Hacking in Darkness:

Return-oriented Programming against Secure Enclaves

Dominik Pham

Technical University of Munich

December 2, 2018

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 1/23



@ Technical Background
@ Intel SGX
@ The ROP Attack

© Dark-ROP Attack Design
@ Finding a vulnerability
@ Finding useful gadgets

© The SGX Malware
@ Extracting hidden binary from enclave

@ Hijacking remote attestation as MitM

@ Mitigations

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 2/23



Technical Background

Intel SGX

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 3/23



Intel SGX - Security Features

Memory encryption /isolation
Program integrity through attestation

Data sealing

Deploying encrypted binary to enclave memory

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018



Intel SGX - Instruction Specifications

User Instruction Description
ENCLU[EENTER] | enter an enclave
ENCLU[EEXIT] exit an enclave

ENCLU[EGETKEY] | create a cryptographic key
ENCLU[EREPORT] | create a cryptographic report
ENCLU[ERESUME] | re-enter an enclave

Table: The ENCLU instruction (index has to be stored in register rax).

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 5/23



Return Oriented Programming

e find function in with exploitable (buffer overflow) vulnerability

@ exploit vulnerability to overwrite return address
— attacker can execute any existing code (gadget)
— attacker can chain gadgets to a ROP chain

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 6/23



ROP Attack against SGX

Problems:
o determine location of vulnerability in encrypted enclave is difficult

@ determine location of gadgets in encrypted enclave is difficult

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 7/23



Dark-ROP Attack Design

Solution: Dark-ROP, a modified version of the ROP attack, which solves
the mentioned problems

o Finding a buffer overflow vulnerability
o Finding gadgets to reuse

in an encrypted enclave binary

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 8/23



Dark-ROP - Finding a vulnerability

enclave program has fixed number of entry points (usually functions)

enumerate those functions and executes them with fuzzing arguments

on memory corruption the fall-back routine Asynchronous Enclave
Exit (AEX) is triggered
— function is candidate for vulnerability

AEX handler stores source address of page fault in register cr2

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 9/23



Dark-ROP - Finding gadgets

Requirements for enclave code:
@ must contain the ENCLU instruction
@ must contain ROP gadgets with at least one pop instruction

@ must contain function similar to memcpy

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018



Dark-ROP - Finding pop gadgets

Page Fault oracle:
@ probe through entire executeable address space of enclave memory

@ after address to probe several non-executeable addresses
(PF _Region_X)

o if address to probe is gadget with y pops, PF_Region_y is next return
address
— will trigger AEX with address of PF_Region_y in cr2 register

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 11/23



Dark-ROP - Finding pop gadgets

Page Fault oracle:

Memory map Candidate gadget in enclave code section
- Access ~10xF7501200: pop rdx
Address |, i [0XF7501201: ret < P
| | @ Load PF_Region_1
> 0x400000 H H as return address
Z| - 0x408000 X @ ’
E 0%607000 Retur " 10 non-executa hle area
Z | - 0x608000 - (PF_Region_1)
§ ______ i AEX_handler in page fault handler
i [ uint64_tPF_R[10] = {0xF7741000, 0xF7742000,
0xF7500000 : 0xF7743000, 0xF7744000, .....}
- 0xF752b000 r-x L3 AEX_handler(unsigned long CR2, pt_regs *regs)
(Code)
// Indicate exception within enclave
...... ifi regs » ax == 0x03) {
' Py 0
0xF7741000 | gadget = CRASH;
2] - rw- clse {
Z|  oxF7841000 int count = 0;
c . foreach (uint64_t fault_addr in PF_R) {
= e - - -
Z| oxErsa200 (page fauly) | 1/ verify number of pops
oms_szuuo w- : if (fault_addr == CR2) {
H number_of_pops = count;
0xF7883000 H break;
- rw- : y
0xF7884000 countt+;
{@Return to candidate gadget
Enclave Stack 1® & IT ________________
Bufj1o0)| Ret_addr | PF_Region 0 | PE_Region_l | PF_Region 2 | PF_Region_3
(0xF7501200) | (0xF7741000) | (0xF7742000) | (0xF7743000) | (0xF7744000)

Dominik Pham (TUM) Dark ROP against Secure Enclaves




Dark-ROP - Finding pop gadgets

Identifying gadgets and registers oracle:
o find ENCLU instruction to call its EEXIT function
<> exiting enclave with this function will not clear registers

@ chain pop gadgets with value 0x4 as every argument; address to
probe at the end

@ EEXIT function has an address as parameter stored in rbx
— invoked if rax is Ox4 and address to probe is ENCLU
— exception thrown if value in rbx is 0x4

@ repeating with distinguishable values allows us to identify the popped
registers

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 13/23



Dark-ROP - Finding pop gadgets

Identifying gadgets and registers oracle:

Host operating system

Untrusted application

Trusted Enclave

I pop gadget #1 (pop; ret) @ Registers
‘ pop gadget #2 (pop; pop; ret) rax = Oxd
\ pop gadget #3 (pop; pop; ret) rbx = 0x4 S iy
...... 2
------ 4 = 0x4 |
r15 = 0x4 1
- ENCLU ? !
1
Enclave stack H
buf(100] | Gadget | Ox4 | Gadget | Ox4 oxd | ENCLU? H
#1 #2 :
1
1
i
Application address space (3) H
0x00000004: UNMAPPED I
0x0000000c: UNMAPPED :
i
1
EEXIT_handler(pt_regs *regs, ulong error) Registers !
{ rax = 0x4 !
if(error == (PF_PROT | PF_USER | rbx = Ox4 <= —1--|-
PF_INSTR) && regs — ax ==0x4) | ......
//EEXIT happens 14 = Ox4
r15 = 0x4

minik Pham (TUM)

Dark ROP against Secu

December 2, 20

14 /23



Dark-ROP - Finding memcpy gadgets

Read/Write gadget oracle:
o define source address in enclave address space src and a length len

o define destination address dst in untrusted memory space
— set dst and next len bytes to zero

@ chain pop gadgets to put dst, src and len in registers rdi, rsi and rdx
with address to probe at the end

o if address to probe is memcpy, dst and next len bytes are non-zero

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 15/23



Dark-ROP - Finding mem

Read/Write gadget oracle:

Host operating system

Untrusted application
Trusted Enclave

@

1

1

1

1

1

1

1

0xF7511000: pop rdi; ret @ Enclave address space
0xF7511003: pop rsi; ret @
: 7f 45 4 46 02 01 01 00

0xF7500008: 00 00 00 00 00 00 00 00
LoxFr515158: pop rdx; ret 10: 03 00 3¢ 00 0100 00 00

‘ 0xF7510000: memcpy ? 0xF7500018: d0 ad 00 00 00 00 00 00

1)
m
>
o
o
2
]
a
5]
o
.

-|= 1P Buf | OXF7511000 | 0x80000000 | 0xF7500000 | OxF7515158 | 0x08 | 0xF7510000
[100] (destination) (source) (len) | (memcpy ?)

Application address space
0x80000000 7 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x80000018 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Application code

#define BASE ((void*)0x80000000)
uint64_t zero = 0;

mmap(BASE, 0x1000, 7, MAP_ANONYMOUS |
MAP_FIXED | MAP_PRIVATE , -1, 0);

-+ =t ROP_to_enclave (source_addr, dest_addr, length);

if (memcmp( BASE, &zero, 0x8) |= 0) { //f memory content is changed @
printf (“memcpy found\n”);

minik Pham (TUM) Dark ROP against Sec December 2, 201 16 /23




Dark-ROP - Recap

We are now able to
@ call any leaf function through ENCLU

@ set register values which are used as parameters in leaf functions

@ copy data between the untrusted and trusted address space

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 17 /23



The SGX Malware

The SGX Malware

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 18/23



The SGX Malware - Extracting hidden binary from enclave

o utilizing memcpy gadget with
— src as start of enclave's binary
— dst as address in untrusted memory space
— len as size of enclave’s entire mapped space

@ allows malware to mimic real enclave program
+» attacker can alter code for own purpose

Dominik Pham (TUM) Dark ROP against Secure Enclaves

December 2, 2018

19/23



Remote Attestation in SGX

Service provider Host operating system
ISV_APP @ ISV_ENCLAVE (trusted)
@) LaunchISV_ENCLAVE - = -+ - - - - - > | Generate_ECDH_key_pairs
(&pub, &priv)
) @ @ .
Generate key pairs € o = = = + Send_msg_1(pub) €= == =4 === == = Copy_out_public_key(&pub)
(&pub_s, &priv_s) ©)
|~ = 7> Proc_msg_2(msg2) === == - == =% > | Compute_DH_key()
h Generate_REPORT_DATA(&pub)
Send_response _ _ _|i Run_EREPORT()
(pub_s, signature) ©) @ Copy_out_REPORT()
| REPORT | €--=-=-=-- REPORT
1
| Quote | !
L) ! .
@ | 1 @ Secure channel established!
Verify_quote(quote) < 4 = = = + Send_msg_3(quote) 1 !
Compute_DH_key() + {,
fing Encl B =
Secure channel Quoting Enclave (QE) %
established! ® ...

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 20/23



e SGX Malware - Hijacking remote attestation as MitM

Service provider Host operating system
SGX malware (Man-in-the-Middle) ISV_ENCLAVE (trusted) @_@
Launch ISV_ENCLAVE I v
@ bz '®'= [ RsiGadget '|\‘| RAX Gadget
Generate_ECDH_key_pairs ! [ RoIGadget *K| RBX Gadget
(&pub, &priv) P! )
@ o [ Rcx Gadget <K‘| RCX Gadget
Generate key pairs €= = = =| +Send_msg_1(pub) : 1 memcpy 4 RDX Gadget
(&pub_s, &priv_s) 1 Gadget
I~ 7 TProc_msg_2(msg2) { : 1 ENCLU Gadge
| Compute_DH_key( ) 1! memcpy
Send_response — — +1 Generate_REPORTDATA( ) 1 : Gadget
(pub_s, signature) ® ROP_copy_parameter() ——|— :- -
ROP_EREPORT() - - — -+ - TARGETINFO
Get_Quote()= === 3
} 1
1 REPORTDATA
Verify_quote(quote)€ -| = = —| 7 Send_msg_3(quote) 1 ®-6 | |
Compute_DH_key() @ | REPORT W |——/———== :
REPORT F:‘\‘
| Quote =
The secretis shared -
between Quoting Enclave (QE)
the remote server ®-G
and the attacker

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 21/23



Mitigations

o Gadget elimination
— modify enclave code to prevent non-intended ret instructions
— for non-removeable gadgets: register validation after ENCLU
o Control flow integrity
— should not use general registers for pointer

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 22/23



Thank you for your attention!

Dominik Pham (TUM) Dark ROP against Secure Enclaves December 2, 2018 23/23



	Technical Background
	Intel SGX
	The ROP Attack

	Dark-ROP Attack Design
	Finding a vulnerability
	Finding useful gadgets

	The SGX Malware
	Extracting hidden binary from enclave
	Hijacking remote attestation as MitM

	Mitigations

