Automated Partitioning of
Android Applications for
Trusted Execution
Environments

Demil Omerovic

[Konstantin Rubinov, Lucia Rosculete, Tulika Mitra, Abhik Roychoudhury]

* |Increase for services like

e online banking, premium content access, enterprise network
connection,..

 Adapting open software platforms, installing 3rd party
applications
» Potential entry point for attackers

 Countermeasure -> security through HW protection

* ARM TrustZone
« TEE
* TrustZone technology
« HW enforced security for authorized software

Background

* Approach facilitates application development and
tranformaion for TEE using ARM TrustZone

 Automatically partitionig existing Android app.
* Unidirectional TEE execution model

* Lack of standardization -> just few Andorid app. use this
technology

* TEE offers Trusted Applications (TAs)
« TA composed of TEE Commands
e Providing services to clients of the TA
 Enforcing confidentiality, integrity and access rights for
resources and data
 Each TA is independent and protected agianst ecosystem of
the application providers
 TAS can access secrue resources and services
 key management
e cryptography
e secure storage
e secure clock

 trusted display
 trusted virtual keyboard via TEE Internal API.

e Client
applications
running in the
rich OS can
access and
exchange data
with TAs via TEE
Client API.

e

&

Rich OS Application Environment

Trusted Execution Environment

Trusted
Application
Corporate

Trusted Trusted
Application | | Application
DRM Payment
A

S A\ % ‘@

Client Applications

—\ — —,
| B % ‘ 5
TEE Functional API \

TEE Client API

l Rich OS I

Hardware Platform

TEE Internal API

Trusted
Functions

Trusted Core
Environment

HW Keys, Secure age,
Trusted Ul, Crypto
Accelerators,

NFC Controller, etc.

HW Secure
Resources

Figure 1: TEE system architecture

Android app

BANKING
APP

4

Sources
Sinks*

Program
annotation
n

Taint
analysis
(FlowDroid)

©

CFG and tags

Partitioning
framework
(classify,
context
analysis)

Candidate

program locations

$i1 = lengthof $r1;
$i1 = $i1 - $ie;

specialinvoke
$r@.<java.lang.0Objec
t: void <init>()>();

®

Trusted App
generation
(grouping,
control flow

analysis,

code synthesis)

Code fragments

Native code
wrapping

Trusted App

translation

®

Figure 2: An overview of the approach

®

Refactored
Android app

NKING|
APP

Native

Trusted Apps

Refactored

: Android a
Android app Candidate PP
Program CFG and tags e——— program locations Trusted App Code fragments Rl s

annoLc:tion framework it =i, * generu_hon |i| wrapping
(C’OSSiFY |::> specialinvoke |f[> (ngUplng, |f|> Ifl> \
TOint = ! $r@.<java.lang.Objec Conh'0| ﬂow %
I g context t: void <init>()>(); qnalysis ’/f Trusied App Natlve
Ry analysis ' .
iy (FlowDroid) ysis) code synthesis) translation Trusted Apps

® ® ® ® Bnon)

Figure 2: An overview of the approach

PHASE 1

INPUT:
+Android App (binary)
+ Source:

Any method that reads and returns confidential data.
+ Sink:

Writes confidential data into a resource that can be accessed or

controlled outside the application.

Gray area -> external components

Android app

Program
annotation
N

CFG and tags

Taint
analysis
(FlowDroid)

©

PHASE 2:

 Partitioning Framework

Partitioning
framework

(classify,

context

analysis)

Candidate
program locations

®

Trusted App
generation
(grouping,
control flow

analysis,

code synthesis)

Code fragments

Native code

wrapping

®

Figure 2: An overview of the approach

Trusted App
translation

®

Refactored
Android app

Native
Trusted Apps

* Generates candidate code segments to be deployed as TEE

commands of a TA

* Algorithm: Selection of candidate program segments

Refactored

Android app caridid Android app
andidate
Program CES pueaes Parfitioning program locations Trusted App Code fragments |\ tive code
20 annoILGtion framework i ?eneru_t g |ﬁ| wrapping
. i> (Ciﬂssify, |:> specialinvoke |f[> grOUplng’ |f|> P |fl> 1
\ Tainl' $r@.<java.lang.Objec Conh'0| ﬂow %
! context t: vold <init>()>();) %% Trusted App fiativa
analysis analysis) analysis, It Tiiictad &
Sl (FlowDroid) code synthesis) translation FHSRER SIPRS

® ® ® ® Bnon)

Figure 2: An overview of the approach

PHASE 3:
* Grouping statements operating on conf. data

* Including:
 Code segments that manipulate OS-dependent code

» Confidential operations with overlapping contexts which
cannot be isolated

* Code fragments control-dependent on conf. data

Refactored

ANCIg AR Candidate P
Program CES pueaes Parfitioning program locations Trusted App Code fragments |\ tive code
T annolt~ation F el i1 = ; generu_hon lﬁl wrapping '!?’”“
' [Il> (classify (grouping, i> ; Ifl> - :
‘ Taint ' control flow %
) context : % Trusted App Native
analysis analysis) analysis, lati Trusted A
Sl (FlowDroid) Y code synthesis) translation i s

® ® ® ® Bnon)

Figure 2: An overview of the approach

PHASE 4:

e Assisting the engineer in transforming code fragments
into TEE Commands.

 Autom. generated code with TEE API calls for
establishing communication and parameters passing
btw normal and secure world

Gray area -> manually supported components

Partitioning Framework

e Starting with taint analysis enhanced with annotation of
taint-propagating statements with contextual
iInformation

 Classifying the annotated statements and capture a
subset of the statements that will form a secure
partition to be deployed on TEE

* Then identifying groups of statements
* Resolve corner cases

* To maintain the flow of data through transfer
statements -> substitute confidential data references
with opaque references in the transformed application

Unique Opague References

 Secure transfer of confidential data btw. normal world and
secure wolrd.

* Enable context-sensitive addressing of confidential data from
normal world in cases

- when privileged statements can be reached from different contexts
- or with data propagated from different sources.

* It’s an object reference that points to a unique Java object of a
required type, whereas object’s unique hash code serves as a
key to a hashtable of actual confidential data references stored
in TEE.

* A reference is created by allocating a new unique Java object
of a required type.

Unique Opague References

* Avoiding compile and runtime errors by generating opaque
references of types as expected by the original implementation.

* Uniquely identify primitive types:
Applying minor code refactoring on the original application

Substitute tainted primitive variables with objects of primitive wrapper
classes.

* Opaque references do not conflict with polymorphic method

Invocations.
Polymorphic method invocations with tainted base objects are marked as privileged
and deployed in TEE Commands
The runtime type of a base object (its opaque reference) does not affect the control
flow of the application.

Algorithm 1 Analysis of candidate program segments

Input: S5 — list of sources; K — list of sinks; (G — interprocedural CFG; M -

Output: OUT

=

12:
13:

14:
15:
16:

17:
18:
19:

20:
7.4
22:

23:
24:
25:
26:

27:
28:

20:
30:
31:

0600 G N B b

worklist of methods;

B> output is a map of candidate privileged stmts and

associated input/output taint sets

M+ 0; Meagche «— 0

: for s in S do

M «— M U {methodO f(s)}
while M # () do

m 4 pick(M)

if m & Mcache then

> Initialize worklist of methods

D, + getMethodContext(m)

for stmt in m do

’I‘st‘rnt == getTa-gs(stmt)
if isAnnotated(stmt) A (3t € Tstmt : Dm = t) then

> Process tagged statement with matching method context:

OUT «+ OUT U {processStatement(stmt, m)}

j":irc«:!.c!uz <« Aﬂfcache Jm
M +— M\ m
procedure processStatement(-n, m]

P,, + getInTaintSetOf(n, D)
R, + getOutTaintSetOf(n, D)

STAGE 1: Extend the worklist

> Transfer call statement with a tainted parameter:
if isCallStatement(n) A (params(n) N P, # @) then
M «— M U {getCallee(n,G)} > add callee to the worklist

return)

> Returning taint — add callers of m to the worklist:

if isExitStatement(n) then

M «— M U {callersOf(m,G)}

return

> Taint flows to a field variable — add callers of class methods to the

worklist:

if 3r € R, AnisFieldVar(r) then
c « getDeclaringClass(r)
for m in get M ethodsO f(c) do
M +— M U {callersOf(m,G)}

> Source stmt taints parameters of enclosing method — add callers of m

to the worklist:
if (n € S)A(D,, £ ®) then

M «— M U {ecallersOf(m,G)}
STAGE 2: Record privileged statement
if isPrivilegedStatement(n) then

return (n, Ry, Pn)
else
return

> transfer statements are not added

Input:
* List of sources
* List of sinks
* Interprocedural CFG (control-flow-graph)
* Worklist of methods

Output:

 Map of candidate privileged stmts and associate
in/output taint sets

Stage 1

« Extending the worklist

Stage 2

» Classifying taint-propagation stmts

Implementation

App _

(.apk)

Sources
Sinks .

(from SuSi)

Spark

FlowDroid

Call graph/
— ICFG

v

Taint analysis

{InfoFlowProblem)

= Annuiu‘riurll

Figure 4: System implementation

- Taint lows —m
[InfoflowResults)

Annotated
ICFG

Bt

General view of the components

Soot
Partitioning il i
framework —|—» App
StmtProcessor | i
Commands
CMDMethodDatal
Grouping
CodeGenerator Wrapper
—
4
Trusted App

. Trusted App_1 TrustedApp_N
Original source code
: Param marshal. Param marshal.
Native calls CMD execution | . |CMD execution
JNI/TEEClient API: TA integration/registration

Refactored Java-to-C casting User =

srac i.::ure TEE Client setup Libraries l
Android app TEE

Figure 5: Generated and transformed source code

Experimental Evaluation

* 6 real-world applications and a set of micro-benchmarks
on SierraTEE

e Standard Android Benchmarks

* -> Droidbench and SecuriBench
* Designed to check taint analysis for different cases of data
flow arising in secure context.

» -> Control-dependent

» Text extension from the authors for extracting the decision
part of the control structure as a TEE Command

* Total:

Number of cases of confidential
data flow from source to sink

Each benchmark obtained
through taint analysis

e Correct:

Prototype framework applied
Manually checked partition

Results -> number of cases where
resulting transformation is
successful

-> 86% of cases were
successfully partitioned
and transformed.

Table 1: Micro-benchmarks — results

SecuriBench Correct/Total | DroidBench Correct/Total
Aliasing 5/5 Aliasing 1

Arrays 6/6 ArraysAndLists 2/3

Basic 30/40 FieldAndObjectSens /7
Collections 11/11 GeneralJava 23/23
DataStructures B/5 ImplicitFlows 1/2
Factories 3/3 Control-dependent Correct/ Total
Inter 11/12 DecisionProtecSimple 9/12

Pred 6/8 DecisionProtec 6/8
StrongUpdates 4/4

Case Study

* 6 widely-used open-source applications
 Google Authenticator
* Tigr
 OpenKeychain
e Card.io
 Hash it!
* Pixelknot

card

e Summarize of the
contribution of commands
to the TCB size in SierraTEE
and the change to the
client code.

Table 2: Client code and Trusted Computing Base.
CCF = Confidential code fragment; JNIC = JNI + Java-to-C
code; TCAC = TEE Client APl code; TCC = TEE Command
code; PM&TIAC = Param. marshal.4+ TEE Internal API code;

LIB = User or external library.

Trusted App Original app Normal World Secure World
Command Size CCF JNIC TCAC TCC PM& TTAC LB
(KLOC) | (LOC) (LOC) (LOC) | (LOC) (LOC) (KLOC)
GA TOTP 3.7 3 49 113 6 218 | 134.9
GA HOTP - 6 9 95 8 143 | 134.9
tigr CMD1 6.1 8 15 121 11 250 1.9
tiqgr CMD?2 - 1 20 116 6 260 n/a
tigr CMD3 - 115 5 116 1 40 1.37
tiqgr CMD4 - 1 20 116 6 260 n/a
OK genRSA 57 1 31 125 24 210 | 131.7
OK encRSA - 1 438 125 24 232 | 131.7
Cl CMD1 15 30 5 90 5 210 1.37
Cl CMD2 - 33 5 90 5 210 1.37
PK CMD1 5 1 5 90 5 210 1.37
PK CMD2 - 1 5 90 5 210 1.37
PK CMD3 - 1 42 120 76 200 | 131.7
PK CMD4 - 1 52 130 120 260 | 131.7
Hash it! 6 4 49 114 6 218 | 131.7

It compared the TEE
command with the
execution time of the
original Java code in
Android OS but not
deployed to TEE.

Table 3 -> computation in
TEE is faster than the
original application.

Not surprising -> execution
in C code is usually faster

than execution in Java code.

Most of the Overhead:

* Penalty for setting up TEE
context

» Establishing TEE session

* Switching between normal and
secure world

Table 3: TEE Command execution time. Mean val-
ues with standard deviations in parentheses.

Trusted App Orig. app JNI copy TEE Command
Command exec. exec. exec.

Concat 13 ps (0.9) 9 us (15) 9 us (10)
Multiply 140 ps (10) 30 us (11) 30 us (10)
GA TOTP 640 us (107) 40 ps (4) 85 us (18)
GA HOTP 600 us (28) 40 us (3) 70 us (20)
tigr CMD1 14 us (3) 13 us (1) 250 ps (35)
tiqr CMD?2 21 us (6) 13 ps (1) 220 ps (10)
tigr CMD3 2.5 us (0.4) 0.8 us (0.04) 78 us (5)
tigr CMD4 19 us (4) 10 ps (0.5) 220 ps (14)
OK genRSA 2.8 s (1.8) 0.6 s (0.3) 0.5s(0.3)
OK encRSA 0.8 s (0.04) 0.034 s (0.0009) 0.1 s (0.001)
CT CMD1 3.8 us (0.8) 0.7 s (0.03) 78 11 (5)
Cl CMD2 3.2 us (0.7) 0.6 us (0.06) 79 us (5)
PK CMD1 3.2 us (0.5) 0.9 us (0.06) 86 us (6)
PK CMD2 4.6 us (0.4) 0.7 pus (0.03) 80 us (5)
PK CMD3 1.99 s (0.0001) 26 us (3) 280 us (34)
PK CMD4 || 2.11 s (0.0002) 27 s (5) 267 s (32)
Hash it! 557 us (61) 27 us (5) 71 ps (10)

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

