
Code analysis - dynamic taint analysis

Peng Xu

June 17, 2019



Code analysis

1. What is the code analysis?

2. Static analysis and dynamic analysis
I Static analysis: debugging is done by examining the code

without actually executing the program
I Dynamic analysis: is performed in an effort to uncover more

subtle defects or vulnerabilities

3. Source code and binary analysis
I Source code analysis

I Abstract syntax tree (AST): a tree representation of the
abstract syntactic structure of source code

I Intermediate representation(IR): representation of a program
“between” the source and target languages

4. control flow graph(CFG) and data flow graph(DFG)



Code analysis

1. What is the code analysis?

2. Static analysis and dynamic analysis
I Static analysis: debugging is done by examining the code

without actually executing the program
I Dynamic analysis: is performed in an effort to uncover more

subtle defects or vulnerabilities

3. Source code and binary analysis
I Source code analysis

I Abstract syntax tree (AST): a tree representation of the
abstract syntactic structure of source code

I Intermediate representation(IR): representation of a program
“between” the source and target languages

4. control flow graph(CFG) and data flow graph(DFG)



Code analysis

1. What is the code analysis?

2. Static analysis and dynamic analysis
I Static analysis: debugging is done by examining the code

without actually executing the program
I Dynamic analysis: is performed in an effort to uncover more

subtle defects or vulnerabilities

3. Source code and binary analysis
I Source code analysis

I Abstract syntax tree (AST): a tree representation of the
abstract syntactic structure of source code

I Intermediate representation(IR): representation of a program
“between” the source and target languages

4. control flow graph(CFG) and data flow graph(DFG)



Code analysis

1. What is the code analysis?

2. Static analysis and dynamic analysis
I Static analysis: debugging is done by examining the code

without actually executing the program
I Dynamic analysis: is performed in an effort to uncover more

subtle defects or vulnerabilities

3. Source code and binary analysis
I Source code analysis

I Abstract syntax tree (AST): a tree representation of the
abstract syntactic structure of source code

I Intermediate representation(IR): representation of a program
“between” the source and target languages

4. control flow graph(CFG) and data flow graph(DFG)



Code analysis

1. What is the code analysis?

2. Static analysis and dynamic analysis
I Static analysis: debugging is done by examining the code

without actually executing the program
I Dynamic analysis: is performed in an effort to uncover more

subtle defects or vulnerabilities

3. Source code and binary analysis
I Source code analysis

I Abstract syntax tree (AST): a tree representation of the
abstract syntactic structure of source code

I Intermediate representation(IR): representation of a program
“between” the source and target languages

4. control flow graph(CFG) and data flow graph(DFG)



CFG, DFG, SDG

1. Control flow graph
I What is CFG?
I How can we get CFG?

I angr: https : //angr .io/
I radare2: https : //rada.re/r/

I What is purpose of CFG?

2. Data flow graph
I What is DFG?
I How can we get DFG?

I llvm.analysis.dataflow
I graph-llvm-ir
I taint analysis: valgrind + taintgrind

I What is purpose of DFG?

3. System dependent graph
I What is SDG?
I How can we get SDG?
I What is purpose of SDG?



CFG, DFG, SDG

1. Control flow graph
I What is CFG?
I How can we get CFG?

I angr: https : //angr .io/
I radare2: https : //rada.re/r/

I What is purpose of CFG?

2. Data flow graph
I What is DFG?
I How can we get DFG?

I llvm.analysis.dataflow
I graph-llvm-ir
I taint analysis: valgrind + taintgrind

I What is purpose of DFG?

3. System dependent graph
I What is SDG?
I How can we get SDG?
I What is purpose of SDG?



CFG, DFG, SDG

1. Control flow graph
I What is CFG?
I How can we get CFG?

I angr: https : //angr .io/
I radare2: https : //rada.re/r/

I What is purpose of CFG?

2. Data flow graph
I What is DFG?
I How can we get DFG?

I llvm.analysis.dataflow
I graph-llvm-ir
I taint analysis: valgrind + taintgrind

I What is purpose of DFG?

3. System dependent graph
I What is SDG?
I How can we get SDG?
I What is purpose of SDG?



Using angr getting CFG

I import angr

I proj = angr.Project(’./sign32’)

I cfg = proj.analyses.CFG()

I dict(proj.kb.functions)



Dynamic taint analysis

1. Valgrind + taintgrind https://github.com/wmkhoo/taintgrind

2. Steps:
I labeling the sensitive data
I tracing the taint propagation
I finding the functions and statements relative with labeled

sensitive data

3. Example
I tests/sign32.c
I TNT TAINT(&a, sizeof(a));
I valgrind –tool=taintgrind tests/sign32
I valgrind –tool=taintgrind tests/sign32 2>&1 — python

log2dot.py > sign32.dot
I gcc -g



Partitioning a C-program

1. Dynamic taint analysis: tracing the sensitive data propagation

2. Partitioning the targeting C-program
I TZSlicer

I TZSlicer is based on TrustZone
I TZSlicer is for bare-metal system
I TZSlicer has function, basic-block and code line level

partitioning
I https://github.com/hwsel/tzslicer

I SGXSlicer
I SGXSlicer is for Intel SGX
I SGXSlicer has operating system supporting



Partitioning a C-program

1. Dynamic taint analysis: tracing the sensitive data propagation

2. Partitioning the targeting C-program
I TZSlicer

I TZSlicer is based on TrustZone
I TZSlicer is for bare-metal system
I TZSlicer has function, basic-block and code line level

partitioning
I https://github.com/hwsel/tzslicer

I SGXSlicer
I SGXSlicer is for Intel SGX
I SGXSlicer has operating system supporting



Tasks

I Getting static control flow graph and dynamic control flow
graph for your previous tasks:
I Square Matrix is symmetric?
I AES
I Caesar cypher algorithm
I MD5

I TZSlicer variant on function-level with optee supporting

I TZSlicer variant on function-level with sgx supporting



Question?

Questions?


