
Rootkit Programming

Fabian Franzen, Clemens Jonischkeit

Technische Universität München
Chair for IT-Security
Munich, Germany

29.01.2019



Overview

Goal: Create your own custom Linux rootkit1 in course!

You will learn:
1. What a rootkit is
2. Linux kernel principles and LKM programming
3. How rootkits work from a practical perspective
4. How to detect and analyse rootkits

I by digging a bit into Virtual Machine Introspection (VMI)

You will be working:
I in teams of two or on your own

1We will rely on Linux Kernel Modules (LKM)



Rootkits

What is a rootkit?
A kit (i. e., group of programs or functions) that allows an attacker
to maintain root access.

What specific roles does a rootkit have?

1. provides a backdoor or way back into the system
2. make the admin belive that no backdoor is present

I hides files, connections, etc.

3. overtime the term has been perverted and there are often
additional elements implemented into a rootkit



Curriculum

Your rootkit will target Debian 9 and its 4.9 kernel (on a 64bit
machine!)
I system call hooking
I file hiding
I process hiding
I module hiding
I socket hiding
I privilege escalation
I keylogging
I foundations of VMI



Modus Operandi & Requirements

I There will be weekly programming assignments.

To participate you must have...
I a programming background in C

I the kernel is written in C
I all assignments will be done in C

I root access to a machine2 running Linux
I basic knowledge how operating systems work

2with x86-64 architecture and VM-x extensions



Time & Place

every Tuesday 14:00 - 16:00 in MI 01.05.0133

3but of course not during the semester break



Qualification Task

I Please solve this small qualification task
I Set up a VM using QEMU for this course with Debian 9
I Write a kernel module4 that prints a process list on module

load including these process properties:
I PID (in root namespace)
I PID (in its own namespace)
I Comm (process name)
I ID of PID-Namespace
I ID of User-Namespace
I ID of Network-Namespace

I Latest, until Wed, 13th February 2019 23:59 to
franzen@sec.in.tum.de!

I Registration via Matching System neccessary!

4for the standard debian kernel



Tipps

I Use unshare (the shell tool) to create a testing namespaces
I You can also test using docker
I Namespace-IDs of processes can be seen in /proc/<pid>/ns/



Literature

I LXR Free Electrons5 (source code browser)
I The Linux Kernel Module Programming Guide6

I Love, Robert. Linux Kernel Development, Third Edition
(2010)7

5https://elixir.bootlin.com/linux/v4.9.133/source
6http://tldp.org/LDP/lkmpg/2.6/html/index.html
7http:

//proquest.safaribooksonline.com.eaccess.ub.tum.de/9780768696974

https://elixir.bootlin.com/linux/v4.9.133/source
http://tldp.org/LDP/lkmpg/2.6/html/index.html
http://proquest.safaribooksonline.com.eaccess.ub.tum.de/9780768696974
http://proquest.safaribooksonline.com.eaccess.ub.tum.de/9780768696974


Questions?


	Rootkit Programming

