SCONE

Secure CONtainer Environment

Secure Docker containers using Intel SGX



INTRODUCTION



CONTAINERS VS. VMS

e performance advantage

= |O
= | atency
= Startup

e weaker security

s Kernel must protect a larger interface
= |solation is only software-based

2

.2



SGX RECAP

e SGX Enclaves shield code and data from being
accessed by other software, especially higher-
privileged software

e Enclave memory resides in the Enclave Page Cache

2.

3



IDEA

e Data should be protected not only from other
containers, but also from the kernel and hypervisor

e We use Intel SGX to secure classic Docker containers
from the OS by executing the process in the enclave

2.4



CHALLENGES

e Minimize TCB to keep the attack vector small
e keep performance overhead low
e Support existing applications

)



BASIC GOALS

1. Small TCB

e We only keep a libc library inside the enclave
2. Low performance overhead

e user-level threading implementation

e asynchronous syscall queue
3. Transparency to Docker engine

2

.6



CONTAINERS



MAIN GOAL

Create a secure container mechanism that protects
confidentiality and integrity of:

1. Process memory

2. Code
3. External I/O

from attackers with sudo access

3

.2



DETAILED THREAT MODEL

Attacker has access to:

e sudo
e hardware
e entire software stack, including OS

Outside of scope:

e DoS attacks
e Side-channel attacks

S

3



DESIGN



SCONE ARCHITECTURE

Host operating system (Linux) | pg» SCONE
Container =4 component

trusted

Application Code

Application-specific libraries
I Network shield [File system shield

A

]
o
©
]
et
£
S
]
=
]
4
c
o
]
=
c
S
]
b

System call
requests

untrusteg




INTERFACE SHIELDING

Shields focus on:

e preventing low level attacks
e ensuring confidentiality and integrity of shared data

SCONE provides three kinds of shields:

e File system shield
e Network shield
e Console shield

4,

3



THREADING MODEL

e M application threads get mapped to N OS threads
e OSthreads that enter the enclave get handled by

scheduler
e SCONE kernel module reserves hardware threads to

gueue syscalls

4

4



THREADING MODEL

M app. threads
(variable)

M:N scheduler

N
A thread control
TCS structures (TCS)

EENTER ' EENTER ' EENTER

N OS threads (fixed)
/\/\/\ /\/\/\ /\/\/\ ~ #hardware threads

t I thread
AAAYAANARNAAWIATANE iovigrmiivas

I0CTL I0CTL

B asynchronous system
‘ call execution

)



SYSTEM CALLS

e SGX can't execute syscalls directly, so we need
helper functions

e Arguments must be copied to non-enclave memory
and then be processed

e Transitions are expensive

Solution: asynchronous syscall interface

e Consists of request and response queue

4

.6



SYSTEM CALL FLOW

scheduler threads

10N

syscall slot

scall2
memory memory scalll
args args |

static allocat
FIFO queues

thread thread System call System call
local local requests responses

T



WORKFLOW IN DOCKER

e One container consists of one protected process
e Otherwise indistinguishable from regular container

4

.8



WORKFLOW

not trusted

4: execute
trusted *

SCONE Client
Secure Image : - —>
Docker client 5: secure

communication

4

.9



BENCHMARK SUMMARY



APP BENCHMARK

e SCONE-async containers achieve almost native
performance
e Single-thread applications don't perform well

5.

2



FILE SYSTEM SHIELD

e Small datasets perform well
e Larger datasets drop to 35% throughput, worst case

5.

3



SYSCALLS

e SCONE-async achieves almost native syscall
frequency, further improvements possible

5.

4



CONCLUSION

e SCONE TCB Size is 60-200%

e Average throughputis at least 60%, sometimes even
better than native

e All we need is static recompilation and the kernel
module



QUESTIONS



SOURCES

Research paper here
Intel SGX Documentation here
Slides available soon



