
Sealing data/Secure storage

Peng Xu

June 4, 2019

Writing a sealing application for Intel SGX

1. What is Digital rights management (DRM)?
I Definition: a set of access control technologies for restricting

the use of proprietary hardware and copyrighted works
I TEE-based DRM mechanism

2. Sealed Data in Intel SGX
I Motivation

I When an enclave is instantiated, the hardware provides
protections (confidentiality and integrity) to its data

I When the enclave process exits, the enclave will be destroyed
and any data that is secured within the enclave will be lost

I The enclave must make special arrangements to store the data
outside the enclave in order to be re-used later

I Two policies for Seal Keys
I MRENCLAVE: Sealing to the Enclave Identity
I MRSIGNER: Sealing to the Sealing(the key/identity of the

Sealing Authority) Identity

Writing a sealing application for Intel SGX

1. What is Digital rights management (DRM)?
I Definition: a set of access control technologies for restricting

the use of proprietary hardware and copyrighted works
I TEE-based DRM mechanism

2. Sealed Data in Intel SGX
I Motivation

I When an enclave is instantiated, the hardware provides
protections (confidentiality and integrity) to its data

I When the enclave process exits, the enclave will be destroyed
and any data that is secured within the enclave will be lost

I The enclave must make special arrangements to store the data
outside the enclave in order to be re-used later

I Two policies for Seal Keys
I MRENCLAVE: Sealing to the Enclave Identity
I MRSIGNER: Sealing to the Sealing(the key/identity of the

Sealing Authority) Identity

SGX-assisted DRM application

1. DRM-APP
I App.cpp
I ReplayProtectedDRM.cpp/.h
I TimeBasedDRM.cpp/.h

2. DRM-Enclave
I Enclave.cpp
I Enclave.edl
I Other files, like *.pem, config files

Sealing and unsealing operations

1. Several key APIs
I sgx calc sealed data size(...)
I sgx seal data(...) and sgx seal data ex(...)
I sgx unseal data(...) and sgx unseal data ex(...)

2. Sgx seal data() function: sealing the plaintext to ciphertext.
The ciphertext can be delivered outside of enclave.
I Keys: MRENCLAVE and MRSIGNER
I Parameters:

I additional MACtext length - length of the plaintext data
stream in bytes. The additional data is optional and thus the
length can be zero if no data is provided

I p additional MACtext - pointer to the plaintext data stream
to be GCM protected

I text2encrypt length - length of the data stream to encrypt in
bytes

I p text2encrypt - pointer to data stream to encrypt
I sealed data size - Size of the sealed data buffer passed in
I p sealed data - pointer to the sealed data structure containing

protected data

Sealing and unsealing operations

1. Several key APIs
I sgx calc sealed data size(...)
I sgx seal data(...) and sgx seal data ex(...)
I sgx unseal data(...) and sgx unseal data ex(...)

2. Sgx seal data() function: sealing the plaintext to ciphertext.
The ciphertext can be delivered outside of enclave.
I Keys: MRENCLAVE and MRSIGNER
I Parameters:

I additional MACtext length - length of the plaintext data
stream in bytes. The additional data is optional and thus the
length can be zero if no data is provided

I p additional MACtext - pointer to the plaintext data stream
to be GCM protected

I text2encrypt length - length of the data stream to encrypt in
bytes

I p text2encrypt - pointer to data stream to encrypt
I sealed data size - Size of the sealed data buffer passed in
I p sealed data - pointer to the sealed data structure containing

protected data

Sealing and unsealing operations

1. Sgx unseal data() function:Unseal the sealed data structure
passed in and populate the MAC text and decrypted text
buffers with the appropriate data from the sealed data
structure.
I Keys: MRENCLAVE and MRSIGNER
I Parameters:

I p sealed data - pointer to the sealed data structure containing
protected data

I p additional MACtext - pointer to the plaintext data stream
which was GCM protected

I p additional MACtext length - pointer to length of the
plaintext data stream in bytes

I p decrypted text - pointer to decrypted data stream
I p decrypted text length -pointer to length of the decrypted

data stream to encrypt in bytes

Similar with SGX: writing an application with optee

1. Host(Client Application)
I host.c/.h
I Makefile

2. TA(Trusted Application)
I math.c/.h
I Makefile

3. Both Host and TA sides are written in C

Similar with SGX: writing an application with optee

1. APIs
I TEE Malloc()
I TEE MemMove()
I TEE CreatePersistentObject()
I TEE WriteObjectData()
I TEE OpenPersistentObject()
I TEE ReadObjectData()
I TEE CloseAndDeletePersistentObject()

2. Keys
I Secure Storage Key (SSK)
I Trusted Application Storage Key (TSK)
I File Encryption Key (FEK)

Similar with SGX: writing an application with optee

1. APIs
I TEE Malloc()
I TEE MemMove()
I TEE CreatePersistentObject()
I TEE WriteObjectData()
I TEE OpenPersistentObject()
I TEE ReadObjectData()
I TEE CloseAndDeletePersistentObject()

2. Keys
I Secure Storage Key (SSK)
I Trusted Application Storage Key (TSK)
I File Encryption Key (FEK)

Key Generation

1. HUK: Hardware Unique Key

2. SSK: HMACSHA256(HUK ,ChipID||\staticstring”)

3. TSK: HMACSHA256(SSK ,TAUUID)

4. PRNG:pesudo random number generator

5. FEK: f (PRNG)

Meta Data Encryption

Figure: Meta Data Flow

Block Data Encryption Flow

Figure: Block Data Encryption

Question?

Questions?

