Audio Adversarial Examples

Preliminary Talk Karla Markert, 07 July 2020

Outline

About

About Me About My Department at AISEC

Introduction to Adversarial Examples

Neural Networks Adversarial Images Adversarial Audio

Organizational Stuff

Audio Adv. Examples | K. Markert | 07 July 2020 | 1 © Fraunhofer

Table of Contents

About

Introduction to Adversarial Examples

Organizational Stuff

About Me

Name Karla Markert

Department Cognitive Security Technology

Role Research assistant

Background Mathematics, political science and computer science

About My Department at AISEC

Cognitive Security Technologies:

Intersection of artificial intelligence and IT security.

Audio Adv. Examples | K. Markert | 07 July 2020 | 4 © Fraunhofer

About My Department at AISEC

Applications:

- CAN traces,
- malware,
- wireless networks

About My Department at AISEC

Applications:

- encryption,
- privacy attacks on memory networks,
- architectures for data analysis

About My Department at AISEC

Applications:

- GDPR,
- source code,
- textual descriptions

About My Department at AISEC

Applications:

- face recognition,
- speech recognition,
- deep fake detection

Audio Adv. Examples | K. Markert | 07 July 2020 | 8 © Fraunhofer

Table of Contents

About

Introduction to Adversarial Examples

Organizational Stuff

Neural Networks

Deep learning "is an approach to Al. Specifically, it is a type of machine learning, a technique that enables computer systems to improve with experience and data. [...] Deep learning is a particular kind of machine learning that achieves great power and flexibility by representing the world as a nested hierarchy of concepts, with each concept defined in relation to simpler concepts, and more abstract representations computed in terms of less abstract ones." [2]

Neural Networks

Visualization of a neural network with one hidden layer.

Image taken from Wikipedia¹.

¹See https://en.wikipedia.org/wiki/Artificial_neural_network, last checked January 4, 2020.

Audio Adv. Examples | K. Markert | 07 July 2020 | 11 © Fraunhofer

Adversarial Images

Images taken from [5, 4].

Adversarial Images

Images taken from [7]. Ostrich means Strauß in German.

Audio Adv. Examples | K. Markert | 07 July 2020 | 13

Adversarial Images

Stop sign recognized as stop sign.

Images taken from [6].

Audio Adv. Examples | K. Markert | 07 July 2020 | 14 © Fraunhofer

Stop sign recognized as bottles.

Adversarial Images

classified as turtle classified as rifle

Images taken from [1].

Adversarial Audio

Original

Transcription: without the dataset the article is useless

Adversarial

Transcription: okay google browse to evil dot com

Examples taken from [3].

Audio Adv. Examples | K. Markert | 07 July 2020 | 16 © Fraunhofer

Table of Contents

About

Introduction to Adversarial Examples

Organizational Stuff

In this seminar, we take a look at different audio adversarial attacks and possible mitigations.

- Level: Bachelor and Master
- Number of Participants: 8
- Language: English
- Requirements: Basic knowledge in machine learning (especially deep neural networks) and IT security.

Time: This course will be held as a block seminar.

- July 10 (Friday), 14:00 14:45 Preliminary talk
- August 11 (Tuesday) 14:00-15:00 Kick Off
- November 26 (Thursday) and November 27 (Friday), 9:00-17:00 Presentations
- December 4 (Friday), 9:00-10:00 and January 15 (Friday), 9:00-10:00 Debriefing
- December 7 (Monday), 23:59 Deadline for paper

Goals:

- familiarization with scientific paper reading and scientific presentations;
- better understanding of attacks against machine learning algorithms;
- active participation and insights into topics of current research. For more information, see module description IN0014 and IN2107.

Method: The seminar is organized as follows.

- Every participant gives a *presentation on a scientific paper*, which is assigned in the kick off session.
- Every student is required to write a *four page hand out* summarizing the main points of the paper (LaTeX template will be provided).

We attach great importance to all students profiting from the others' presentations.

The **grade** is composed up of:

- 10% active participation,
- 25% presentation (structure of the talk, introduction to the topic, clear problem definition and motivation, sound style of delivery...),
- 25% hand out (language, structure of the hand out...),
- 40% quality of the content (main points of the paper, good discussion and outlook...)

Everyone interested in participating is required to send an e-mail to karla.markert@aisec.fraunhofer.de until July 16 indicating her/his interest. You may include a letter of motivation, a CV or a transcript of records.

... any questions so far?

Bibliography

- [1] Anish Athalye et al. "Synthesizing robust adversarial examples". In: arXiv preprint arXiv:1707.07397 (2017).
- [2] Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.
- [3] Nicholas Carlini and David A. Wagner. "Audio Adversarial Examples: Targeted Attacks on Speech-to-Text". In: CoRR abs/1801.01944 (2018). arXiv: 1801.01944. URL: http://arxiv.org/abs/1801.01944.
- [4] Yuan Gong and Christian Poellabauer. "Protecting voice controlled systems using sound source identification based on acoustic cues". In: 2018 27th International Conference on Computer Communication and Networks (ICCCN). IEEE. 2018, pp. 1–9.
- [5] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. "Explaining and harnessing adversarial examples". In: arXiv preprint arXiv:1412.6572 (2014).
- [6] Jiajun Lu, Hussein Sibai, and Evan Fabry. "Adversarial Examples that Fool Detectors". In: CoRR abs/1712.02494 (2017). arXiv: 1712.02494. URL: http://arxiv.org/abs/1712.02494.
- [7] Christian Szegedy et al. "Intriguing properties of neural networks". In: arXiv preprint arXiv:1312.6199 (2013).

Contact Information

Karla Markert

Department Cognitive Security Technologies

Fraunhofer-Institute for Applied and Integrated Security (AISEC)

Address: Lichtenbergstr. 11 85748 Garching (near Munich) Germany Internet: www.aisec.fraunhofer.de

Phone: +49 89 3229986-136 E-Mail: karla.markert@aisec.fraunhofer.de

