# **SEMINAR: OT SECURITY**PRE-COURSE MEETING 29.01.2020

Alexander Giehl, Patrick Wagner, Michael Heinl

{alexander.giehl | patrick.wagner | michael.heinl}@aisec.fraunhofer.de



#### **About Fraunhofer AISEC**

- Head: Prof. Dr. Claudia Eckert, Prof. Dr.-Ing. Georg Sigl
- Employees: > 120
- Research and Development:
  - Embedded Security, Smartcard & RFID Security
  - Product Protection & Industrial Security
  - Cloud & Service Security
  - Network Security
  - Automotive Security
  - Smart Grid & CPS
  - Security Evaluation
  - Security Engineering





#### **General Information**

- Type of course
  - Master Seminar
  - 5.0 ECTS
  - Module in "Distributed Systems, Networks and Security"
  - Course at Chair for IT Security, I20 (Prof. Eckert)
- Requirements
  - Knowledge of lecture "IT Sicherheit"



- 29.01.2020 (today)
  - Organizational information
  - Topic presentation
- From 07.02.2020 to 12.02.2020
  - Registration via DocMatching (http://docmatching.in.tum.de/)
- 20.02.2020
  - Automated assignment of courses
- Until 02.03.2020
  - Please send us your three preferred topics via email
  - You may add a letter of motivation to emphasize your top choice
  - Alternatively: Possibility to withdraw without penalty
  - Non-attendance after this point is graded with 5.0



- Until 11.03.2020
  - Response from organizers with assigned topic
- **1**1.03.2020 17.04.2020
  - Schedule kickoff meeting with the supervisor at Fraunhofer AISEC
- 11.03.2020 13.05.2020
  - Preparation of the (final) draft version of the written report
    - Language: English
    - Format: Latex (LNCS Style), 8-10 pages
  - Delivery of the draft written report until 9:00 at 13.05.2020

- **13.05.2020 27.05.2020** 
  - Review of two written reports
    - Similar to the review process of a scientific conference
    - Using a given review form
    - Evaluation of two written reports
    - Delivery of the reviews until 9:00 at 27.05.2020
- **27.05.2020 17.06.2020** 
  - Preparation of the final written report
  - Revision on the basis of three reviews (two from students, one from the supervisor)
  - Delivery of the final written report until 9:00 at 17.06.2020



- **17.06.2020 24.06.2020** 
  - Slide preparation
  - Delivery to the organizers until 9:00 at 24.06.2020
- Until 01.07.2020
  - Comments on the slides from the supervisor
- 01.07.2020 07.07.2020
  - Revision of slides (if necessary)
  - Delivery of final slides to the organizers until 9:00 at 07.07.2020
- **08.07.2020 + 09.07.2020** 
  - Oral presentations (at Fraunhofer AISEC, room Claude E. Shannon)
  - Both sessions are expected to begin at 10:00 and will end at 16:00
  - Length of each presentation 30 minutes + up to 15 minutes discussion

- Any time
  - Questions to the supervisor via email
  - Face-to-face meetings (appointment via email)

# **Grading**

- Final grade consists of:
  - Draft version of the written report (30%)
  - Reviews (15%)
  - Final version of the written report (20%)
  - Presentation (25%)
  - Discussion (10%)

# **Topics (Overview)**

- 1. Differences and Challenges of IT/OT
- Current State and Recent Developments of Security in OT
- 3. A Survey on Industrial Security Management Guidelines for SMEs
- 4. A Survey on Risk Analysis Methodologies Suitable for OT in SMEs
- 5. Industrial Security Maturity Model for SMEs
- Intrusion Detection in OT Environments
- 7. Digital Forensics and Incident Response in OT Environments
- The Role of OT in the Context of Critical Infrastructure Protection
- 9. Infiltration and Exfiltration Techniques for Air-Gapped OT Environments
- 10. Analysis of and Mitigation Strategies for Real World OT Security Incidents

- 1. Differences and Challenges of IT/OT
  - Comparatively introduce the basics of IT and OT
    - Where are they used?
    - What are their main objectives and challenges?
    - Which protocols are used?
  - Discuss the relationship of OT and other commonly used terms in the field such as ICS, SCADA, PLCs etc.
  - Describe how IT and OT are interconnected
    - Outline how they converged over time
    - What are the security implications of such a convergence?

- 2. Current State and Recent Developments of Security in OT
  - Provide on overview of security mechanisms integrated into protocols used in OT
  - Conduct an analysis of missing security mechanisms and how OT operators can realize them nevertheless (e.g. authentication)
  - Develop a reference architecture of a typical OT setup
    - The reference architecture should be based on one or more business cases/specific examples
    - Provide an evaluation of security-critical aspects in this reference architecture
    - Sketch possible improvements in regards to security to this architecture



- 3. A Survey on Industrial Security Management Guidelines for SMEs
  - Perform a literature review and address:
    - > Challenges for SMEs concerning industrial security management
    - Suitability of existing industrial security management guidelines for SMEs
    - Gaps and future research directions

- 4. A Survey on Risk Analysis Methodologies Suitable for OT in SMEs
  - Perform a literature review and address:
    - Challenges for SMEs concerning risk analyses on OT
    - Suitability of existing risk analysis methodologies for OT in SMEs
    - Gaps and future research directions

- Industrial Security Maturity Model for SMEs
  - Develop an industrial security maturity model for SMEs
    - Define industrial security maturity levels
    - Define focus areas and groups
    - Derive requirements for SMEs to reach those levels from existing standards and scientific literature

#### 6. Intrusion Detection in OT Environments

- Provide a short introduction of the different general types of intrusion detection systems (IDS) and how they work
- What are the challenges of applying "traditional" IDS to OT?
- Develop a specific scenario in which an attacker tries to compromise an OT environment
  - What could be possible entry points?
  - Which attack techniques could be used?
  - How could the attack be detected?
  - What could be done after an attack has been detected?

- 7. Digital Forensics and Incident Response in OT Environments
  - Provide a short introduction of the general principles of digital forensics and incident response
    - What are their underlying principles, methods, and procedures?
    - Describe the concept of attribution and its main challenges
  - What could be typical challenges forensic analysts and incident responders experience in OT environments?
  - Develop a specific scenario in which an attacker has successfully compromised an OT environment
    - How can methods of digital forensics and incident response help to detect the attack?
    - How to scope the extent and origin of the attack?
    - How can compromised systems be recovered?



- 8. The Role of OT in the Context of Critical Infrastructure Protection
  - Provide an introduction to critical infrastructures
    - What are critical infrastructures?
    - What are their specific security requirements?
    - Where are those requirements defined?
  - Describe the relation between OT and critical infrastructures
  - Outline two real-world attacks on critical infrastructures and their respective impact

- 9. Infiltration and Exfiltration Techniques for Air-Gapped OT Environments
  - Introduce the idea of air gapping
    - How does it work?
    - What are typical environments in which this method is used?
  - Describe techniques enabling external attackers to interact with systems despite an existing air gap (infiltration)
  - Describe techniques which allow to extract data from air-gapped systems (exfiltration)
  - Develop a specific scenario in which an attacker uses a specific infiltration technique to compromise an air-gapped system
    - How could data be exfiltrated subsequently?
    - What are possible mitigation techniques?



- 10. Analysis of and Mitigation Strategies for Real World OT Security Incidents
  - Provide a comparative overview of security-related real-world attacks on OT environments
    - Which types of attack techniques have been used?
    - Which attacker has the attack been attributed to?
    - What did they probably try to achieve with the attack?
      - Have they been successful or not?
      - Why did the attack fail or succeed?
    - What was the impact of the attack?
    - How did the OT operators react?
  - Discuss one of the attacks in detail (step-by-step from the attacker's point of view) and outline how it could have been mitigated

#### **Contact**





Fraunhofer AISEC Lichtenbergstr. 11 85748 Garching (bei München)

E-Mail:

{alexander.giehl | patrick.wagner | michael.heinl} @aisec.fraunhofer.de

Internet:

http://www.aisec.fraunhofer.de

