

Seminar: (In)Security of Online Voting Summer Semester 2021

Marius Momeu¹, Fabian Kilger¹, Michael Heinl²

¹Chair of IT Security, Department of Informatics, Technical University of Munich (TUM) ²Department Production Protection & Industrial Security, Fraunhofer AISEC

2nd February, 2021

Motivation

- Why online voting? Arguments regularly presented in public debates include:
 - increased voter turnout
 - citizens with disabilities
 - occupied citizens
 - citizens traveling / living abroad
 - young citizens
 - reduced election costs
 - reduced contact (contain pandemics)
- However, online voting systems are very security-sensitive

Objectives

- \Rightarrow In this seminar, you are going to assess state-of-the-art
 - \rightarrow **technologies** that facilitate reliable online voting
 - \rightarrow real-life implementations adopted by nations
- \Rightarrow And most importantly, you are going to
 - \rightarrow write a paper about your findings,
 - \rightarrow give feedback to (two of) your colleagues' papers,
 - $\rightarrow\,$ give a talk at the end of the semester.

Topics

- Technologies
 - Homomorphic encryption, zero-knowledge proofs (ZKPs), mixnets (ciperthexts shuffling)
 - Distributed ledger technologies, byzantine fault tolerance (BFT), consensus
 - Smart card security
 - Trusted Execution Environments (TEEs)
- Implementations
 - The Estonian voting system
 - The Swiss voting system
 - Apps used in the US's midterm elections

Phases/Schedule

Phase I	Topic announcement	- 07.03.2021
Phase II	Choosing topic	07.03.2021 - 14.03.2021
Phase III	Familiarizing with literature	15.03.2021 - 14.04.2021
Phase IV	Writing (first draft) - lightweight feedback from tutors	15.04.2021 - 26.05.2021
Phase V	Writing (final draft) - thorough feedback from tutors	27.05.2021 - 23.06.2021
Phase VI	Peer reviewing - feedback from fellow students	24.06.2021 - 30.06.2021
Phase VII	Writing ("camera ready") + Presentation Slides	01.07.2021 - 07.07.2021
Phase VIII	Final talks - feedback from tutors on the final talk	12.07.2021 - 26.07.2021

Sessions

- Session I Introduction to Scientific Writing
- Session II More on Scientific Writing
- Session III Hints on Paper Reviewing
- Session IV Hints on Public Speaking
- Session V Final Talks

Grading

- 50 % Final Paper (Content, Style, Language, Scope, ...)
- 40 % Presentation (Content, Speaking, Style, Timeliness, ...)
- 5 % Peer Review
- 5% Participation
- Σ 100 % Total

Optional

- ⇒ Analysis report on an online voting platform of choice
 - \rightarrow commercial or open-source
 - $\rightarrow\,$ one that is not tackled in this seminar
 - $\rightarrow\,$ will bring you bonus points to the final grade

Orga

\Rightarrow When?

- \rightarrow with presentations from tutors and optionally from you (updates on your findings)
- \rightarrow online or hybrid (depending on the regulations)
- ightarrow exact weekday and time TBA
- \rightarrow final talks at the end of the semester

\Rightarrow Capacity

- \rightarrow **9 students**: individual work (no groups)
- \rightarrow no qualification challenge
- $\rightarrow\,$ don't forget to register in the matching system!
- ⇒ Master's and Bachelor's students are welcome
- \Rightarrow Language of instruction: **English**
- ⇒ **Moodle** for accessing seminar material

Some Background

Election Requirements

Theory

According to Article 38 (1) of the German Basic Law:

- General
- Direct
- Free
- Equal
- Secret

Election Requirements

Practice

Election Requirements

Practice (2)

- Universal verifiability
- Individual verifiability
- Usability
- Flexible application
- No exclusion
- Correctability
- Robustness
- Correctness
- Integrity
- Completeness

- Anonymity
- Receipt-freeness
- Impossibility of vote buying
- Coercion-resistance
- No forced abstention
- Comprehensibility
- Archiving
- No canvassing
- Equal voting power
- Equal choice
- No interim results

Practice (2)

- Universal verifiability
- Individual verifiability
- Usability
- Flexible application
- No exclusion
- Correctability
- Robustness
- Correctness
- Integrity
- Completeness

Fraunhofer TIT

- Anonymity
- Receipt-freeness
- Impossibility of vote buying
- Coercion-resistance
- No forced abstention
- Comprehensibility
- Archiving
- No canvassing
- Equal voting power
- Equal choice
- No interim results

Election Requirements

Practice (2)

- Universal verifiability
- Individual verifiability
- Usability
- Flexible application
- No exclusion
- Correctability
- Robustness
- Correctness
- Integrity
- Completeness

- Anonymity
- Receipt-freeness
- Impossibility of vote buying
- Coercion-resistance
- No forced abstention
- Comprehensibility
- Archiving
- No canvassing
- Equal voting power
- Equal choice
- No interim results

Election Requirements

Practice (2)

- Universal verifiability
- Individual verifiability
- Usability
- Flexible application
- No exclusion
- Correctability
- Robustness
- Correctness
- Integrity
- Completeness

- Anonymity
- Receipt-freeness
- Impossibility of vote buying
- Coercion-resistance
- No forced abstention
- Comprehensibility
- Archiving
- No canvassing
- Equal voting power
- Equal choice
- No interim results

Secure Platform Problem

- Online voting usually takes place on private devices
- A potential compromise by malware has to be assumed

Technologies

Homomorphic Encryption

- Asymmetric-key (e.g., RSA, ElGamal, etc.) and symmetric-key cryptosystems
- The result of certain operations on a set encrypted plaintexts is the encrypted result of the same operation applied on the plaintexts directly
- Therefore, facilitates private computations
- Shuffling homomorphic ciphertexts used by mixnets to ensure voter anonymity
- Facilitate individual and universal verifiability using ZKPs
- Zero-Knowledge Proof

 proof that a statement is true without revealing additional knowledge (secrets) that facilitate
 the proof

Technologies

Distributed Ledger Technologies

- In the form of distributed database or public bulletin board
 - blockchain, directed acyclic graph (DAG), hashgraph, etc.
- For example, goals of blockchain are very related
 - Anonymity
 - Verifiability
 - Integrity
 - No single point of failure
- Blockchain currencies can be easily converted to votes:
 - Each voter is given an address in the blockchain with 1 token/coin
 - $-\,$ The voter sends its coins to the address it is voting for.
 - After some deadline, the address with the most coins is the winner of the poll
- Available DLT-based systems are not yet ready for online voting!

Existing Implementations

Switzerland

- Managed by SwissPost using Scytl's e-voting protocol
- Voters receive secret candidate choice codes via post
- Used to cast their votes on a web platform
- Confirmation codes sent back electronically for validation
- Building blocks
 - ElGamal cryptosystem
 - Reliable as long as one server-side component stays honest
 - Bayer & Groth mixnet homomorphically encrypted votes shuffled before decryption
 - Individual verifiability
 - Universal verifiability
- However, researchers have proven it is flawed

Resources

Reading Material

⇒ Literature access

- \rightarrow https://scholar.google.com/
- \rightarrow https://semanticscholar.org/
- \rightarrow https://dblp.uni-trier.de/
- \rightarrow https://arxiv.org/
- ⇒ Get around paywalls using: https://www-ub-tum-de.eaccess.ub.tum.de/datenbanken
- ⇒ Researchers' homepages can be valuable!
 - ightarrow the paper, source code, raw data, instructions, technical information

Thank you!

Marius Momeu momeu@sec.in.tum.de

Fabian Kilger kilger@sec.in.tum.de

Michael Heinl michael.heinl@aisec.fraunhofer.de