
OpenSGX: An Open Platform for SGX Research

Peng Xu

April 29, 2019



Table of Contents

I Introduction

I Background

I System Overview

I Design

I Case Studies

I Evaluation

I Conclusion



Introduction

1. Why TEE is necessary?

2. How to adopt the traditional software development into TEE
model?

3. Access to the SGX platform is (currently) limited [2016]

4. openSGX

4.1 Emulates Intel SGX
4.2 Implements on Instruction-level
4.3 Extends open-sourced QEMU emulator
4.4 Includes emulator, emulated OS layer, enclave program

loader/package, user library, debugging supporting and
performance monitoring



Introduction

1. Why TEE is necessary?

2. How to adopt the traditional software development into TEE
model?

3. Access to the SGX platform is (currently) limited [2016]

4. openSGX

4.1 Emulates Intel SGX
4.2 Implements on Instruction-level
4.3 Extends open-sourced QEMU emulator
4.4 Includes emulator, emulated OS layer, enclave program

loader/package, user library, debugging supporting and
performance monitoring



Background

1. Intel SGX

1.1 SGX memory protection : enclave model
1.2 Enclave Page Cache (EPC)
1.3 Instruction Set Architecture (ISA)
1.4 User-level and privileged instruction

2. OpenSGX Specification

2.1 Faithfully implements the Intel SGX specification
2.2 Extends to support OS, debugging and monitoring
2.3 Not implement all Intel SGX’s instruction

3. Threats

3.1 Assumes an adversary can control all software components
3.2 Considers the thwart attacks mounted by system software
3.3 Denial-of-service is our of scope



Background

1. Intel SGX

1.1 SGX memory protection : enclave model
1.2 Enclave Page Cache (EPC)
1.3 Instruction Set Architecture (ISA)
1.4 User-level and privileged instruction

2. OpenSGX Specification

2.1 Faithfully implements the Intel SGX specification
2.2 Extends to support OS, debugging and monitoring
2.3 Not implement all Intel SGX’s instruction

3. Threats

3.1 Assumes an adversary can control all software components
3.2 Considers the thwart attacks mounted by system software
3.3 Denial-of-service is our of scope



Background

1. Intel SGX

1.1 SGX memory protection : enclave model
1.2 Enclave Page Cache (EPC)
1.3 Instruction Set Architecture (ISA)
1.4 User-level and privileged instruction

2. OpenSGX Specification

2.1 Faithfully implements the Intel SGX specification
2.2 Extends to support OS, debugging and monitoring
2.3 Not implement all Intel SGX’s instruction

3. Threats

3.1 Assumes an adversary can control all software components
3.2 Considers the thwart attacks mounted by system software
3.3 Denial-of-service is our of scope



System Overview - Components

1. Emulated Intel SGX hardware

2. OS Emulation

3. Enclave program loader

4. OpenSGX user library (sgxlib)

5. Debugger support

6. Performance monitoring



Design - Hardware Emulation

1. Instruction Set Architecture (ISA): User and Super privilege

2. Enclave Page Cache (EPC)

2.1 A contiguous memory region
2.2 Sgx init() allocates and initializes the system-wide EPC pages

3. EPC access protection

3.1 An enclave accesses only its own EPC pages
3.2 Enclave Page Cache Map (EPCM): maintains these access

permissions
3.3 Enclave and non-enclave accesses

4. EPC encryption

5. Data structure and SGX



Design - OS Emulation

1. Bootstrapping: sys init()

2. Enclave initialization

2.1 SGX Instruction: ECREATE, EADD, EEXTEND and EINIT
2.2 sys create enclave()

3. EPC page translation: virtual address to physical address

4. Dynamic EPC page allocation

4.1 EAUG, EACCEPT
4.2 sys add epc()

5. Performance monitor

5.1 Custom identifier (Keid)
5.2 sys stat enclave()

6. System call emulation

6.1 Emulates system call as a function call
6.2 Context switching
6.3 State Save Area (SSA)
6.4 sgx add epc()



Design - Loader

1. Compilation

1.1 Toolchain: opensgx generates an enclave program
1.2 Structure of enclave program: code, data sections, linked libs

2. Loader

2.1 Determines the memory layout of code, data, stack and heap
sections

2.2 Obtains the information about code and data as well as base
address

2.3 Forwards the memory layout information to the OS emulation



Design - User library

1. User-level library - sgxlib

2. Host APIs and ENCLAVE APIs



Design - User library

1. User-level library - sgxlib

2. Custom in enclave library

3. Shared code and data memory trampoline and stub

4. Enclave - Host communication: Pipe-liked mechanism

5. Dynamic memory allocation

6. Defense against malicious host apps and OS

7. Remote attestation



Design - Defense against malicious host apps and OS

1. Memory-related operations (MEM)

2. Network and I/O services (IO/NET)

3. Non-determinism and resources (DBG, TIME, RAND)



Debugging

1. Debugging hardware

2. Debugging enclaves: gdb-stub

3. New gdb commands: info epc, info epcm, info secs and list
enclaves



Design - Performance Monitoring

1. Enclave descriptor: stores TCS and usage statistics

2. Number of context switches

3. Entires/exits of the OS emulation layer

4. Number of TLB flushes

5. Number of dynamically allocated EPC



Case studies - Shielding Tor Nodes

1. Attacks on Tor

1.1 Manipulating Tor Components
1.2 Manipulating routing

2. Benefits of applying TEE

2.1 Attestation of software components
2.2 Protection against tampered OS
2.3 contains all critical operations that use private data structures

in Tor-enclave
2.4 expose an RPC interface to Tor-non-enclave



Secure I/O Path

1. Allows secure communication between the CPU/memory and
devices

2. Emulates the encrypted communication channel with message
authentication



Performance Profiling

1. Environment setup

2. The number of EPC pages used

3. Additional CPU cycles

4. Context switch overhead

5. The number of RPC calls



Questions?


