

Systems Hardening

Season II: Summer Semester 2021

Technische Universität München Faculty of Informatics Chair of IT Security (I20)

> Marius Momeu momeu@sec.in.tum.de

Sergej Proskurin

proskurin@sec.in.tum.de

02 February 2021

Tur Uhrenturm

Intro Who are we?

ТЛП

- \Rightarrow Short introduction of tutors
- \Rightarrow Research interests¹

¹https://www.sec.in.tum.de/i20/people/momeu-marius

ПΠ

Intro Why should you do this?

- ⇒ Have you taken *Binary Exploitation* and want to learn advanced methods that mitigate *pwning*?
- ⇒ Have you learned cool low-level concepts in *Operating Systems* or *Root-Kit Programming* and want to apply them?
- $\Rightarrow\,$ Would you like to find bugs and crash low-level software?
- \Rightarrow Are you curious how *Spectre* can be mitigated?
- \Rightarrow Are you merely interested in finding out more about *IT Security*?
- \Rightarrow Then **Systems Hardening** is the right course for you!

ТЛП

Intro Objectives

\Rightarrow In this seminar, you are going to assess state-of-the-art

- \rightarrow hardening mechanisms (via memory isolation using VT-x, MPK, etc.),
- $\rightarrow\,$ kernel and hypervisor fuzzing <code>agents</code>,
- \rightarrow enclaved execution technologies (Intel SGX, AMD-SEV, ARM TrustZone),
- \rightarrow software mitigation against **microarchitectural flaws** (*Spectre*, *Forwshadow*, and/or variants).

\Rightarrow And most importantly, you are going to

- $\rightarrow\,$ write a paper about your findings,
- $\rightarrow~\mbox{give feedback}$ to (two of) your colleagues' papers,
- $\rightarrow~$ give a talk at the end of the semester.

Technical Content Overview

\Rightarrow Data & code memory isolation

- \rightarrow using Intel VT-x, MPK, HLAT, etc.
- $\rightarrow\,$ to mitigate code-reuse & data-oriented attacks

\Rightarrow Fuzzing low-level software

 \rightarrow such as the *Linux* kernel or the *Xen* hypervisor via coverage-guided, symbolic execution, and hybrid fuzzers

\Rightarrow Attacks against TEEs

 \rightarrow such as AMD-SEV or ARM TrustZone

\Rightarrow Confidential computing

ightarrow using Intel SGX, MKTME

\Rightarrow Software mitigations for microarchitectural flaws

- \rightarrow such as memory management tricks that neutralize Spectre
- \Rightarrow Heap hardening
- ⇒ Memory safety via Rust
- \Rightarrow Live patching

Technical Content Hands-On

- \Rightarrow Operating with command-line *bash* on *Unix* systems
- \Rightarrow Kernel & hypervisor development
- \Rightarrow Memory management & OS concepts
- \Rightarrow C, Assembly (x86, ARM, AMD), Rust
- \Rightarrow Hardware extensions (*VT-x, MPK*)
- \Rightarrow Computer architecture (speculative execution, cache buffers)
- \Rightarrow Binary exploitation
- \Rightarrow Various executable formats (mostly *ELF*)

Seminar Structure Phases

Phase I	Choosing your topic	1 week
Phase II	Familiarizing with literature	1 week
Phase III	Writing (first draft with feedback from tutors)	4 weeks
Phase IV	Writing (final draft with feedback from tutors and fellow students)	4 weeks
Phase V	Peer reviewing	1 week
Phase VI	Writing ("camera ready")	1 week
Phase VII	Preparing the final talk	2 weeks
Phase VIII	Dive deeper with research or thesis	optional (TBD)

ТЛП

Seminar Structure Sessions

- Episode I Introduction to Scientific Writing
- Episode II More on Scientific Writing
- Episode III Hints on Paper Reviewing
- Episode IV Hints on Public Speaking
- Episode V Final Talks

Seminar Structure Grading

- 50 % Final Paper (Content, Style, Language, Scope, ...)
- 20 % Presentation (Content, Speaking, Style, Timeliness, ...)
- 15 % Prototype / Design / Experiments
- 10 % Peer Review
- 5% Discussion
- Σ 100 % Total

Seminar Structure Orga

\Rightarrow When?

- ightarrow with presentations from tutors and optionally from you (updates on your findings)
- $\rightarrow\,$ online or hybrid (depending on the regulations)
- $\rightarrow\,$ exact weekday and time TBA
- $\rightarrow\,$ final talks at the end of the semester

\Rightarrow Capacity

- \rightarrow 14-16 students: individual work or in groups of two
- ightarrow no qualification challenge
- \rightarrow but see Hands-On slide to get an idea on what you will be working with during this seminar
- $\rightarrow\,$ don't forget to register in the matching system!

\Rightarrow Master's and Bachelor's students are welcome

- \Rightarrow Language of instruction: **English**
- \Rightarrow **Moodle** for accessing seminar material

Ш

- \Rightarrow access to our (resourceful) x86 servers running Xen
 - ightarrow we can assist you in extending Xen's hypercall interface on demand
- \Rightarrow dedicated server for fuzzing the kernel
- \Rightarrow AMD and ARM servers TBA
- $\Rightarrow\,$ anything else you need, we're here for you and we'll find a solution
 - $\rightarrow\,$ don't be shy, ask us at any time :)

Resources Reading Material

⇒ Literature access

- \rightarrow https://scholar.google.com/
- \rightarrow https://semanticscholar.org/
- \rightarrow https://dblp.uni-trier.de/
- \rightarrow https://arxiv.org/

⇒ Get around paywalls using: https://www-ub-tum-de.eaccess.ub.tum.de/datenbanken

\Rightarrow Researchers' homepages can be valuable!

 $\rightarrow\,$ the paper, source code, raw data, instructions, technical information

Thank you!

momeu@sec.in.tum.de

@MariusMomeu

proskurin@sec.in.tum.de