Outline

Intro
Organization
Overview of Technical Content
Time Table
Introduction to Scientific Writing
Topics
Next Steps
Q&A
Who are we?

- Short introduction of ourselves and Fraunhofer AISEC
- Research Interests
Why register for this Seminar?

- You are interested in Operating Systems?
- IT Security has you on a hook?
- You know TEEs and the likes will only become more important in the future?
- You think microkernels do not yet have the attention they deserve?

=> Then this seminar is exactly what you are looking for!

Requirements: IN0004, IN0009
Recommended: IN2209 (IT-Sicherheit)
Organization

- **Report-Document**
 - Language: English
 - Exactly 10 pages (excl. references)
 - Written in \LaTeX\ IEEE template (https://www.ieee.org/conferences/publishing/templates.html)

- **Review**
 - Perform review of 2 papers of your fellow students
 - ~1 page per review
 - Based on the reviews received: Rebuttal + "Camera-Ready" version

- **Presentation**
 - Language: English or German
 - 25-30 minutes Presentation
 - ~15 minutes Discussion

- **Deliverables**
 - Draft and "camera-ready" Report
 - 2 Reviews
 - Rebuttal
 - Presentation + Slides
 - Active Participation in Discussions
What are TEEs?

A Trusted Execution Environment (TEE) is an isolated environment which aims to protect executions within against high privileged adversaries.

- Software TEEs solely rely on software mechanisms for protection, while hardware TEEs use additional hardware mechanisms to protect the confidentiality and integrity of code and data within the environment.

- The most famous ones are
 - AMD SEV
 - Intel SGX
 - Arm TrustZone
AMD Secure Encrypted Virtualization

- AMD Secure Memory Encryption (SME) allows to encrypt memory content before writing into RAM.
- Prevents an attacker from physical RAM reading attacks.
- AMD Secure Encrypted Virtualization (SEV) is based on SME, uses a different key for each virtual machine.
- This prevents a malicious hypervisor from reading a VM’s memory content.
- Moving ciphertext between memory location is prevented by encryption of physical memory address.

Figure: Overview of AMD SEV
ARM TrustZone

- Hardware-enforced isolation (CPU extensions)
- TrustZone-A: for Armv7-A and Armv8-A devices
- TrustZone-M: for Armv8-M devices
Static Attestation State-of-the-Art (TPM-based)

- Minimal Trusted Computing Base (TCB) full stack
- Hardware Trust-Anchor
- Signature scheme for software artefacts
- Authenticity verification for all components
- Typically Hashes used for measurements

Figure: TCB attested via TPM
Static Attestation State-of-the-Art (TEE-based)

- Strict isolation of program code and secrets by Trusted Execution Environment
- No manipulation even by the provider
- Remote integrity verification (remote attestation) before adding any secrets

Figure: TCB attested via cloud TEEs
Preliminary Time Table

31.01. ● Preliminary Meeting (today)
15.02. ● Deadline for registration in matching system and E-Mail
10.03. ● Start of topic assignment
08.05. ● Submit outline + first content in bullet points
19.06. ● Submit your first version (outline finished, 80% of content) for review
03.07. ● Submit reviews
17.07. ● Submit your rebuttal + "camera-ready" version
24.07. ● Submit your presentation slides

01.08. - 05.08. ● Meetings: Presentations and discussion

If possible, presentation meetings will be held at Fraunhofer AISEC. Attendance required!
Introduction to Scientific Writing

- May be provided by chair? We will inform you beforehand
- We will provide helping material on...
 - How to read a paper
 - How to write a research paper
 - Citation guidelines
 - etc.
Topics of Interest

TEE frameworks:

- AMD SEV, Intel SGX, TDX
- ARM TrustZone
- TEEs on RISC-V (e.g., Keystone)
- fTPM implementations in TEEs
- Attacks against TEEs / Mitigations against attacks
Topics of Interest

TEE & Microkernels:
- TEE based on seL4
- Trusty TEE
- MicroTEE
- seL4 + Keystone
- ...?
Topics of Interest

TEE & Attestation:
- Property-based Attestation in TEEs
- Remote Runtime Attestation in TEEs

And of course we always welcome topic proposals from your side.
Next Steps

■ Optional: Write us an E-Mail (<firstname>.<lastname>@aisec.fraunhofer.de) and propose a topic:
 ■ benjamin.orthen@aisec.fraunhofer.de
 ■ alexander.weidinger@aisec.fraunhofer.de
 ■ hendrik.meyerzumfelde@aisec.fraunhofer.de

■ Mandatory: Register for this seminar via the TUM-Matching system (10.02. - 21.2.)