
Automated Partitioning of
Android Applications for

Trusted Execution
Environments

Demil Omerovic

[Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, Abhik Roychoudhury]

• Increase for services like
• online banking, premium content access, enterprise network

connection,..

• Adapting open software platforms, installing 3rd party
applications
• Potential entry point for attackers

• Countermeasure -> security through HW protection

• ARM TrustZone
• TEE
• TrustZone technology
• HW enforced security for authorized software

Background
• Approach facilitates application development and

tranformaion for TEE using ARM TrustZone

• Automatically partitionig existing Android app.

• Unidirectional TEE execution model

• Lack of standardization -> just few Andorid app. use this
technology

• TEE offers Trusted Applications (TAs)
• TA composed of TEE Commands
• Providing services to clients of the TA
• Enforcing confidentiality, integrity and access rights for

resources and data
• Each TA is independent and protected agianst ecosystem of

the application providers
• TAs can access secrue resources and services

• key management
• cryptography
• secure storage
• secure clock
• trusted display
• trusted virtual keyboard via TEE Internal API.

• Client
applications
running in the
rich OS can
access and
exchange data
with TAs via TEE
Client API.

PHASE 1
INPUT:
 +Android App (binary)

 + Source:

 Any method that reads and returns confidential data.

 + Sink:

 Writes confidential data into a resource that can be accessed or

 controlled outside the application.

Gray area -> external components

PHASE 2:
• Partitioning Framework
• Generates candidate code segments to be deployed as TEE

commands of a TA

• Algorithm: Selection of candidate program segments

PHASE 3:
• Grouping statements operating on conf. data
• Including:
• Code segments that manipulate OS-dependent code
• Confidential operations with overlapping contexts which

cannot be isolated
• Code fragments control-dependent on conf. data

PHASE 4:

• Assisting the engineer in transforming code fragments
into TEE Commands.
• Autom. generated code with TEE API calls for

establishing communication and parameters passing
btw normal and secure world

 Gray area -> manually supported components

Partitioning Framework
• Starting with taint analysis enhanced with annotation of

taint-propagating statements with contextual
information
• Classifying the annotated statements and capture a

subset of the statements that will form a secure
partition to be deployed on TEE
• Then identifying groups of statements
• Resolve corner cases
• To maintain the flow of data through transfer

statements -> substitute confidential data references
with opaque references in the transformed application

Unique Opaque References
• Secure transfer of confidential data btw. normal world and

secure wolrd.

• Enable context-sensitive addressing of confidential data from
normal world in cases

 when privileged statements can be reached from different contexts

 or with data propagated from different sources.

• It´s an object reference that points to a unique Java object of a
required type, whereas object’s unique hash code serves as a
key to a hashtable of actual confidential data references stored
in TEE.
• A reference is created by allocating a new unique Java object

of a required type.

Unique Opaque References
• Avoiding compile and runtime errors by generating opaque

references of types as expected by the original implementation.

• Uniquely identify primitive types:
 Applying minor code refactoring on the original application

 Substitute tainted primitive variables with objects of primitive wrapper
classes.

• Opaque references do not conflict with polymorphic method
invocations.

 Polymorphic method invocations with tainted base objects are marked as privileged
and deployed in TEE Commands

 The runtime type of a base object (its opaque reference) does not affect the control
flow of the application.

• Input:
• List of sources
• List of sinks
• Interprocedural CFG (control-flow-graph)
• Worklist of methods

• Output:
• Map of candidate privileged stmts and associate

in/output taint sets

• Stage 1
• Extending the worklist

• Stage 2
• Classifying taint-propagation stmts

Implementation

General view of the components

Experimental Evaluation

• 6 real-world applications and a set of micro-benchmarks
on SierraTEE
• Standard Android Benchmarks
• -> Droidbench and SecuriBench
• Designed to check taint analysis for different cases of data

flow arising in secure context.

• -> Control-dependent
• Text extension from the authors for extracting the decision

part of the control structure as a TEE Command

• Total:
• Number of cases of confidential

data flow from source to sink
• Each benchmark obtained

through taint analysis

• Correct:
• Prototype framework applied
• Manually checked partition
• Results -> number of cases where

resulting transformation is
successful

• -> 86% of cases were
successfully partitioned
and transformed.

Case Study

• 6 widely-used open-source applications
• Google Authenticator
• Tiqr
• OpenKeychain
• Card.io
• Hash it!
• Pixelknot

• Summarize of the
contribution of commands
to the TCB size in SierraTEE
and the change to the
client code.

• It compared the TEE
command with the
execution time of the
original Java code in
Android OS but not
deployed to TEE.

• Table 3 -> computation in
TEE is faster than the
original application.

• Not surprising -> execution
in C code is usually faster
than execution in Java code.

• Most of the Overhead:
• Penalty for setting up TEE

context
• Establishing TEE session
• Switching between normal and

secure world

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

