
Chair of IT Security
Department of Informatics
Technical University of Munich

Low-Level Software Security
Preliminary Meeting - SS 2023 - Season II

Marius Momeu Manuel Andreas

Chair of IT Security - School of Computation, Information and Technology - Technical

University of Munich (TUM)

January 26, 2023

Chair of IT Security
Department of Informatics
Technical University of Munich

Intro

Your tutors:
• Marius Momeu (momeu@sec.in.tum.de)

• Manuel Andreas (andreas@sec.in.tum.de)

mailto:momeu@sec.in.tum.de
mailto:andreas@sec.in.tum.de

Chair of IT Security
Department of Informatics
Technical University of Munich

Intro

Your tutors:
• Marius Momeu (momeu@sec.in.tum.de)
• Manuel Andreas (andreas@sec.in.tum.de)

mailto:momeu@sec.in.tum.de
mailto:andreas@sec.in.tum.de

Chair of IT Security
Department of Informatics
Technical University of Munich

Objectives

This is a practical-oriented lab where you will practice systems development on prototypes that address trending topics in the
area of low-level software security1.

As such, your tutors will define tasks based on state-of-the-art research, which you will have to design, implement, and
evaluate a prototype for.

You will then describe your prototype and findings in a final written report, and present them in a final talk at the end of
the semester.

Goals in each topic may be open-ended, exploratory, and agile (i.e., reiterated and adjusted along the way as roadblocks
arise).

1aka systems software security

Chair of IT Security
Department of Informatics
Technical University of Munich

Technical Content

Our topics aim to improve the security of low-level software, typically written in memory unsafe languages (C/C++/Assembly), in
the context of well-known processor architectures (ARM and x86 (Intel and AMD)), and maybe even emerging ones (RISC-V).
The following (non-exhaustive) list captures a number of broad areas we will pick topics from2:

• Software hardening
− either software-based or using hardware extensions (such as Intel VT-x/MPK/CET/HLAT and ARM PAC/MTE)
− to design code/data isolation, code/data debloating, control-/data-flow integrity schemes
− for hardening OS kernels, containers, unikernels, µkernels

• Software analysis
− via static/dynamic program analysis for generating and enforcing control-/data-flow policies
− or via program testing (fuzzing or symbolic execution) for finding bugs
− in closed- and open-source low-level software (OS kernels, device drivers, hypervisors)

• Microarchitectural flaws
− and side-channels for leaking secrets, revealing stealthy monitors, etc.

• CPU security extension design
− e.g., on RISC-V

• Confidential computing in Trusted Execution Environments (TEEs)
• Remote (control-flow and data-flow) attestation
2see more concrete examples on the lab’s webpage description.

https://www.sec.in.tum.de/i20/teaching/low-level-software-security

Chair of IT Security
Department of Informatics
Technical University of Munich

Hands-On Format

Throughout this lab you should expect to touch on (several) hands-on stuff, including but not limited to:

• Remotely operating servers or IoT devices via the command-line terminal (bash on Unix systems)
• System administration (e.g., spawning VMs, managing partitions, compiling and deploying kernels/unikernels)
• Reading and coding in C/C++/Assembly (x86, ARM), (maybe) Rust, and various scripting languages
• Understanding OS concepts, such as memory management (via paging or nested-paging3), interrupts, (bare-metal and

emulated) device drivers, syscalls/hypercalls
• Using LLVM ’s static analysis framework and LLVM binary lifters
• Examining various hardware extensions in architecture manuals (Intel VT-x/MPK/CET/HLAT, ARM PAC/MTE, AMD-SEV-*)
• Understanding/working with software testing techniques: blackbox/whitebox/graybox fuzzing (coverage guidance, input

mutation), state-of-the-art fuzzers (kAFL, syzkaller), symbolic/concolic execution, constraint solvers (z3)
• Computer architecture concepts (e.g., speculative execution, return stack buffers, caches, TLBs)
• Exploitation know-how: code-reuse attacks, data-oriented attacks, secret leaking via covert side-channels
• Compiling/building, dynamic or static linking, binary formats (mostly ELF)

3via PTs and EPTs on Intel’s architecture

Chair of IT Security
Department of Informatics
Technical University of Munich

To be clear:

This is not an introductory lab in software security!

• There will not be ready-made solutions for you to find on $SEARCHENGINE, $FORUM, . . .
• You will have to dive deep into complex code bases / technologies
• Things may not work out as expected

However:

• This is an excellent opportunity to get familiar with state-of-the-art security research
• You gain valuable practical skills in working with sophisticated technology (likely not taught in the curricula)
• If mutual interest exists: you get the chance to participate in any scientific publication that may emerge out of this work

Chair of IT Security
Department of Informatics
Technical University of Munich

Process

Three prototype development phases:
1 Designing
2 Implementation
3 Evaluation

Four presentation meetings:
1 Research Expose
2 System Design
3 Status update and issues (bilateral)
4 Final talk

Two report deliverables:
1 Intermediate draft
2 Final version

Chair of IT Security
Department of Informatics
Technical University of Munich

Grading

Graded deliverables:
• Design / Prototype / Evaluation
• Final presentation
• Final report

Mandatory ungraded deliverables:
• Intermediate presentations
• Regular status updates on your

prototype

Optional ungraded deliverables:
• Draft slides for the final presentation

(to get our feedback on)
• Intermediate report draft

80 % Design / Prototype / Experiments
10 % Final Talk (Presentation and Q&A)
10 % Final Report (Content and Structure)

Σ 100 % Final Grade

Disclaimer: The grading scheme above might suffer slight modifications.

Chair of IT Security
Department of Informatics
Technical University of Munich

Deliverables’ Format

Prototype:

• source code (documented and cleaned-up)

• reproducible evaluation experiments

• guideline (README) for compiling, installing, and evaluating

Report/Writeup:
• complete description and findings of the prototype
• informal language and style (no scientific writing

constraints), max. 10 pages
• we will provide a template

Presentation:
• TUM presentation template4

• custom templates can be used as well
• 16:9 aspect ratio

Generally, we encourage you to use LATEX for writing.

4https://sharelatex.tum.de/templates/tum-templates/tum-presentation-v2.0.0

https://sharelatex.tum.de/templates/tum-templates/tum-presentation-v2.0.0

Chair of IT Security
Department of Informatics
Technical University of Munich

Logistics

When? Irregularly (≈ 4 mandatory meetings), on Tuesdays, at 10:00h (exact dates & time TBA)

Where? On-site in our meeting room: 01.08.033

Language: English

Course of study: both Master’s and Bachelor’s students

Capacity: 16 students (8 teams, 2 students / team)

Registration: Via the matching system

Chair of IT Security
Department of Informatics
Technical University of Munich

Course Resources

Moodle5 page for announcements, for submitting deliverables, and for uploading lecture slides.

Gitlab6 repositories on LRZ’s git server where you can keep your prototype’s source code.

ARM/Intel/AMD machines for prototyping / running experiments, depending on your topic.

Matrix7 for instant messaging with team partners and tutors.

Your tutors for brainstorming and addressing issues.

5https://www.moodle.tum.de/
6https://gitlab.lrz.de/
7https://matrix.tum.de/

https://www.moodle.tum.de/
https://gitlab.lrz.de/
https://matrix.tum.de/

Chair of IT Security
Department of Informatics
Technical University of Munich

Qualification Challenge

To test your readiness for tackling our topics, we propose a qualification challenge that will book you a seat in the lab upon
completion:

1 Clone and compile the latest Linux kernel
2 Generate a root file system with debootstrap8

3 Spawn a QEMU/KVM virtual machine that boots your freshly compiled kernel
4 Write a loadable kernel module (LKM) and load it in your VM
5 Finally, modify your LKM to print "Hello World" to the kernel ring buffer upon initialization

If this is too technical for you, and/or you’re not interested in diving deep into these low-level concepts then this course is
probably not for you!

Deliverable:
• A brief writeup of how you have solved the challenge
• Any scripts or source code you may have written to solve the challenge, e.g. the LKM source code, a script to boot QEMU

with your kernel etc. combined in a single tar file.

8https://wiki.debian.org/Debootstrap

https://wiki.debian.org/Debootstrap

Chair of IT Security
Department of Informatics
Technical University of Munich

Qualification Challenge (contd.)

Still Interested?

Write us an E-Mail to momeu@sec.in.tum.de and andreas@sec.in.tum.de
In your E-Mail, please use the subject: Matching - LLSS - SS 2023

We will consider the following for your approval to our practical course:

1 Mandatory: Succesful completion and documentation of the qualification challenge.
2 Optional but nice: Mention successful completion of any of the following courses:

− Binary Exploitation, Rootkit Praktikum
− Systems Hardening, Software Security Analysis, Trusted Execution Environment, Reverse Engineering
− IT Security, Secure Mobile Systems
− Computer Architecture, Operating Systems
− Any other course/thesis/project related to this security domain

Deadline: 19.02.2023, EoD

mailto:momeu@sec.in.tum.de
mailto:andreas@sec.in.tum.de

Chair of IT Security
Department of Informatics
Technical University of Munich

Q&A

Marius Momeu
momeu@sec.in.tum.de

Manuel Andreas
andreas@sec.in.tum.de

mailto:momeu@sec.in.tum.de
mailto:andreas@sec.in.tum.de

