

Fraunhofer Institute for Applied and Integrated Security AISEC

Seminar Verifiable Computation

Fraunhofer AISEC, Department Secure Operating Systems

Why Verifiable Computation? Introduction

- Nowadays, Computation is heavily offloaded to other machines
 - Cloud computing, edge computing, ...
- Machines are not controlled by the user!
 - Integrity of results cannot be guaranteed
- Possible Solutions:
 - Redundant Computation (e.g. SETI@home)
 - Verified Hard- and Software, Attestation, Trusted Root: TPM, Confidential Computing
- Verifiable Computation aims to remove the trust anchor
- Instead: generate a cryptographic proof of correctness during computation
- → Check this proof against the solution without (expensive) recomputing

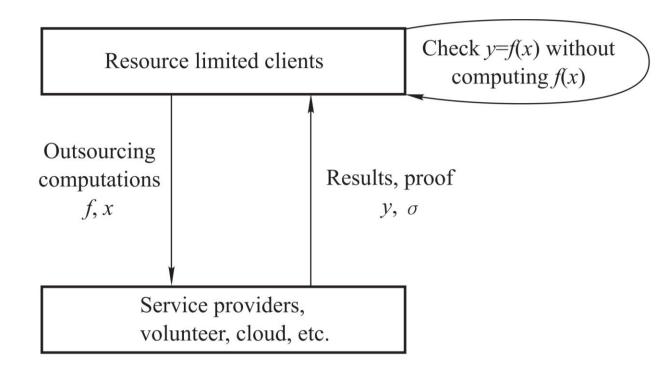


Fig. 1: General Verifiable Computation Framework [Ahmad et al, 2018]

Seminar Topics

- Classes of Verifiable Computation Algorithms [Ahmad et al, 2018]
 - Interactive Proofs
 - Muggles
 - Zero-knowledge Proofs/Arguments
 - zkSNARKs
 - zkSTARKs
 - Bulletproofs
 - Probabilistically Checkable Proofs
 - Computationally Sound Proofs

- Applications include:
 - Verifiable Databases
 - Verifiable State Machines
 - Secure Cloud Control
 - Zero-knowledge Middleboxes
 - Blockchain?
 - ...

• Concrete topic and scope for each paper will be assigned based on the course occupancy and students' preferences

Scope of Papers

- Theoretical fundamentals
 - Mathematical theory of the considered method
 - Complexity
 - Assumptions about environment and setup
 - Security guarantees
 - Limitations
- Beyond their theoretical fundamentals, each considered method should be evaluated with respect to:
 - Physical requirements (i.e. CPU and memory consumption)
 - Real-world applicability (i.e. to which problems can this be applied?)
 - Existing Frameworks (i.e. do open-source implementations exist and are they usable/maintained?)
 - Are they limited to specific programming languages?
 - Existing Applications (i.e. is this actually used in the wild and what for?)

At a glance Key Facts & Figures

- This course includes math and formal methods. You will most likely not be programming.
- Kick-Off: 10.08. 14:00 18:00; physical attendance is mandatory.
- Outline submission on 06.09.2023 23:59 Anywhere on Earth (= 07.09.2023 13:59 Munich Time)¹, 4 weeks after kickoff
- Paper submission on 15.11.2023 23:59 Anywhere on Earth (= 16.11.2023 12:59 Munich Time)², 10 weeks after outline
- Presentation slots:
 - Wednesday, 29.11.2023 14:00 17:00 CET
 - Thursday, 30.11.2023 14:00 17:00 CET
 - Friday, 01.12.2023 14:00 17:00 CET
 - Location TBD, but most likely at Fraunhofer AISEC
 - Physical attendance is mandatory.
- This seminar allows up to 9 students maximum and needs at least 3 students to take place.
- Requirements: IN0015, MA0901, IN0018, IN0042*
- Always communicate with course organizers through vcseminar@aisec.fraunhofer.de
- https://www.timeanddate.com/worldclock/converter.html?iso=20230907T115900&p1=tz_aoe&p2=168
- ²: <u>https://www.timeanddate.com/worldclock/converter.html?iso=20231115T115900&p1=tz_aoe&p2=168</u>
- *: Optional, but strongly encouraged

At a glance Key Facts & Figures (con't)

- Group assignment (2-3 students)
- Improving scientific writing skills in Tex (15-20 pages, ACM template)¹
- Presenting a scientific topic (in German/English):
 - 30 minutes (per student) + 15 minutes discussion.
- Enhancing theoretical and practical security skills
- Grading:
- Scientific paper: 50% (Content, Style, Effort, Grasp)
- Presentation: 40% (Content, Lecture Style, Understandability)
- Active participation/discussion: 10%

¹: Will be provided to you at the kickoff meeting.

Contact

Katharina Bogad, Barbora Hrdá, Johannes Wiesböck Secure Operating Systems Tel. +49 89 3229986-{1020,167,1046} vcseminar@aisec.fraunhofer.de

Fraunhofer AISEC Lichtenbergstr. 11 85748 Garching near Munich Germany www.aisec.fraunhofer.de Fraunhofer AISEC Fraunhofer Institute for Applied and Integrated Security AISEC