Kick-off: Mobile Application Security

Chair for IT Security / I20
Prof. Dr. Claudia Eckert
Technical University of Munich

Dr. Julian Schütte
julian.schuette@aisec.fraunhofer.de

Konrad Weiss
konrad.weiss@aisec.fraunhofer.de

Alexander Küchler
alexander.kuechler@aisec.fraunhofer.de

July 16, 2019
Outline

1. Organization

2. Time Table

3. Topics

4. Getting Started

5. Getting Started
Deliverables and Grading

The seminar will be organized as a scientific conference.

▶ Report (50%)
 – Scientific paper with exactly 10 pages in length
 – We provide a ΛΤΕΧ template
 – Shall cover relevant work in that area, clear structure, clarity of presentation, proper bibliography & citations
 – Add your own thoughts, discussion

▶ Review (20%)
 – Each of you creates two anonymous reviews
 – Template will be provided
 – Approximately one page in Latex

▶ Presentation (30%)
 – 30 minutes presentation
 – 15 minutes discussion
<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>After matching</td>
<td>Start of topic assignments</td>
</tr>
<tr>
<td>02.09.2019</td>
<td>Introduction to scientific writing (optional)</td>
</tr>
<tr>
<td>27.10.2019</td>
<td>Submit your outline + preliminary draft (80% of overall content)</td>
</tr>
<tr>
<td>29.10.2019</td>
<td>Meeting: Intermediate review and discussion (10:00 - 16:00)</td>
</tr>
<tr>
<td>12.12.2019</td>
<td>Submit your paper</td>
</tr>
<tr>
<td>21.12.2019</td>
<td>Submit your reviews</td>
</tr>
<tr>
<td>20.01.2020</td>
<td>Submit your rebuttal + camera-ready-version + slides</td>
</tr>
<tr>
<td>27.+28.01.2020</td>
<td>Meeting: Presentations and discussion (9:00 - 16:00)</td>
</tr>
</tbody>
</table>
Topics

- Interprocedural Analysis With Weighted Pushdown Systems
- Automated Dynamic Testing
- Dynamic Taint Analysis
- Intermediate Representations for Static Binary Analysis
- Practical IR Lifting of iOS apps: far from trivial?
- UI-Attacks
- Evolution of Mobile Malware Behavior
- Security Implications of Web Technologies in Mobile Applications
- Security Issues of 3rd Party Libraries in Android Applications
- App Integrity Assurance
- Application collusion and confused deputy attacks
- Covert Channels in Android
- Discover Privacy Violations in Mobile Apps
- (Semi-)Automatic Deobfuscation
- SE-Linux
Interprocedural Analysis With Weighted Pushdown Systems

- Understand & describe the problem of precise interprocedural program analysis, esp. in Android apps
- Understand weighted pushdown systems & the existing algorithms (such as post-\star, pre-\star) to make use of pushdown systems for program analysis
- Discuss the application of pushdown systems to malware analysis of mobile apps

Initial literature
- Reps et al.: “Precise interprocedural dataflow analysis via graph reachability”
- Lal et al.: “Extended Weighted Pushdown Systems”
- Liang et al.: “Sound and precise malware analysis for android via pushdown reachability and entry-point saturation”
Automated Dynamic Testing

- What are the challenges with dynamic testing?
- Approaches of automated dynamic vulnerability finding
- Assess & classify approaches

Initial literature
- Hao et al.: “PUMA: Programmable UI-Automation for Large-Scale Dynamic Analysis of Mobile Apps”
- Bhoraskar: “Brahmastra: Driving Apps to Test the Security of Third-Party Components”
- Rasthofer et al.: “Harvesting Runtime Data in Android Applications for Identifying Malware and Enhancing Code Analysis”
- Schwarz et al.: “All You Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been Afraid to Ask)”
- Anand et al.: “Automated Concolic Testing of Smartphone Apps”
Dynamic Taint Analysis

- How does DTA work and what is it good for?
- Platform-level vs. application-level DTA
- Challenges in getting DTA right
- Propose ways to break DTA

- Initial literature
 - Enck et al.: “TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones”
 - Schütte et al.: “Practical Application-Level Dynamic Taint Analysis of Android Apps”
 - Schwarz et al.: “All You Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have Been Afraid to Ask)”
Intermediate Representations (IR) are not only used by compilers but also for reverse engineering.

The idea is simple and there are some well-known IRs like VEX, LLVM.

However, researchers tend to invent their own IRs and so there is ESIL, BAP, Scratch, Binnavi REIL, rev.ng, HHVM IR, QBE IR, TCG IR, etc.

What is the point of this and what are the properties that are relevant to IRs?

What are possible drawbacks of LLVM and VEX and what tried the others to make better?

Initial literature
- Kim et al.: ”Testing Intermediate Representations for Binary Analysis”
- Märkl: ”Case Study on LLVM as suitable intermediate language for binary analysis”, TUM Technical Report
Practical IR Lifting of iOS apps: far from trivial?

▶ IR lifting: process of reverting a binary into a high level IR
▶ In theory it sounds simple and there are various tools available (BAP, angr2, McSema, radare2).
▶ In practice, however, things are not that simple anymore
▶ Research the exact process of binary lifting (loader → dynlib resolver → disassembler → symbols reconstruction → CFG reconstruction → instructions lifting → IR compilation)
▶ Walk through a tool like McSema or angr2 and try to lift an iOS app (practical part)
▶ Discuss your experience, suggest improvements

▶ Initial literature
 − Mcsema: Static translation of x86 instructions to llvm. A Dinaburg (https://github.com/trailofbits/mcsema
 https://www.trailofbits.com/research-and-development/mcsema/)
 − https://lowlevelbits.org/parsing-mach-o-files/
 − Egele et al.: “PiOS: Detecting Privacy Leaks in iOS Applications”
 − Lattner and Adve: “LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation”
UI-Attacks

- Which attacks have been published on the UI of apps?
- Why is it interesting for an attacker to gain knowledge of the UI?
- How can apps (or the OS) protect against such attacks?

Initial literature
- Niemitz, Schwenk: “UI redressing attacks on android devices”
- Abdow et al.: “UiRef: Analysis of Sensitive User Inputs in Android Applications”
- Fernandes et al.: “Android UI Deception Revisited: Attacks and Defenses”
- Fratantonio et al.: “Cloak and Dagger: From Two Permissions to Complete Control of the UI Feedback Loop”
Evolution of Mobile Malware Behavior

- Which categories of malware for mobile devices does exist?
- What are the techniques used by mobile malware? How do they compare e.g. to Windows malware?
- What are the trends when viewing the malware on a historic timeline?
- Focus on Android

Initial literature
- Weichselbaum et al.: “ANDRUBIS: Android Malware Under The Magnifying Glass”
- Tam et al.: “The Evolution of Android Malware And Android Analysis Techniques”
- Felt et al.: “A Survey of Mobile Malware in the Wild”
- Andronio et al.: “HelDroid: Dissecting and Detecting Mobile Ransomware”
Security Implications of Web Technologies in Mobile Applications

- Types of apps: Native vs. Hybrid vs. Web Apps
- Which risks and vulnerabilities are introduced by writing hybrid apps instead of native apps?
- What are common problems of hybrid mobile apps?

Initial literature
- Yang et al.: “Risk Analysis of Exposed Methods to JavaScript in Hybrid Apps”
- Yang et al.: “Study and Mitigation of Origin Stripping Vulnerabilities in Hybrid-postMessage Enabled Mobile Applications”
- Zuo et al.: “Automatically Detecting SSL Error-Handling Vulnerabilities in Hybrid Mobile Web Apps”
- Mutchler et al.: ”A Large-Scale Study of Mobile Web App Security”
Security Issues of 3rd Party Libraries in Android Applications

► Why is library detection important (e.g., which security issues can be present in libraries)
► Explore available approaches for (resilient) library detection
► Show the resilience and accuracy of available approaches w.r.t. detected versions / security issues
► Suggest means to increase detection accuracy and/or resilience of an existing approach

► Initial literature
 – Backes et al.: “Reliable Third-Party Library Detection in Android and its Security Applications”
App Integrity Assurance

- How can I check that the app I published was not modified before running? (app modification checking)
- How can I check that critical parts of my code (e.g., a native library) are executed only by my app? (code lifting protection)

Initial literature

- Subhadeep et al.: “Analysis of Software Countermeasures for Whitebox Encryption”
- Dagit et al.: “Code re-use attacks and their mitigation”
- Jung et al.: “Repackaging Attack on Android Banking Applications and Its Countermeasures”
Application Collusion and Confused Deputy Attacks

- What are Application Collusion and Confused deputy attacks on Android.
- How do they relate to the Android permission system, intents etc.
- How can they be detected or prevented.
- What are the necessary attack requirements.

Initial literature
- Kalutarage et al.: “Towards a threat assessment framework for apps collusion”
- Wu et al.: “PaddyFrog: systematically detecting confused deputy vulnerability in Android applications”
Covert Channels in Android

- What are covert channels in Android.
- What external channels exist, focus on internal channels.
- What are covert channels used for.
- How can covert channels be detected.

Initial literature
- Caviglione et al.: “Seeing the Unseen: Revealing Mobile Malware Hidden Communications via Energy Consumption and Artificial Intelligence”
- Lalande and Wendzel: “Hiding Privacy Leaks in Android Applications Using Low-Attention Raising Covert Channels”
- Hansen, Hill and Wimberly.: “Detecting Covert Communication on Android”
- Urbanski et al.: “Detecting local covert channels using process activity correlation on android smartphones”
Discover Privacy Violations in Mobile Apps

- Identify and list personally identifiable information that can be collected on Android and/or iOS
- Collect and evaluate methods for automated analysis of mobile apps to identify privacy concerns (e.g. Taint analysis)
- Describe counter-measures built into Android/iOS and/or provided by third party apps

Initial literature
- Mumtaz et al.: “Critical review of static taint analysis of android applications for detecting information leakages”
- Egele et al.: “PiOS. Detecting Privacy Leaks in iOS Applications”
- Wu et al.: “Efficient FingerprintingBased Android Device Identification With Zero Permission Identifiers”
(Semi-)Automatic Deobfuscation

- Explore available research and tools for (semi-)automatic deobfuscation
- Analyze the quality of deobfuscation results for state-of-the-art-obfuscated applications (or custom samples)
- Show limits of deobfuscation
- Explain what a "perfect" deobfuscator may look like

Initial literature
- Karnick et al.: “A Qualitative Analysis of Java Obfuscation”
- Klein, David: “Automating Removal of Java Obfuscation”
- Leskov, Dmitry: “Protect Your Java Code - Through Obfuscators And Beyond”
- Macbride et al.: “A Comparative Study of Java Obfuscators”
- Sun, Sam: Deobfuscator
 (https://github.com/java-deobfuscator/deobfuscator)
What is SE-Linux?

Why is it useful for Android/Android apps?

What are its limitations?

Initial literature

- Chen et al.: “Analysis of SEAndroid Policies: Combining MAC and DAC in Android”
- Shabtai et al.: “Securing Android Powered Mobile devices using SELinux”
- Sambare et al.: “Securities in Android using SELinux”
After matching phase (finishing 30.07.2019):

▶ Deregistration possible until 06.08.2019 without penalty or brace yourself for a 5.0
▶ We’ll ask you to send your 3 top choices via email
▶ You may add a letter of motivation to emphasize your top choice
▶ We’ll assign topics to students with your input
Getting Started

▶ Objective: Get a comprehensive overview of the topic
 – Initial literature serves as a basis
 – Extension will be necessary
 – Check Sources, follow-up work, and related publications
 – Prioritize, classify, be critical
 – Keep in touch with your supervisor

▶ Make an outline
 – State your research question
 – Condense & review state of the art
 – Bring in your contribution
 – Provide an outlook to your fellow researchers

▶ Further info on writing & preparing talks will follow
 – Optional info session on writing a scientific paper
 – We give you information for every phase

▶ Language: English