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 7 / 23

Dark-ROP Attack Design

Solution: Dark-ROP, a modified version of the ROP attack, which solves
the mentioned problems

Finding a buffer overflow vulnerability

Finding gadgets to reuse

in an encrypted enclave binary

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 8 / 23

Dark-ROP - Finding a vulnerability

enclave program has fixed number of entry points (usually functions)

enumerate those functions and executes them with fuzzing arguments

on memory corruption the fall-back routine Asynchronous Enclave
Exit (AEX) is triggered
→ function is candidate for vulnerability

AEX handler stores source address of page fault in register cr2

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 9 / 23

Dark-ROP - Finding gadgets

Requirements for enclave code:

must contain the ENCLU instruction

must contain ROP gadgets with at least one pop instruction

must contain function similar to memcpy

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 10 / 23

Dark-ROP - Finding pop gadgets

Page Fault oracle:

probe through entire executeable address space of enclave memory

after address to probe several non-executeable addresses
(PF Region X)

if address to probe is gadget with y pops, PF Region y is next return
address
→ will trigger AEX with address of PF Region y in cr2 register

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 11 / 23

Dark-ROP - Finding pop gadgets

Page Fault oracle:

0xF7501200: pop rdx
0xF7501201: retAddress

Access
Permission

A
P

P
L

IC
A

T
IO

N

0x400000
- 0x408000 r-x

0x607000
- 0x608000 r--

……

E
N

C
L

A
V

E

0xF7500000
- 0xF752b000

(Code)
r-x

……

0xF7741000
-

0xF7841000
rw-

0xF7842000
-

0xF7882000
rw-

0xF7883000
-

0xF7884000
rw-

……

Buf[100]
Ret_addr

(0xF7501200)
PF_Region_0
(0xF7741000)

PF_Region_1
(0xF7742000)

PF_Region_2
(0xF7743000)

PF_Region_3
(0xF7744000)

……

Memory map

Enclave Stack

AEX_handler in page fault handler

Candidate gadget in enclave code section

①Return to candidate gadget

④

uint64_t PF_R[10] = {0xF7741000, 0xF7742000,
0xF7743000, 0xF7744000, ……}

AEX_handler(unsigned long CR2, pt_regs *regs)
{

// Indicate exception within enclave

if(regs → ax == 0x03) {
if (CR2 == 0)

gadget = CRASH;
else {

int count = 0;
foreach (uint64_t fault_addr in PF_R) {

// verify number of pops

if (fault_addr == CR2) {
number_of_pops = count;
break;

}
count++;

}
……

②

Return to non-executable area
(PF_Region_1)
③

AEX
(page fault)

Load PF_Region_1
as return address

Figure 3: An overview of page fault oracle and the AEX handler.
The workflow for identifying pop gadgets by using the page
fault oracle is as follows: (1) The attacker sets an arbitrary
address in the code section on the stack to probe if the address
is for a pop gadget (e.g. 0xF7501200 in the figure) and then set
several non-executable addresses in PF_region. (2) Because the
probed address in the figure contains a single pop and a return
instruction, the processor attempts to pop the first address in
PF_region (i.e., PF_region_0) then return to the second address
on the stack, PF_region_1 (i.e., 0xF7742000). (3) Returning to
the PF_region_1 address emits the page fault exception because
the address is non-executable. (4) At the exception handler,
the attacker can locate this address from the cr2 register in the
exception context so that the attacker can identify that only one
pop is in the gadget.

Page fault oracle for changing register values. We
first find gadgets that can set a value to a specific
register from the values in the stack. For instance,
a pop gadget like pop rbx; pop rcx; pop rdx; retq;
can change the value of the rbx, rcx, and rdx registers at
once if values are set at the attack stack by exploiting a
buffer overflow vulnerability.

To find such gadgets, we turn the Asynchronous En-
clave Exit (AEX) and page fault handler into an oracle
for detecting the gadgets. An interesting property of the
Intel processor is that when a page fault exception arises,
the cr2 register stores the address of the page that gen-
erated the fault. On the other hand, if a page fault arises
in the enclave, the AEX happens and it clears the least
12 significant bits of the cr2 register and overwrites the
General Purpose Registers (GPRs) with the synthesized
value to protect its execution context. Therefore, for the
page fault that arises in the enclave, we can identify which
address triggered the page fault in a page granularity by

examining the value in the cr2 register at the page fault
handler (i.e., AEX handler in this paper).

To turn this into a gadget-finding oracle, we set the
attack stack as in Figure 3. In essence, by exploiting the
memory corruption bug, we set the return address to be
the address that we want to probe whether it is a pop
gadget or not. The probing will scan through the entire
executable address space of the enclave memory. At the
same time, we put several non-executable addresses, all
of which reside in the address space of the enclave, on the
stack.

Because the untrusted operating system manages all
the memory allocations, the attacker knows the coarse-
grained memory map of the enclave (on the left side
of the Figure 3) so that the attacker can easily identify
the non-executable enclave memory pages (e.g., enclave
stack or heap pages). We call this memory region as
PF_region and, PF_R array in the code contains the list of
non-executable page addresses.

For instance, we put 0xf7741000, 0xf7742000,
0xf7743000, and 0xf7744000, etc. on the enclave stack
to set the register values if it is a pop gadget (see at the
bottom of the Figure 3. For example, if the gadget at the
return address is pop rdx; ret;, then 0xf7741000will be
stored into the rdx register, and the processor will attempt
to return to the address of 0xf7742000. However, the ad-
dress 0xf7742000 is a non-executable address; returning
to such an address will cause the processor to generate the
page fault. Then, the AEX handler will catch this page
fault. At the AEX handler, the attacker is able to distin-
guish the number of pops in the gadget by examining the
value in the cr2 register. In the case of the example, the
value is 0xf7742000, the second value on the stack, which
means that the gadget has only one pop before the return
because the first value, 0xf7741000, is popped. Taking
another example, when the gadget has three pops, the first
three values on the stack will be removed so that the value
in the cr2 register will be 0xf7743000.

Using this method, the attacker can identify the num-
ber of pops before the return on the gadgets. How-
ever, the oracle does not allow the attacker to figure out
which registers are being popped. Moreover, the gadget
found by this method could not be a pop gadget because
the page fault can be triggered in other cases such as
pop rax; mov rbx,QWORD PTR [rax+0x4] (fault by mov
instruction). In the next oracle, we will remove the uncer-
tainty of the gadgets found by this oracle.

Identifying the gadgets and the registers on EEXIT.
The second oracle we build is for identifying pop gadgets
among the gadget candidates found from the first AEX
oracle. The second oracle exploits the fact that the values
in registers are not automatically cleared by the hardware
on the execution of the EEXIT leaf function. As a result,

USENIX Association 26th USENIX Security Symposium 529

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 12 / 23

Dark-ROP - Finding pop gadgets

Identifying gadgets and registers oracle:

find ENCLU instruction to call its EEXIT function
↔ exiting enclave with this function will not clear registers

chain pop gadgets with value 0x4 as every argument; address to
probe at the end

EEXIT function has an address as parameter stored in rbx
→ invoked if rax is 0x4 and address to probe is ENCLU
→ exception thrown if value in rbx is 0x4

repeating with distinguishable values allows us to identify the popped
registers

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 13 / 23

Dark-ROP - Finding pop gadgets

Identifying gadgets and registers oracle:

Host operating system

S

Untrusted application
Trusted Enclave

EEXIT_handler(pt_regs *regs, ulong error)
{

if(error == (PF_PROT | PF_USER |
PF_INSTR) && regs → ax == 0x4)
//EEXIT happens

}

pop gadget #1 (pop; ret)

pop gadget #2 (pop; pop; ret)

pop gadget #3 (pop; pop; ret)

……

rax = 0x4
rbx = 0x4
……
r14 = 0x4
r15 = 0x4

Registers

buf[100] Gadget
#1

0x4 Gadget
#2

0x4 0x4 ENCLU?

Enclave stack

ENCLU ?

0x00000004: UNMAPPED
0x0000000c: UNMAPPED

Application address space

rax = 0x4
rbx = 0x4
……
r14 = 0x4
r15 = 0x4

Registers

②

①

③

②

Figure 4: An overview of searching an ENCLU gadget and the
behavior of EEXIT. (1) The attacker chains multiple pop gadgets
found in Figure 3, as many as possible, and put the value 0x4
as the number of pops in the gadget. (2) If the probing address
(the last return address) contains the ENCLU instruction, then it
will invoke EEXIT and jump to the address specified in rbx (i.e.,
0x4 because of the pop gadgets). (3) The execution of EEXIT
generates the page fault because the exit address in rbx (0x4)
does not belong to the valid address region. (4) At the page
fault handler, the attacker can be notified that EEXIT is invoked
accordingly by examining the error code and the value of the
rax register. The error code of EEXIT handler contains the value
that indicates the cause of page fault. In this case, the page fault
is generated by pointing an invalid address 0x4 as jump address
(i.e., the value of rbx register). So if the error code contains the
flags for PF_PROT (un-allocated), PF_USER (userspace memory),
and PF_INSTR (fault on execution), and the value of rax is 0x4
(the value for EEXIT leaf function), then the attacker can assume
the probed address is where the ENCLU instruction is located.

the attacker can identify the values of the registers that
were changed by the pop gadget that is executed prior to
EEXIT. This helps the attacker to identify the pop gadgets
among the candidates and the registers that are popped by
the gadgets.

To build this oracle, we need to find the ENCLU instruc-
tion first because the EEXIT leaf function can only be in-
voked by the instruction by supplying the index at the rax
register as 0x4. Then, at the EEXIT handler, we identify
the pop gadgets and the registers popped by the gadget.
To find the ENCLU instruction, we take the following strat-
egy. First, for all of the pop gadget candidates, we set
them as return addresses of a ROP chain. Second, we put
0x4, the index of the EEXIT leaf function, as the value to
be popped on that gadgets. For example, if the gadget has
three pops, we put the same number (three) 0x4 on the
stack right after the gadget address. Finally, we put the

Host operating system

#define BASE ((void*)0x80000000)
uint64_t zero = 0;

mmap(BASE, 0x1000, 7, MAP_ANONYMOUS |
MAP_FIXED | MAP_PRIVATE , -1, 0);

ROP_to_enclave (source_addr, dest_addr, length);

if (memcmp(BASE, &zero, 0x8) != 0) { //If memory content is changed
printf (“memcpy found\n”);

}

Untrusted application
Trusted Enclave

0xF7511000: pop rdi; ret
0xF7511003: pop rsi; ret

0xF7515158: pop rdx; ret

Buf
[100]

0xF7511000 0x80000000
(destination)

0xF7500000
(source)

0xF7515158 0x08
(len)

0xF7510000
(memcpy ?)

Enclave stack

Application code

①

0xF7510000: memcpy ?

0x80000000 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x80000018 00

Application address space

0xF7500000: 7f 45 4c 46 02 01 01 00
0xF7500008: 00 00 00 00 00 00 00 00
0xF7500010: 03 00 3e 00 01 00 00 00
0xF7500018: d0 ad 00 00 00 00 00 00

Enclave address space

④

②
③

④

Figure 5: An overview of finding memcpy() gadget. (1) The
attacker exploits a memory corruption bug inside the enclave
and overwrites the stack with a gadget chain. (2) The gadgets in
the chain sets the arguments (rdi, rsi, rdx) as the destination
address (0x80000000) in rdi, the source address (0x75000000)
in rsi, and the size (0x8) in rdx to discover the memcpy() gadget.
(3) On the probing, if the final return address points to the
memcpy() gadget, then it will copy the 8 bytes of enclave code
(0xf7500000) to the pre-allocated address in application memory
(0x80000000), which was initialized with all zero. (4) To check
if the memcpy() gadget is found, the attacker (application code)
compares the contents of the memory region (0x80000000) with
zero after each probing. Any non-zero values in the compared
area results the discovery of the memcpy().

address to scan at the end to probe whether the address is
a ENCLU gadget.

The mechanism behind the scene is like the following.
The value 0x4 is the index for the leaf function EEXIT.
What we aim to change the value for is the rax register
because it is the selector of the EEXIT leaf function. For
the combinations of pop gadget candidates and the address
of probing, the enclave will trigger EEXIT if the address of
a gadget that changes rax and the address of ENCLU sits on
the stack. The attacker can catch this by using an SIGSEGV
handler because the return address of EEXIT (stored in the
rbx register) was not correct so that it will generate the
exception. If the handler is invoked and the value of rax
is 0x4, then the return address placed at the end of the
attack stack points to the ENCLU instruction.

After we find the method to invoke EEXIT, we exploit
the EEXIT gadget to identify which registers are popped by
the pop gadget. This is possible because, unlike AEX, the
processor will not automatically clear the register values
on running the EEXIT leaf function. Thus, if we put a pop
gadget, and put some distinguishable values as its items to

530 26th USENIX Security Symposium USENIX Association

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 14 / 23

Dark-ROP - Finding memcpy gadgets

Read/Write gadget oracle:

define source address in enclave address space src and a length len

define destination address dst in untrusted memory space
→ set dst and next len bytes to zero

chain pop gadgets to put dst, src and len in registers rdi, rsi and rdx
with address to probe at the end

if address to probe is memcpy, dst and next len bytes are non-zero

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 15 / 23

Dark-ROP - Finding memcpy gadgets

Read/Write gadget oracle:

Host operating system

S

Untrusted application
Trusted Enclave

EEXIT_handler(pt_regs *regs, ulong error)
{

if(error == (PF_PROT | PF_USER |
PF_INSTR) && regs → ax == 0x4)
//EEXIT happens

}

pop gadget #1 (pop; ret)

pop gadget #2 (pop; pop; ret)

pop gadget #3 (pop; pop; ret)

……

rax = 0x4
rbx = 0x4
……
r14 = 0x4
r15 = 0x4

Registers

buf[100] Gadget
#1

0x4 Gadget
#2

0x4 0x4 ENCLU?

Enclave stack

ENCLU ?

0x00000004: UNMAPPED
0x0000000c: UNMAPPED

Application address space

rax = 0x4
rbx = 0x4
……
r14 = 0x4
r15 = 0x4

Registers

②

①

③

②

Figure 4: An overview of searching an ENCLU gadget and the
behavior of EEXIT. (1) The attacker chains multiple pop gadgets
found in Figure 3, as many as possible, and put the value 0x4
as the number of pops in the gadget. (2) If the probing address
(the last return address) contains the ENCLU instruction, then it
will invoke EEXIT and jump to the address specified in rbx (i.e.,
0x4 because of the pop gadgets). (3) The execution of EEXIT
generates the page fault because the exit address in rbx (0x4)
does not belong to the valid address region. (4) At the page
fault handler, the attacker can be notified that EEXIT is invoked
accordingly by examining the error code and the value of the
rax register. The error code of EEXIT handler contains the value
that indicates the cause of page fault. In this case, the page fault
is generated by pointing an invalid address 0x4 as jump address
(i.e., the value of rbx register). So if the error code contains the
flags for PF_PROT (un-allocated), PF_USER (userspace memory),
and PF_INSTR (fault on execution), and the value of rax is 0x4
(the value for EEXIT leaf function), then the attacker can assume
the probed address is where the ENCLU instruction is located.

the attacker can identify the values of the registers that
were changed by the pop gadget that is executed prior to
EEXIT. This helps the attacker to identify the pop gadgets
among the candidates and the registers that are popped by
the gadgets.

To build this oracle, we need to find the ENCLU instruc-
tion first because the EEXIT leaf function can only be in-
voked by the instruction by supplying the index at the rax
register as 0x4. Then, at the EEXIT handler, we identify
the pop gadgets and the registers popped by the gadget.
To find the ENCLU instruction, we take the following strat-
egy. First, for all of the pop gadget candidates, we set
them as return addresses of a ROP chain. Second, we put
0x4, the index of the EEXIT leaf function, as the value to
be popped on that gadgets. For example, if the gadget has
three pops, we put the same number (three) 0x4 on the
stack right after the gadget address. Finally, we put the

Host operating system

#define BASE ((void*)0x80000000)
uint64_t zero = 0;

mmap(BASE, 0x1000, 7, MAP_ANONYMOUS |
MAP_FIXED | MAP_PRIVATE , -1, 0);

ROP_to_enclave (source_addr, dest_addr, length);

if (memcmp(BASE, &zero, 0x8) != 0) { //If memory content is changed
printf (“memcpy found\n”);

}

Untrusted application
Trusted Enclave

0xF7511000: pop rdi; ret
0xF7511003: pop rsi; ret

0xF7515158: pop rdx; ret

Buf
[100]

0xF7511000 0x80000000
(destination)

0xF7500000
(source)

0xF7515158 0x08
(len)

0xF7510000
(memcpy ?)

Enclave stack

Application code

①

0xF7510000: memcpy ?

0x80000000 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x80000018 00

Application address space

0xF7500000: 7f 45 4c 46 02 01 01 00
0xF7500008: 00 00 00 00 00 00 00 00
0xF7500010: 03 00 3e 00 01 00 00 00
0xF7500018: d0 ad 00 00 00 00 00 00

Enclave address space

④

②
③

④

Figure 5: An overview of finding memcpy() gadget. (1) The
attacker exploits a memory corruption bug inside the enclave
and overwrites the stack with a gadget chain. (2) The gadgets in
the chain sets the arguments (rdi, rsi, rdx) as the destination
address (0x80000000) in rdi, the source address (0x75000000)
in rsi, and the size (0x8) in rdx to discover the memcpy() gadget.
(3) On the probing, if the final return address points to the
memcpy() gadget, then it will copy the 8 bytes of enclave code
(0xf7500000) to the pre-allocated address in application memory
(0x80000000), which was initialized with all zero. (4) To check
if the memcpy() gadget is found, the attacker (application code)
compares the contents of the memory region (0x80000000) with
zero after each probing. Any non-zero values in the compared
area results the discovery of the memcpy().

address to scan at the end to probe whether the address is
a ENCLU gadget.

The mechanism behind the scene is like the following.
The value 0x4 is the index for the leaf function EEXIT.
What we aim to change the value for is the rax register
because it is the selector of the EEXIT leaf function. For
the combinations of pop gadget candidates and the address
of probing, the enclave will trigger EEXIT if the address of
a gadget that changes rax and the address of ENCLU sits on
the stack. The attacker can catch this by using an SIGSEGV
handler because the return address of EEXIT (stored in the
rbx register) was not correct so that it will generate the
exception. If the handler is invoked and the value of rax
is 0x4, then the return address placed at the end of the
attack stack points to the ENCLU instruction.

After we find the method to invoke EEXIT, we exploit
the EEXIT gadget to identify which registers are popped by
the pop gadget. This is possible because, unlike AEX, the
processor will not automatically clear the register values
on running the EEXIT leaf function. Thus, if we put a pop
gadget, and put some distinguishable values as its items to

530 26th USENIX Security Symposium USENIX Association

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 16 / 23

Dark-ROP - Recap

We are now able to

call any leaf function through ENCLU

set register values which are used as parameters in leaf functions

copy data between the untrusted and trusted address space

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 17 / 23

The SGX Malware

The SGX Malware

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 18 / 23

The SGX Malware - Extracting hidden binary from enclave

utilizing memcpy gadget with
→ src as start of enclave’s binary
→ dst as address in untrusted memory space
→ len as size of enclave’s entire mapped space

allows malware to mimic real enclave program
↔ attacker can alter code for own purpose

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 19 / 23

Remote Attestation in SGX

Host operating system
ISV_APP

Se

ISV_ENCLAVE (trusted)

Generate_ECDH_key_pairs
(&pub, &priv)

Copy_out_public_key(&pub)

Compute_DH_key()
Generate_REPORT_DATA(&pub)
Run_EREPORT()
Copy_out_REPORT()

Secure channel established!

Quoting Enclave (QE)

Service provider

REPORT

①

②

③

REPORT

Quote

④

②

①
Launch ISV_ENCLAVE

Send_msg_1(pub)

Proc_msg_2(msg2)

Send_msg_3(quote)

Generate key pairs
(&pub_s, &priv_s)

Send_response
(pub_s, signature)

Verify_quote(quote)
Compute_DH_key()

Secure channel
established! ⑤

⑤

④

③

Figure 6: The (simplified) remote attestation protocol of SGX.

the remote attestation of the enclave and establishing
a secure communication channel between the remote
server and the enclave. First, (1) the untrusted part of the
application deployed by an Independent Software Ven-
dor (ISV, i.e., software distributor), called the untrusted
program isv_app, launches the enclave program (we
call this trusted program isv_enclave). On launching
isv_enclave, isv_app requests the generation of Elliptic-
Curve Diffie-Hellman (ECDH) public/private key pair to
the enclave. The ECDH key pair will be used for sharing
secret with the remote server. Then, the isv_enclave gen-
erates the key pair, securely stores the private key in the
enclave memory and returns the public key to isv_app.
This public key will be sent to the remote server for later
use of sharing the secret for establishing a secure commu-
nication channel.

Second, on receiving the “hello” message from
isv_enclave, (2) the remote server generates its own
ECDH key pair that the server will use.

Third, (3) the server sends a quote request to the
isv_app, to verify if the public key that the server re-
ceived is from isv_enclave. Also, the server sends back
the public key (of the remote server) to isv_enclave.
To process the request, isv_app will invoke the func-
tion named Compute_DH_Key in isv_enclave to generate
the shared secret and the measurement report (we re-
fer this as REPORT). It contains the ECDH public key
that isv_enclave uses as one of the parameters to bind
the public key with the REPORT. Inside the enclave,
isv_enclave uses the EREPORT leaf function to generate
REPORT. On calling the leaf function, isv_enclave sets
the REPORTDATA, an object that passed as an argument to
the EREPORT leaf function, to bind the generated ECDH
public key to the REPORT. After isv_enclave generates
the REPORT, the untrusted isv_app delivers this to a Quot-
ing Enclave(QE), a new enclave (trusted) for verifying

the REPORT and then signs it with Intel EPID securely. As
a result, the REPORT generated by isv_enclave contains
the information for the ECDH public key that the enclave
uses, and this information is signed by the QE.

Fourth, (4) the signed REPORT will be delivered to the
remote server. The remote server can ensure that the
isv_enclave runs correctly at the client side and then use
the ECDH public key received at step (1) if the signed
REPORT is verified correctly.

Finally, the server run Compute_DH_Key to generate the
shared secret. (5) the remote server and isv_enclave
can communicate securely because they securely shared
the secret through the ECDH key exchange (with mutual
authentication).

Controlling the REPORT generation. To defeat the re-
mote attestation, and finally defeat the secure communica-
tion channel between the remote server and isv_enclave,
in the SGX malware, we aim to generate the REPORT from
isv_enclave with an arbitrary ECDH public key. For
this, we especially focus on part (3), how isv_enclave
binds the generated ECDH public key with the REPORT on
calling the EREPORT leaf function.

The Dark-ROP attack allows the SGX malware to have
the power of invoking the EREPORT leaf function with any
parameters. Thus, we can alter the parameter to generate
the REPORT that contains the ECDH public key that we
chose, instead of the key that is generated by isv_enclave.
On generating the REPORT, we prepare a REPORTDATA at
the untrusted space using the chosen ECDH public key,
and then chain the ROP gadgets to copy the REPORTDATA
to the enclave space. Note that the EREPORT requires
its parameters to be located in the enclave space. After
copying the REPORTDATA, we call the EREPORT leaf func-
tion with copied data to generate the REPORT inside the
isv_enclave. After this, we copy the generated REPORT
from the isv_enclave to isv_app and delivers the REPORT

USENIX Association 26th USENIX Security Symposium 533

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 20 / 23

The SGX Malware - Hijacking remote attestation as MitM

Launch ISV_ENCLAVE

Generate_ECDH_key_pairs
(&pub, &priv)

Send_msg_1(pub)

Proc_msg_2(msg2) {
Compute_DH_key()
Generate_REPORTDATA()
ROP_copy_parameter()
ROP_EREPORT()
Get_Quote()

}

Send_msg_3(quote)

Host operating system
SGX malware (Man-in-the-Middle)

Se

ISV_ENCLAVE (trusted)

Generate key pairs
(&pub_s, &priv_s)

Send_response
(pub_s, signature)

Verify_quote(quote)
Compute_DH_key()

The secret is shared
between

the remote server
and the attacker

Quoting Enclave (QE)

Service provider

RAX Gadget

RBX Gadget

RCX Gadget

ENCLU Gadget

RSI Gadget

RDI Gadget

RCX Gadget

memcpy
Gadget

RDX Gadget

TARGETINFO

REPORTDATA

REPORT

①

②

③

③-①

REPORT

Quote

memcpy
Gadget

④

③-②

③-③

③-④

③-⑤

Figure 7: The Man-in-the-middle (MitM) attack of the SGX malware for hijacking the remote attestation in SGX.

to the QE to sign it.
As a result, at the untrusted space, the attacker can

retrieve the REPORT that contains the ECDH parameter of
his/her own choice, and the REPORT is signed correctly.

Hijacking remote attestation. The full steps of hijack-
ing the remote attestation of an enclave are as follows (see
Figure 7).

First, (1) instead of isv_enclave, the SGX malware
generates an ECDH public/private key pair and own the
private key. (2) the SGX malware sends the generated
public key to the remote server.

Then, (3) on receiving the quote request from the server,
the SGX malware calculates the shared secret correspond-
ing to the parameters received by the remote server. Also,
the SGX malware prepares TARGETINFO and REPORTDATA
at isv_app. The TARGETINFO contains the information of
the QE that enables the QE to cryptographically verify
and sign the generated REPORT. The REPORTDATA is gener-
ated with the chosen public key as a key parameter to run
EREPORT in the isv_enclave. After that, SGX malware
launches the Dark-ROP attack (3-1, 3-2 and 3-3) to copy
prepared parameters (TARGETINFO and REPORTDATA) from
the untrusted app to the enclave and generate REPORT with
the ECDH public key that the SGX malware generated at
the first step. Moreover (3-4), the generated report will be
copied out to the SGX malware from the isv_enclave,
and the SGX malware sends the generated REPORT to the
Quoting Enclave to sign this with the correct key. Because
the REPORT is generated by the enclave correctly, the QE
will sign this and return it to the attacker.

Finally, (4) the SGX malware sends this signed REPORT
to the remote server. Now, the remote server shares the
secret; however, it is not shared with the isv_enclave,

but with the SGX malware so that the secure communica-
tion channel is hijacked by the SGX malware. Note that
the remote server cannot detect the hijacking because all
parameters and the signature are correct and verified.

6 Implementation

We implemented both the proof-of-concept attack and
the SGX malware in the real SGX hardware. For the
hardware setup, we use the Intel Core i7-6700 Skylake
processor, which supports the first and only available
specification of SGX, SGXv1. For the software, we run
the attack on Ubuntu 14.04 LTS, running Linux kernel
4.4.0. Additionally, we use the standard Intel SGX SDK
and compiler (gcc-5) to compile the code for the enclave
for both attacks.

To launch the Dark-ROP attack on the real SGX hard-
ware, we use the RemoteAttestation example binary in
the Intel SGX SDK, which is a minimal program that
only runs the remote attestation protocol, with slight mod-
ification, to inject an entry point that has a buffer overflow
vulnerability, as mentioned in Figure 2.

Because the example is a very minimal one, we be-
lieve that if the Dark-ROP attack is successful against the
RemoteAttestation example, then any other enclave pro-
grams that utilizes the remote attestation are exploitable
by Dark-ROP if the program has memory corruption
bugs.

Finding gadgets from standard SGX libraries. First,
we search for gadgets from the example binary. To show
the generality of finding gadgets, we find gadgets from the
standard SGX libraries that are essential to run enclave

534 26th USENIX Security Symposium USENIX Association

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 21 / 23

Mitigations

Gadget elimination
→ modify enclave code to prevent non-intended ret instructions
→ for non-removeable gadgets: register validation after ENCLU

Control flow integrity
→ should not use general registers for pointer

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 22 / 23

Thank you for your attention!

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 23 / 23

	Technical Background
	Intel SGX
	The ROP Attack

	Dark-ROP Attack Design
	Finding a vulnerability
	Finding useful gadgets

	The SGX Malware
	Extracting hidden binary from enclave
	Hijacking remote attestation as MitM

	Mitigations

