Sealing data/Secure storage

Peng Xu

June 4, 2019

Writing a sealing application for Intel SGX

1. What is Digital rights management (DRM)?
» Definition: a set of access control technologies for restricting

the use of proprietary hardware and copyrighted works
» TEE-based DRM mechanism

2. Sealed Data in Intel SGX
» Motivation

» When an enclave is instantiated, the hardware provides
protections (confidentiality and integrity) to its data

» When the enclave process exits, the enclave will be destroyed
and any data that is secured within the enclave will be lost

» The enclave must make special arrangements to store the data
outside the enclave in order to be re-used later

Writing a sealing application for Intel SGX

1. What is Digital rights management (DRM)?

» Definition: a set of access control technologies for restricting
the use of proprietary hardware and copyrighted works
» TEE-based DRM mechanism

2. Sealed Data in Intel SGX
» Motivation

>

When an enclave is instantiated, the hardware provides
protections (confidentiality and integrity) to its data

When the enclave process exits, the enclave will be destroyed
and any data that is secured within the enclave will be lost
The enclave must make special arrangements to store the data
outside the enclave in order to be re-used later

policies for Seal Keys

MRENCLAVE: Sealing to the Enclave Identity

MRSIGNER: Sealing to the Sealing(the key/identity of the
Sealing Authority) Identity

SGX-assisted DRM application

1. DRM-APP
> App.cpp
» ReplayProtectedDRM.cpp/.h
» TimeBasedDRM.cpp/.h

2. DRM-Enclave

» Enclave.cpp
» Enclave.ed|
» Other files, like *.pem, config files

Sealing and unsealing operations

1. Several key APls

> sgx_calc_sealed_data_size(...)
> sgx_seal_data(...) and sgx_seal_data_ex(...)
> sgx_unseal_data(...) and sgx_unseal_data_ex(...)

Sealing and unsealing operations

1. Several key APIs

> sgx_calc_sealed_data_size(...)
> sgx_seal_data(...) and sgx_seal_data_ex(...)
> sgx_unseal_data(...) and sgx_unseal_data_ex(...)

2. Sgx_seal_data() function: sealing the plaintext to ciphertext.
The ciphertext can be delivered outside of enclave.

» Keys: MRENCLAVE and MRSIGNER
» Parameters:

> additional_MACtext_length - length of the plaintext data
stream in bytes. The additional data is optional and thus the
length can be zero if no data is provided

» p_additional_MACtext - pointer to the plaintext data stream
to be GCM protected

P> text2encrypt_length - length of the data stream to encrypt in
bytes

P> p_text2encrypt - pointer to data stream to encrypt

sealed_data_size - Size of the sealed data buffer passed in

» p_sealed_data - pointer to the sealed data structure containing
protected data

v

Sealing and unsealing operations

1. Sgx_unseal_data() function:Unseal the sealed data structure
passed in and populate the MAC text and decrypted text
buffers with the appropriate data from the sealed data
structure.

» Keys: MRENCLAVE and MRSIGNER
> Parameters:

» p_sealed_data - pointer to the sealed data structure containing
protected data

» p_additional_MACtext - pointer to the plaintext data stream
which was GCM protected

> p_additional_MACtext_length - pointer to length of the
plaintext data stream in bytes

P p_decrypted_text - pointer to decrypted data stream

» p_decrypted_text_length -pointer to length of the decrypted
data stream to encrypt in bytes

Similar with SGX: writing an application with optee

1. Host(Client Application)
> host.c/.h
> Makefile

2. TA(Trusted Application)
» math.c/.h
> Makefile

3. Both Host and TA sides are written in C

Similar with SGX: writing an application with optee

1. APIs

TEE_Malloc()

TEE_MemMove()

TEE _CreatePersistentObject()
TEE_WriteObjectData()
TEE_OpenPersistentObject()
TEE_ReadObjectData()
TEE_CloseAndDeletePersistentObject()

VVYyVVYYVYYVYY

Similar with SGX: writing an application with optee

1. APIs

TEE_Malloc()

TEE_MemMove()

TEE _CreatePersistentObject()
TEE_WriteObjectData()
TEE_OpenPersistentObject()
TEE_ReadObjectData()
TEE_CloseAndDeletePersistentObject()

VVYyVVYYVYYVYY

2. Keys
» Secure Storage Key (SSK)
» Trusted Application Storage Key (TSK)
» File Encryption Key (FEK)

Key Generation

HUK: Hardware Unique Key

SSK: HMACsHa2s6(HUK, ChipID||\staticstring™)
TSK: HMACspa2s6(SSK, TAyUID)
PRNG:pesudo random number generator

FEK: f(PRNG)

o L=

Meta Data Encryption

Meta Field: |EncryptedFEK| MeialVl Tag |Enc:rypled MelaDatal

Figure: Meta Data Flow

Block Data Encryption Flow

Meta Field: |Enc:rypled FEK|

Decryption
y

k.
[roc] (o]

¥
| FEK | | Block IV |
1 K

.

— ."‘
| AES,

Block Field: | Block IV | Tag |Encrypied Block Dala|

Figure: Block Data Encryption

Question?

Questions?

