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Writing a sealing application for Intel SGX

1. What is Digital rights management (DRM)?
» Definition: a set of access control technologies for restricting

the use of proprietary hardware and copyrighted works
» TEE-based DRM mechanism

2. Sealed Data in Intel SGX
» Motivation

» When an enclave is instantiated, the hardware provides
protections (confidentiality and integrity) to its data

» When the enclave process exits, the enclave will be destroyed
and any data that is secured within the enclave will be lost

» The enclave must make special arrangements to store the data
outside the enclave in order to be re-used later
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policies for Seal Keys

MRENCLAVE: Sealing to the Enclave Identity

MRSIGNER: Sealing to the Sealing( the key/identity of the
Sealing Authority) Identity



SGX-assisted DRM application

1. DRM-APP
> App.cpp
» ReplayProtectedDRM.cpp/.h
» TimeBasedDRM.cpp/.h

2. DRM-Enclave

» Enclave.cpp
» Enclave.ed|
» Other files, like *.pem, config files



Sealing and unsealing operations

1. Several key APls

> sgx_calc_sealed_data_size(...)
> sgx_seal_data(...) and sgx_seal_data_ex(...)
> sgx_unseal_data(...) and sgx_unseal_data_ex(...)
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1. Several key APIs
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2. Sgx_seal_data() function: sealing the plaintext to ciphertext.
The ciphertext can be delivered outside of enclave.

» Keys: MRENCLAVE and MRSIGNER
» Parameters:

> additional_MACtext_length - length of the plaintext data
stream in bytes. The additional data is optional and thus the
length can be zero if no data is provided

» p_additional_MACtext - pointer to the plaintext data stream
to be GCM protected

P> text2encrypt_length - length of the data stream to encrypt in
bytes

P> p_text2encrypt - pointer to data stream to encrypt

sealed_data_size - Size of the sealed data buffer passed in

» p_sealed_data - pointer to the sealed data structure containing
protected data
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Sealing and unsealing operations

1. Sgx_unseal_data() function:Unseal the sealed data structure
passed in and populate the MAC text and decrypted text
buffers with the appropriate data from the sealed data
structure.

» Keys: MRENCLAVE and MRSIGNER
> Parameters:

» p_sealed_data - pointer to the sealed data structure containing
protected data

» p_additional_MACtext - pointer to the plaintext data stream
which was GCM protected

> p_additional_MACtext_length - pointer to length of the
plaintext data stream in bytes

P p_decrypted_text - pointer to decrypted data stream

» p_decrypted_text_length -pointer to length of the decrypted
data stream to encrypt in bytes




Similar with SGX: writing an application with optee

1. Host(Client Application)
> host.c/.h
> Makefile

2. TA(Trusted Application)
» math.c/.h
> Makefile

3. Both Host and TA sides are written in C



Similar with SGX: writing an application with optee

1. APIs

TEE_Malloc()

TEE_MemMove()

TEE _CreatePersistentObject()
TEE_WriteObjectData()
TEE_OpenPersistentObject()
TEE_ReadObjectData()
TEE_CloseAndDeletePersistentObject()
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2. Keys
» Secure Storage Key (SSK)
» Trusted Application Storage Key (TSK)
» File Encryption Key (FEK)



Key Generation

HUK: Hardware Unique Key

SSK: HMACsHa2s6( HUK, ChipID||\staticstring™ )
TSK: HMACspa2s6(SSK, TAyUID)
PRNG:pesudo random number generator

FEK: f(PRNG)
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Meta Data Encryption

Meta Field: |EncryptedFEK| MeialVl Tag |Enc:rypled MelaDatal

Figure: Meta Data Flow



Block Data Encryption Flow
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