Machine learning is everywhere

- Computer vision
- Speech recognition
- Biometrics
- Text processing
- Recommendation systems
- Spam detection
- Malware Detection
- ...
Learning in adversarial environment

- Problem considered in the research community at least since early 2000s
- With the hype over machine learning (deep learning) the problem gains importance
- Adversarial perturbations studied in vision, text, malware...
Danger - ML systems are vulnerable

- Easy to perturb data and cause misclassification

Danger - ML systems are vulnerable

Not only computer vision...

Rising interest

- **In the research community**
 - Many new papers in top level ML and security conferences, especially since 2015.
 - Still unsolved problems

- **In the tech media and general public**
 - AI unreliable?
 - What if AI is hacked, we are doomed...
We need to consider attacks (security)

- Potentially unreliable:
 - Training data - poisoning
 - Test data - evasion

- Evaluate security under adversarial environment

- Think about designing robust systems
Arms race

1. Analyze learner (Exploring)
2. Perform adversarial attacks
3. Analyze attacks' impact
4. Countermeasures (e.g., retraining, adding/removing features)

1. Adversary modelling
2. Simulate potential attacks
3. Evaluate attacks' impact
4. Enhance system security by design
From Adversarial to Explainable Learning

- Behavior in adversarial conditions -> new information about learning algorithms
- Better understanding of algorithms -> possibly more robustness
Seminar goals

- Investigate inherent vulnerabilities of ML methods
- Special interest for: SVM, Neural Networks, Random Forest
- Consider attack types and countermeasures
- Study problems in various application scenarios
- Be aware of security when applying ML in the future
- Prepare for further research in this area
Some of the possible topics (1)

- **Evasion** of machine learning classification algorithms
- **Feature selection** in adversarial environment
- Attacks on **Support Vector Machines** (SVM)
- Connections of **Robustness** and **Regularization** in SVM
- Analysis of **adversarial examples** for **Neural Networks**
- Adversarial attacks on **reinforcement learning**, **sequence labeling**, **structured prediction**, **graphs**

...
Some of the possible topics (2)

- Generative Adversarial Networks, Adversarial Autoencoders
- Techniques for increasing robustness of Neural Networks
- Adversarial attacks on spam detection
- Evading and Poisoning malware detection systems
- Attacks on graph-based anomaly detection
- Provably secure learning and verification
- Tree ensembles under attack
Seminar plan

- 12 students, 12 topics, 6+1 seminar meetings
- Each student gets a topic with 2-4 highly regarded research papers
- Every student presents his topic on one seminar meeting (45 min)
- Students write a short report to summarize their topic (14 pages LNCS)
- Grading based on the presentation and report
Schedule

- Topics assigned after the matching (more info in a minute)
- Block-seminar - Tuesdays and Thursdays in May (mostly) at 4pm
 - 25.04. - Introductory Meeting - instructions about presentation and report
 - 14.05. - Student Presentation 1,2
 - 16.05. - Student Presentation 3,4
 - 21.05. - Student Presentation 5,6
 - 23.05. - Student Presentation 7,8
 - 28.05. - Student Presentation 9,10
 - 31.05. - Student Presentation 11,12
Prerequisites

- Student of Informatics or similar (advantage to Master students)
- Machine Learning - basic knowledge
- Interest in deeper knowledge of ML methods
How to apply?

- Send an e-mail to kolosnjaji@sec.in.tum.de until 08.02. with the following information:
 - Previous knowledge that qualifies you for the seminar (Machine Learning courses, internships, independent projects, ...)
 - Optional: what topics are of your special interest, motivation...

- Apply through the matching system
Topic assignment

- Seminar Topics: published on 25.02.
- Pick and send three favorite topics (ordered list) until 03.03.
- We make final assignment on 04.03.
- Assignment: based on previous knowledge, motivation...
More information

- Follow the course website:
 https://www.sec.in.tum.de/i20/teaching/ss2019/adversarial-and-secure-machine-learning

- Ask course organizers:
 Bojan Kolosnjaji, TUM: kolosnjaji@sec.in.tum.de
 Ching-Yu Kao, Fraunhofer AISEC: ching-yu.kao@aisec.fraunhofer.de