
Remote attestation

Peng Xu

May 14, 2019



SGX Application - Attestation

1. What is attestation?
I Attestation is a mechanism for software to prove its identity
I Attestation is the process of demonstrating that a piece of

software has been established on a platform

2. Why we need attestation?
I To prove to a remote party that your operating system and

application software are intact and trustworthy

3. How can we implement attestation by Intel SGX?
I Local (Intra-platform) attestation

I a mechanism for creating a basic assertion between enclaves
running on the same platform

I Remote (Inter-platform) attestation
I a mechanism that provides the foundation for attestation

between an enclave and a remote third party



SGX Application - Attestation

1. What is attestation?
I Attestation is a mechanism for software to prove its identity
I Attestation is the process of demonstrating that a piece of

software has been established on a platform

2. Why we need attestation?
I To prove to a remote party that your operating system and

application software are intact and trustworthy

3. How can we implement attestation by Intel SGX?
I Local (Intra-platform) attestation

I a mechanism for creating a basic assertion between enclaves
running on the same platform

I Remote (Inter-platform) attestation
I a mechanism that provides the foundation for attestation

between an enclave and a remote third party



SGX Application - Attestation

1. What is attestation?
I Attestation is a mechanism for software to prove its identity
I Attestation is the process of demonstrating that a piece of

software has been established on a platform

2. Why we need attestation?
I To prove to a remote party that your operating system and

application software are intact and trustworthy

3. How can we implement attestation by Intel SGX?
I Local (Intra-platform) attestation

I a mechanism for creating a basic assertion between enclaves
running on the same platform

I Remote (Inter-platform) attestation
I a mechanism that provides the foundation for attestation

between an enclave and a remote third party



SGX Application - Remote Attestation

Figure: remote attestation

https://software.intel.com/en-us/node/702987
https://software.intel.com/en-us/articles/code-sample-intel-
software-guard-extensions-remote-attestation-end-to-end-example



SGX Application - Remote Attestation

1. A client’s enclave can attest to a remote entity that it is
trusted

2. establishes an authenticated communication channel with that
entity

3. the client’s enclave proves the following:
I Its identity
I That it has not been tampered with
I That it is running on a genuine platform with Intel SGX

enabled

4. the remote server can safely provision secrets to the enclave



Basic Concepts

1. Cryptography
I Private key/symmetric cryptography

Figure: Symmetric key encryption



Basic Concepts

1. Cryptography
I Public key/asymmetric cryptography

Figure: Asymmetric key encryption



Basic Concepts

1. Signature
I Public key/asymmetric cryptography

Figure: Private key signing



Basic Concepts

1. Client-Server protocol - Sigma protocol
I Commitment, challenge and response

Figure: Sigma Protocol



SGX Application - Remote Attestation

Figure: remote attestation

https://software.intel.com/en-us/sgx/sdk



SGX Application - Attestation

1. Attestation application structure
I ISV Enclave(secure world)
I ISV App(Non-secure world)
I Service Provider
I Makefile
I Include

2. Basic concepts
I Public key/Private key
I Signature
I Service provider
I etc.



SGX Application - Attestation

1. Attestation application structure
I ISV Enclave(secure world)
I ISV App(Non-secure world)
I Service Provider
I Makefile
I Include

2. Basic concepts
I Public key/Private key
I Signature
I Service provider
I etc.



Logical functionalities - Preparing msg2

1. Checks the values in the request

2. Generates its own DHKE parameter,

3. Sends a query to the IAS to retrieve the Signature Revocation
List (SigRL) for the Intel EPID GID sent by the client.



Logical functionalities - Processing msg2

1. Generate a random EC key using the P-256 curve. This key
will become Gb.

2. Derive the key derivation key (KDK) from Ga and Gb:
I Compute the shared secret using the client’s public session key,

Ga, and the service provider’s private session key (obtained
from Step 1), Gb. The result of this operation will be the x
coordinate of Gab, denoted as Gabx.

I Convert Gabx to little-endian byte order by reversing its bytes.
Perform an AES-128 CMAC on the little-endian form of Gabx
using a block of 0x00 bytes for the key.

I The result of 2.3 is the KDK.

3. Derive the SMK from the KDK by performing an AES-128
CMAC on the byte sequence:
I sgx ra msg2 t* p msg2 body =

(sgx ra msg2 t*)((uint8 t*)p msg2 full +
sizeof(ra samp response header t));

I PRINT ATTESTATION SERVICE RESPONSE()



Logical functionalities - Processing msg2

1. Verifies the service provider signature.

2. Checks the SigRL.

3. Returns msg3, which contains the quote used to attest that
particular enclave.
I sgx ra proc msg2(context, enclave id,

sgx ra proc msg2 trusted,
sgx ra get msg3 trusted, p msg2 body, p msg2 full-¿size,
&p msg3, &msg3 size);

I sgx status t sgx ra proc msg2 trusted();
I sgx status t sgx ra get msg3 trusted();



from ”sgx tkey exchange.edl” import *;

enclave {
from ”sgx tae service.edl” import *;
trusted {
I public sgx status t sgx ra get ga();

I public sgx status t sgx ra proc msg2 trusted();

I public sgx status t sgx ra get msg3 trusted();

};
};



Question?

Questions?


