
Engineering Informatics I

A C Primer

Dr. Jonas Pfoh
Technische Universität München
Computer Science Department

Winter Semester 2013 - 2014

This document is meant as a basic C primer for someone with no programming
experience. For this reason, I will try to keep the information as accessible as possible.
This document should not be mistaken for a complete or thorough C reference. For
such a reference, I suggest the following book:

The C Programming Language (2nd ed.)

Brian Kernighan & Dennis Ritchie

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

2

http://creativecommons.org/licenses/by-sa/3.0/deed.en_US

1. C Basics

This chapter will cover the most basic C syntax. We will cover the basic structure of
a C program, variables, operators, and control structures.

1.1. Hello World

The following code listing shows a very basic C program.

1 #include <s t d i o . h>
2
3 int main (int argc , char ∗∗ argv) {
4 p r i n t f (”He l lo World !\n”) ;
5
6 return 0 ;
7 }

Listing 1.1: A basic C program

Begin by copying the text in Listing 1.1 into a text file on the server (or any Linux
environment) and calling that file hello world.c. A very simple text editor that you
can use in the beginning is nano. Once you have the code copied into the file and the
file saved, you may compile it. The compiler we will use is gcc and is quite powerful.
By default, gcc will call your program a.out if there were no errors. Simply calling
a.out should now output “Hello World!” to the console. These steps and what they
look like on the console are depicted in Listing 1.2.

$ nano he l l o wo r l d . c
$ gcc h e l l o wo r l d . c
$. / a . out
He l lo World !
$

Listing 1.2: Compiling and running your first C program

Now that we have compiled and ran our first program, let’s take a closer look at
what it is doing. There is actually quite a bit happening here, we will break it down
one-by-one. First, in Line 1 we see an #include preprocessor statement followed by
a file name in angled brackets. For now, you simply need to know that this line tells
the compiler to include other files. The inclusion of these files will allow us to use the
functions they define. In this case, the stdio.h file defines the printf function used
in Line 4. We will look at the preprocessor directives in further detail in Chapter 6.

Following this preprocessor directive, we come to the beginning our main function
on Line 3. For the purposes of this course, all our programs will have a main function

3

that looks exactly like this. This function is where the program begins its execution.
You may notice the argc and argv variables in parenthesis. This indicates that the
main functions expects two variables, argc and argv. The first (argc) should be of
type int and the second (argv) should be of type char**. These variables are set by
the system and we will ignore them for now.

You will also notice that Line 3 ends with an opening curly bracket (’{’). Further,
you may notice that there is a closing curly bracket (’}’) on Line 7. These brackets
establish a code block and limits the scope of any variables used inside of them. Simply
put, anything within these curly brackets are part of the function whose declaration
they immediately follow (in this case, main). We will take a closer look at the main

function and its structure in Chapter 3.
Within this main function, the first function to be called (and the first thing the

program will do) is the printf function on Line 4. This function tells the system to
print “Hello World!” to the output console. The “\n” following the string is actually
a representation of the newline character. That is, “\n” tells the system to move to
the next line such that any subsequent output will be printed on the new line. We will
consider input and output further in Chapter 2.

On Line 6 we see a return statement. return statements tell the program to return
from the function we are currently in. In this case, we are in the main function, thus
a return will exit the program. However, in a more general case, a return statement
will end execution of the current function and continue execution directly after the
point the current function was called.

In our example, the return is followed by a 0. This indicates that the return

statement should return the value ’0’ to the calling function. We know that this
function must return an integer because the declaration of our main function on Line 3
begins with the int keyword.

Finally, you may notice that lines 4 and 6 end in a semicolon (’;’). In C, all decla-
rations and statements must end with a semicolon. This will quickly become second
nature, but is also a common mistake for new programmers. If in doubt about an
error, check that all your declarations and statements end with a semicolon.

This first section was meant to give you a very general overview into the C program-
ming language. From here we will dive in a bit deeper and consider the individual
constructs a bit more closely.

1.2. Comments

The first, very simple, construct I will describe in detail are comments. Comments
are completely disregarded by the compiler, but are helpful for human understanding
of code. Sometimes it is not immediately clear what a specific code section does. A
simple comment might save someone reading your code valuable time. Comments are
depicted in the following code listing.

4

1 #include <s t d i o . h>
2
3 /∗
4 t h i s i s the main func t ion
5 program execu t ion beg ins here
6 ∗/
7 int main (int argc , char ∗∗ argv) {
8 // the f o l l ow i n g l i n e c a l l s p r i n t f
9 p r i n t f (”He l lo World !\n”) ;

10
11 return 0 ; // t h i s w i l l re turn from the main func t ion
12 }

Listing 1.3: A basic C program with comments

As can be seen in Listing 1.3, there are two types of comments. The first are multi-
line comments as depicted in Lines 3 to 6. Such comments can span multiple lines
and are enclosed in /* ... */.

In addition to multi-line comments, C support single-line comments. Such com-
ments are preceded by //. That is anything on a line after // will be disregarded. We
see this construct being used in two slightly different variations in our example. In
Line 8, everything on the line is a comment and disregarded by the compiler. However,
in Line 11 everything up to // is processed by the compiler and only everything after
is disregarded.

1.3. Variables

You are hopefully familiar with the concept of variables from your algebra courses. In
programming, the concept of a variable is very similar. We use variables as placeholders
for information that will not be constant from run to run. However before we use a
variable they must be declared so that the compiler is aware of them.

1.3.1. Declaration

For the purposes of this course a function declaration takes the form type name; where
type refers to the variable type being declared and name refers to the name given to
the variable. For example, the int type is likely the most common type you will come
across in this course and it specifies that the declared variable is an integer. Here an
example:

1 . . .
2 int x ;
3 int y , z ;
4 . . .

Listing 1.4: Integer declaration
Please be aware that the ellipses (...) do not reflect a construct in the C programming

language but are rather there to indicate this is just a snippet of code and there is code

missing before and after the snippet.

5

In Listing 1.4, we see three variables being declared as integers, x, y, and z. You
may also notice that multiple variables of the same type can be declared on one line
with one type specifier as is shown in Line 4.

1.3.2. Data Types

Of course, there are many types that can be specified in the C language. Below, I list
the types that will be relevant for this course:

void This is special type specifier that indicates the type of this variable is unknown
or bound to change. We will talk about the void type when we begin discussing
pointers in Chapter 4.

char This type specifier indicates the variable is a single character (not a string).

int This type specifier indicates the variable is an integer. That is, a positive or
negative whole number.

float This type specifier indicates the variable is a floating point decimal number.
Essentially this type is a very precise approximation of real numbers.

In addition to these type specifiers, int and char types can be further specified with
the signed and unsigned type specifiers beforehand. These allow the programmer to
explicitly specify whether a variable can represent positive and negative numbers or
simply positive numbers. For example, the following specifies x will hold only positive
integers while y and z can be used to store positive or negative integers. Finally, a
may only store positive characters.

. . .
unsigned int x ;
signed int y ;
int z ;
unsigned char a ;

. . .

Character Representation

The concept of a positive or negative character may be foreign to you, but if consider
that the computer simply sees a number that represents a character, it may be easier
to understand.

Internally, the computer stores all data as numbers. We simply have a standard for
representing characters as numbers called the American Standard Code for Information
Interchange (ASCII). This allows us to map numbers to characters in a standard way.
For example, what we know to be the letter ’a’ is stored by the computer as the
number 97 (for the full ASCII table, see Appendix A). So really, the char type is an
integer that is represented as characters when we input or output them. Hopefully, it
is now clearer why we can distinguish between negative characters. Effectively, you can
ignore the concept of unsigned characters for the purpose of this course, however, it is

6

important that you understand that characters are internally represented as integers.
For a took at the ASCII table, please see Appendix A.

We can even tell the computer to print an int as a char and if it is a valid character,
the character will be printed, but more on that later...

Boolean Type

You may be wondering why I did not mention a boolean type. The answer is because
there is no explicit boolean type in the C programming language. Instead we use
integers when evaluating equality, for example. That is, an integer value of 0 is said
to be false and all other integer values are said to be true. However, we generally stick
with the values 0 and 1, specifically we use 0 to represent false and 1 to represent true.
Additionally, if an expression evaluates to true, this generally means it evaluates to
the integer value 1.
Note: You may see true and false used in a C program. These are however simply

placeholders for 1 and 0 respectively to help readability.

1.4. Operators

This section will cover the basic operators you need to get a foothold in C. This will
not be a complete list, but will give you a good start. For example, I will not cover
bitwise operations and there are some pointer-related operators that we will cover later
in Chapter 4.

1.4.1. Assignment

Likely, the single most used operator is the assignment operator. This operator is
denoted with the equals sign (’=’) and is used to assign a value to a variable.

1 . . .
2 int x , y ;
3 char z ;
4
5 x = 5 ;
6 y = x + 2 ;
7 y = y + 1 ;
8 z = ’q ’ ;
9 . . .

Listing 1.5: Simple Assignments

In the example above, we see the integer variable x being assigned the value 5 in
Line 5. In Line 6, we the integer variable y being assigned the value x + 5 (in this case,
7). In Line 7, we see an interesting though subtle peculiarity. It is important to note
the difference between assignment and equality. In algebra, for example, the equals
sign is used to denote equality, however in the C programming language it denotes
assignment. Line 7 illustrates this point nicely. In an algebra sense, we would say y

7

cannot equal y+1, therefore the statement is false. However, in C this is a statement
assigning the value of y+1 to the variable y. In essence, Line 7 increments y by 1.

Finally, in Line 7, we see the character variable z being assigned the value ’q’. Notice
that q is in single quotes. Single quotes denote a character and tell the compiler to
treat it as such and not as a variable.

1.4.2. Arithmetic Operations

Arithmetic operators are equally as straightforward and are hopefully familiar from
previous mathematics courses. These include addition (’+’), subtraction (’-’), multi-
plication (’*’), division (’/’), and modulo (’%’).

1 . . .
2 int x , y , z ;
3
4 x = 5 + 2 ;
5 y = x + (2 / x) ;
6 . . .

Listing 1.6: Arithmetic Operations

In the above example in Line 3, we see a simple addition taking place, which is then
assigned to the variable x. In Line 5, we see that it is also possible to manipulate
the order of operations with parenthesis. As in algebra, the operations within the
parenthesis are evaluated first.

Modulo

I will assume that you are familiar with standard mathematical operations such as
addition, subtraction, multiplication, and division. However, the modulo operation
may be new to you. It is a very simple operation that denotes the remainder after the
division of two numbers. That is, 5%2 = 1 because 5/2 is 2 with a remainder of 1.

Short-hand Assignment and Arithmetic

There are is some common short-hand syntax for combining assignment and arith-
metic in C. While they are generally “short-hand” and are equivalent to their longer
counterparts in their assignment behavior, they are so frequent that I will quickly list
them here along with their “long-hand” equivalents.

x++; ≡ x = x + 1;

x--; ≡ x = x - 1;

x+=y; ≡ x = x + y;

x-=y; ≡ x = x - y;

x*=y; ≡ x = x * y;

8

x/=y; ≡ x = x / y;

x%=y; ≡ x = x % y;

1.4.3. Logical Operations

As mentioned, the C language does not have an explicit boolean type, however we
can still perform logical operations on integers, keeping in mind that 0 is false and
any non-zero integer is true. These operations include ’logical and’ (’&&’), ’logical or’
(’||’), and negation (’ !’).

1 . . .
2 int x , y , z ;
3
4 x = 1 ;
5 y = x | | 0 ;
6 z = ! y ;
7 . . .

Listing 1.7: Logical Operations

In the above example, we see on Line 4 that x is being assigned the value of 1 (i. e.,
true). On Line 5, y is assigned the value of x OR 0, which evaluates to 1 (i. e., true).
Finally on Line 6, y is negated and the result is assigned to z.

1.4.4. Relational Operations

A relational operation is used to compare values and returns a boolean value. Since
we do have boolean values at our disposal, in C these operations return either 0 (false)
or 1 (true). The operators include ’equal to’ (’==’), ’not equal to’ (’!=’), ’greater than’
(’>’), ’less than’ (’<’), ’greater than or equal to’ (’>=’), and ’less than or equal to’
(’<=’).

1 . . .
2 int x , y , z ;
3
4 x = 1 ;
5 y = 5 ;
6 z = (x < 5) ;
7 z = (y != 5) ;
8 . . .

Listing 1.8: Relational Operations

In this example, we see x and y being assigned integer values on Lines 4 and 5. We
then see z being assigned the value of (x < 5) on Line 6. If we assume that x = 1,
we know that (x < 5) = true, hence z in assigned the value 1 on Line 6. Further,
z is assigned the value of (y 6= 5) on Line 7. If we now assume that y = 5, we that
(y 6= 5) = false, hence z in assigned the value 0 on Line 7.

9

1.5. Control Structures

Control structures allow you to control the flow of the program based on some con-
dition. These can generally be divided into two categories, branch structures and
loops.

1.5.1. Branch Structures

A branch structure generally allows you to branch the control flow into two or more
directions based on some condition.

if-else Statements

The most straightforward branch statement is the if-else control block and is best
explained in a series of examples. First, the simplest case...

1 . . .
2 int x ;
3 . . .
4 i f (x < 10) {
5 //do something
6 . . .
7 }
8 . . .

Listing 1.9: A simple if statement

In Listing 1.9, we see a very simple if statement. In this example, the code block
from Lines 5 to 7 will be executed if the conditional statement on Line 4 (i. e., x < 10)
is true. Notice the curly brackets that begin on Line 4 and end on Line 7. These
enclose the code block that will be executed.

This example is extended below.

1 . . .
2 int x ;
3 . . .
4 i f (x < 10) {
5 //do something
6 . . .
7 }
8 else {
9 //do something e l s e

10 . . .
11 }
12 . . .

Listing 1.10: A simple if-else statement

In the above example, we see the same if statement as in Listing 1.9, however it is
followed by an else statement. The code block following this else statement (again,
enclosed in curly brackets) is executed if the conditional statement on Line 4 is not

10

true. That is, Lines 9 to 11 are executed if ¬(x < 10). Finally, this example can be
taken one step further.

1 . . .
2 int x ;
3 . . .
4 i f (x < 10) {
5 //code b l o c k A
6 . . .
7 }
8 else i f ((x >= 10) && (x < 15)) {
9 //code b l o c k B

10 . . .
11 }
12 else i f ((x >= 15) && (x < 25)) {
13 //code b l o c k C
14 . . .
15 }
16 else {
17 //code b l o c k D
18 . . .
19 }
20 . . .

Listing 1.11: A if-else statement

In this final example, we see a further construct, the else if statement. This
construct allows us to perform multiple conditional tests with only one outcome. In
Listing 1.11, for example, code block A is executed if x < 10, code block B is executed
if 10 ≤ x < 15, code block C is executed if 15 ≤ x < 25, and code block D is executed
otherwise (i. e., x ≥ 25).

switch Statements

A very long if-else statement can become tedious or even inefficient in certain cir-
cumstances. For this reason, the C language also provides the switch construct for
conditions that hinge on a single variable. For example, the following code is valid C
code, but a bit tedious.

11

1 . . .
2 int x ;
3 . . .
4 i f (x == 1) {
5 . . .
6 }
7 else i f (x == 2) {
8 . . .
9 }

10 else i f (x == 3) {
11 . . .
12 }
13 else i f (x == 4) {
14 . . .
15 }
16 else {
17 . . .
18 }
19 . . .

Listing 1.12: Testing x with an if-else block

As mentioned the above example is completely valid, but there is a construct that
may be better suited to such control needs. This construct is a switch statement. As
usual, we will take a look at this in the context of an example. The following code
snippet is semantically equivalent to Listing 1.12.

1 . . .
2 int x ;
3 . . .
4 switch (x) {
5 case 1 :
6 . . .
7 break ;
8 case 2 :
9 . . .

10 break ;
11 case 3 :
12 . . .
13 break ;
14 case 4 :
15 . . .
16 break ;
17 default :
18 . . .
19 break ;
20 }
21 . . .

Listing 1.13: Testing x with an switch statement

The syntax for a switch statement is a bit different and, as mentioned, it can only
check the condition of a single variable or statement. On Line 4, we see the variable
in question, in this case x, in parenthesis after the switch statement. This indicates

12

that the variable x (this may also be a statement) will be used to test each condition.
The case statements within the switch block are used to indicate the various possible
values for x. That is, if x = 1, everything between Lines 5 and 7 will be executed, if
x = 2, everything between Lines 8 and 10 will be executed, and so on. Finally if no
conditions match, the default case is executed (everything between Lines 17 and 19).

One additional interesting point to remember is that each case must end with a
break statement. This explicitly tells the program to continue execution after the
switch statement. If the break statement is omitted, execution will continue within
the switch block until a break is encountered or the block terminates. This allows us
to create constructs such as the following:

1 . . .
2 int x ;
3 . . .
4 switch (x) {
5 case 1 :
6 case 2 :
7 case 3 :
8 . . .
9 break ;

10 case 4 :
11 . . .
12 break ;
13 default :
14 . . .
15 break ;
16 }
17 . . .

Listing 1.14: Testing x with an advanced switch statement

The above example still tests the value of x, but will now execute the code between
Lines 7 and 9 if (x = 1 ∨ x = 2 ∨ x = 3).

1.5.2. Loops

Loops are a control structure designed to repeat a set of statements repeatedly while
some condition holds. We will consider two forms of loops, namely for loops and
while loops.

while Loops

while loops are a very basic form of loops that simply repeat a code block while some
condition holds and take the following form:

13

1 . . .
2 int x ;
3 . . .
4 x = 1 ;
5 while (x) {
6 . . .
7 }
8 . . .

Listing 1.15: A simple while loop

In the above example, the code block from Line 6 to 7 is repeated as long as the
condition after the while keyword on Line 5 holds. Specifically, this loop will be
repeated as long as x = true. Remember that boolean values are simply integers in C.
So using x alone as a conditional is completely valid.

for Loops

for loops are a bit different in their syntax and are generally suited to facilitate
iteration over a variable. Their general form is:
for([initialization];[loop condition];[update statement])

Again, we will look at an example.

1 . . .
2 int x ;
3 . . .
4 for (x=0;x<20;x++){
5 . . .
6 }
7 . . .

Listing 1.16: A simple for loop

The for loop in this example initializes x to 0 ([initialization]), loops as long as
x < 20 ([loop condition]), and increments x by 1 at the end of each iteration ([update
statement]). Simply put, this loop iterates 20 times and increases the value of x by 1
for each iteration.

break and continue

There are two more interesting keywords in the C language when speaking about loops.
These are break and continue. Both of these keywords will interrupt the current loop
iteration immediately. The difference between the two lies in where execution continues
after the statement.

The break keyword will immediately break out of the current loop and continue
execution after the current most nested loop. Below is a simple example.

14

1 . . .
2 int x ;
3 int y ;
4 . . .
5 for (x=0;x<20;x++){
6 . . .
7 i f (y) {
8 break ;
9 }

10 }
11 . . .

Listing 1.17: A simple for loop with a break

The above example makes use of the same for loop as in Listing 1.16 with the
exception of the break keyword. The loop in this example will run in the same manner
as in Listing 1.16 however, if at any point the execution hits Line 7 and y = true, the
execution will break out of the for loop and continue on Line 11 regardless of the
current state of x.

Similar to the break keyword, the continue keyword will stop the current loop
iteration. However, instead of continuing execution after the loop, execution will
continue with the next iteration of the loop regardless of whether there is still code to
be executed in the loop block. We will take a look at another example.

1 . . .
2 int x ;
3 int y ;
4 . . .
5 for (x=0;x<20;x++){
6 . . .
7 i f (y) {
8 continue ;
9 }

10 . . .
11 }
12 . . .

Listing 1.18: A simple for loop with a continue

In the example above, the loop will execute as normal however, if at any point the
execution hits Line 7 and y = true, the execution will continue with the next iteration
of the loop (i. e., x will be incremented) regardless of the fact that there is still code
in the loop block between Lines 9 and 11. This code will not be executed for this
iteration.

15

2. Organizing and Outputting Data

This chapter will cover structures, arrays, strings, and the most common user input
and output functions.

2.1. Structures

Structures (sometimes simply referred to as “structs”) are a simple way of organiz-
ing data into groups. We already spoke about variables and variable types, however
sometimes we may have the need to represent data that requires multiple variables.
For example, a three-dimensional point in a euclidean space is generally represented
by three coordinates (x, y, and z). We could of course represent two such points with
the following variables:

1 . . .
2 f loat po in t a x ;
3 f loat po in t a y ;
4 f loat po i n t a z ;
5 f loat po in t b x ;
6 f loat po in t b y ;
7 f loat po in t b z ;
8
9 po in t a x = 0 . 5 ;

10 po in t a y = 1 ;
11 po i n t a z = 2 ;
12 po in t b x = 13 . 2 2 ;
13 po in t b y = 17 . 2 ;
14 po in t b z = −12;
15 . . .

Listing 2.1: Declaring and assigning point variables

However, you may notice that each such point that we want to represent will have
the same three variables (x, y, and z). A struct will allow you to organize this data.
To define a struct, we use the following syntax:

. . .
struct point {

f loat x ;
f loat y ;
f loat z ;

} ;
. . .

This will define a group of variables that belong together. Once a struct has been
defined, a struct variable can be declared with the following syntax:

16

struct point a;

Once this variable has been declared, a is a variable that effectively contains three
float variables. These can be individually addressed with a dot (’.’) as follows:
a.x = 0.5;

a.y = 1;

a.z = 2;

If we now recreate what we did in Listing 2.2 using structs, it would look like this:

1 . . .
2 struct point {
3 f loat x ;
4 f loat y ;
5 f loat z ;
6 } ;
7 . . .
8 struct point a ;
9 struct point b ;

10
11 a . x = 0 . 5 ;
12 a . y = 1 ;
13 a . z = 2 ;
14 b . x = 13 . 2 2 ;
15 b . y = 17 . 2 ;
16 b . z = −12;
17 . . .

Listing 2.2: Declaring and assigning point variables using a struct

You can see that this will save you a bit of typing and sanity if the program requires
you work with multiple points.

2.2. Arrays

An array is a fairly simple concept. Imagine you are given the task of storing all
the test scores of the students in this lecture for some task. Assuming there are 150
students and each is assigned an identifier from 0 to 149, the following would be a
correct way of accomplishing this task:

. . .
int student000 ;
int student001 ;
int student002 ;
int student003 ;

. . .
int student147 ;
int student148 ;
int student149 ;

. . .

While correct, you may agree that the above method is rather tedious. Declaring
150 variables like this seems silly. Luckily the C language offers a solution, namely

17

arrays. Arrays are simply arrangements of some size of the same variable type. The
syntax makes use of square brackets to define the size of the array. The following
example declares the same 150 integer variables as in the above example:

. . .
int student [1 5 0] ;

. . .

Clearly this seems much easier. The question remains as to how one addresses the
individual integers. This is just as simple and uses the same square brackets. Lets
look at the following example.

1 . . .
2 int i ;
3 int student [1 5 0] ;
4 . . .
5 for (i =0; i <150; i++){
6 // ge t grade fo r current s tudent and s e t the v a r i a b l e cur grade
7 . . .
8 student [i] = cur grade ;
9 }

10 . . .

Listing 2.3: Assigning values to an array of integers

We know from our experience with for loops in Section 1.5.2, that i has an initial
value of 0 and is incremented by one in each iteration. This means that in the first
iteration of the loop, we set the value of student[0], in the second iteration, we set
the value of student[1], and so on. You will also notice that the index of the array
(the number inside of the square brackets) starts with 0 and not with 1. This is a
very important point that is often overlooked by new programmers. This also means
that the 150th element has an index of 149.

Important: It is up to you, the programmer, to know how large your arrays are. If
you declare an array as such,
int a[10];

it is up to you to know that this array holds ten elements (index 0 through 9), if you
address the 15th element with,
a[14] = 100;

the compiler will not stop you. It will assume you are a competent and smart pro-
grammer who knows what he/she is doing. However, this is will likely lead to very
bad things, so be careful!

In addition to addressing individual elements of the array with square brackets, you
may refer to the entire array by leaving the brackets away completely. This will result
in the array variable type “decaying” to become a pointer. This may be useful when
passing arrays to functions, for example. However, we will consider this more closely
in the next chapters.

Finally, the following may seem like correct C code:

18

1 . . .
2 int a [1 0] ;
3 int b [1 0] ;
4 int i ;
5
6 for (i =0; i <10; i++){
7 a [i] = i ;
8 }
9

10 b=a ;
11 . . .

Listing 2.4: An incorrect array copy

However, the compiler will complain with an error on Line 10. This is not the
proper way to copy arrays. Among other things the compiler doesn’t know how long
each of these arrays is and therefore cannot copy them. The proper way to copy array
a to array b is as follows:

1 . . .
2 for (i =0; i <10; i++){
3 b [i] = a [i] ;
4 }
5 . . .

Listing 2.5: A correct array copy

This explicitly copies a number of elements from one array to another. Thus, it is
once again up to the programmer to know how big the arrays are.

2.3. Strings

Strings are nothing more than a special form of arrays. I already introduced the
character data type in Section 1.3.2. Strings are nothing more than arrays of characters
with one exception. They are specially terminated. As I mentioned in the previous
section, the compiler has no idea how long an array is, let alone how long a string inside
of an array is. Think of a character array as a “container” for a string. A character
array of size 32 can contain a string of size 31 (remember, there must be room for a
special terminating character), but it can also contain any string with fewer than 31
characters. So the compiler must know where the current string stops when printing
it, for example.

Let us consider the following example:

1 . . .
2 char s [1 2] = ” long s t r i n g ” ;
3
4 strncpy (s , ” shor t ” , 5) ;
5 . . .

Listing 2.6: A string example

19

This example assigns a string variable s the value ‘‘long string’’, then imme-
diately reassigns this variable with the value ‘‘short’’ in Line 4 (we will get to the
strncpy function below, for now know it copies “short” into s). Let us assume there
are no terminating characters and keep in mind that the compiler doesn’t know how
long the string is. If we look into the array, as the computer sees it it would look
similar to Figure 2.1.

s[12]: l o n g s t r i n g

s h o r ts[12]:

s[12]:

s t r i n g

Figure 2.1.: String assignment without a terminating character.

Considering, Figure 2.1, if we ask the program to output s, how should it know
what to output? Without any terminating characters, the program may end up up
outputting ‘‘shortstring’’ after the reassignment on Line 6. However, what we
want is that the program simply output ‘‘short’’. This is where the terminating
character comes in. This terminating character is referred to as NULL and when repre-
sented as a character is represented as ’\0’. The compiler (or in some cases, a function)
will automatically append this NULL byte to the end of a string. This is why we must
also always make sure our array is at least one character larger than the maximum
size string the array is to hold.

If we consider a proper copy, this time with a terminating character, it would look
as it does in Figure 2.2.

s[12]: l o n g s t r i n g

s h o r ts[12]:

s[12]:

t r i n g

\0

\0

Figure 2.2.: String assignment with a terminating character (’\0’).

Now, it is clear to the program what to output when asked. It simply prints char-
acters until it comes across the NULL byte.

20

Important: Keep in mind that after your string there are likely other variables or
data stored in memory. Additionally, neither the compiler nor the underling hardware
know how long your array or string is. So if you ask your program to print a string
without a terminating character, your program will output all data in memory until
it hits a NULL byte by chance. This is not good!
However, it is generally the case that you will not have to worry about this as most
string operations and functions will append the NULL byte automatically.

Important: I will reiterate how important it is to always leave one character at the
end of your array free for the NULL byte. If you do not do this, the compiler or function
may automatically write a NULL byte at the end of your string. However, if this no
longer is within the bounds of your array bad things will happen!

2.3.1. strlen Function

The next three subsections will cover common string functions that you might find
useful. The first of these is the strlen function. You may be able to guess from the
name that this function returns the size of a string as an unsigned integer. Specifically,
this function takes a single argument that is the string for which you wish to know
the length and returns an unsigned integer that represents the size of that string. It is
very important to note that this function returns the size of the string and not the
size of the array. That is, this function simply iterates over the string until it finds
a NULL byte and outputs the number of characters before it. As always, the compiler
and machine do not know the size of your array, it can only tell you the size of the
string within the array. Below is an example:

1 #include <s t r i n g . h>
2 . . .
3 char s [1 0 0] = ” t h i s i s a s t r i n g o f l ength 29” ;
4 unsigned int s i z e ;
5
6 s i z e = s t r l e n (s) ;
7 . . .

Listing 2.7: strlen in action

You will notice on Line 1 that the string.h header must be included in order to
use this function. On Line 6, strlen is used to assign the size of the string s to the
unsigned integer size. After Line 6 is executed, size will contain the value 29. Notice
that it contains 29 and not 100 as the size of the string is 29 even though the size of
the array is 100 as declared on Line 3.

2.3.2. strncpy Function

One common mistake that new programmers make when using C is they want to copy
strings with the following:

21

1 . . .
2 char s [2 0] ;
3 char d [2 0] ;
4
5 s = ” s t r i n g to be copied ” ;
6
7 d = s ;
8 . . .

Listing 2.8: The incorrect way to copy a string

This will result in an error. I will hold off on explaining why this causes an error
until we have discussed pointers. For now you simply need to know that this is the
wrong way to copy strings. The correct way to copy strings is either to assign it
directly when declaring the string or to use a function called strncpy. This function
takes three arguments. The first is the destination string (the string to which we want
to copy), the second argument is the source string (the string from which we want to
copy), and the third argument is the size of the destination array. It is important that
the size argument is correct as it may lead to an overflow if the destination is actually
shorter than the size you give the function. Also, beware if the destination string is
smaller than the source string. If this is the case, the function will copy as much of the
string as possible without copying a NULL byte. So if this is your intention, you need
to manually add the NULL byte to the end of the string yourself. Below is an example
of how to properly copy a string:

1 #include <s t r i n g . h>
2 . . .
3 char s [2 0] = ” s t r i n g to be copied ” ;
4 char d [2 0] ;
5
6 strncpy (d , s , 2 0) ;
7 . . .

Listing 2.9: The correct way to copy a string

The first thing you may notice in the above example is that string.h is included on
Line 1. As with the strlen function this header must be included in order to use this
function. Additionally, you will notice that I am assigning the source string directly
on Line 3 as part of the declaration. The actual copying is quite straightforward. On
Line 6 you see the proper way to copy a string using the strncpy function as described
above.

Important: There is a function similar to strncpy called strcpy (notice the lack
of the ’n’). This function works without the size argument and simply copies one
string into another until it reaches a NULL byte in the source string. This function
is considered unsafe as it may result in an overflow of the destination. Remember
what I told you regarding strings and arrays! Neither the compiler nor the underling
hardware know how long your array or string is. It is up to you to write your code
such that it does not overflow!

22

2.3.3. strcmp Function

As with copying strings, new C programmers often try to compare strings with the
following:

1 . . .
2 char s1 [2 0] = ” s t r i n g 1 ” ;
3 char s2 [2 0] = ” s t r i n g 2 ” ;
4
5 i f (s1 == s2) {
6 . . .

Listing 2.10: The incorrect way to compare two strings

What makes this even more confusing than the example I used with copying strings
is that this code will compile without any errors! However, Line 8 in the above
example is not comparing the strings. Again, I will forgo an explanation until we
have discussed pointers, but know that this is incorrect if you want to compare the
two strings. The proper way to compare strings is to use the strcmp function. This
function simply takes two strings as arguments, compares them, and returns an integer
result. Specifically, it returns 0 if the two strings are the same and it returns a non-0
value if they are not. This may seem counterintuitive since we learned that non-0
integer values equate to true and 0 equates to false in a boolean sense. However,
the non-0 value that is returned allows you to infer something about how the strings
are different that are irrelevant for this course. Below an example:

1 #include <s t r i n g . h>
2 . . .
3 char s1 [2 0] = ” s t r i n g 1 ” ;
4 char s2 [2 0] = ” s t r i n g 2 ” ;
5
6 i f (strcmp (s1 , s2) == 0) {
7 . . .

Listing 2.11: The correct way to compare two strings

As with all the string functions, this function requires string.h to be included
as shown on Line 1. The strcmp function is used on Line 6 and its return value is
compared to 0 in order to determine if s1 and s2 are equal.

2.4. Console Output

We will use one primary function for outputting information to the screen in our
programs. This is the printf function. As breifly mentioned in Section 1.1, this
function requires that stdio.h is included. This is done at the beginning of the
program with the following syntax:
#include<stdio.h>

Such “include statements” can generally be the first things in your source file.
Printing a constant string is very straightforward with the printf function, as can

be seen in the following:

23

1 #include<s t d i o . h>
2 . . .
3 p r i n t f (”He l lo World !\n”) ;
4 . . .

Listing 2.12: Printing a constant string.

The above example will print the string “Hello World!” to the console. Remember,
that “\n” is a representation of the newline character as introduced in Section 1.1.
That is, this sequence will simply move the cursor to the next line.

Printing variables is a bit more complex, but still rather straightforward. The
printf function uses a concept called format strings. The idea is fairly simple.
For every variable you want to embed in the output string, put a placeholder in the
string. Imagine we use ’%’ as our placeholder and we want to embed a single variable
in our output. The string may look something like this: ‘‘Hello, I am % years

old.\n’’. The compiler will then know that it is to print the string, but replace
all placeholders with the respective variable(s). You may ask, how does the compiler
know what variable to replace the placeholder with? Well you simply add the variable
as an additional variable as such:
printf(‘‘Hello, I am % years old.\n’’,age);
where age is a variable that stores the age to be output. If I want to output additional
variables, I simply add those variables as arguments in the order I want the replace-
ment to occur, as such:
printf(‘‘Hello, I am % years old and my name is%.\n’’,age,name);
In this case, age is a variable that stores my age and name is a variable that stores
my name. Notice that the order of the variables reflects which variable replaces which
placeholder. That is, the first variable will replace the first placeholder, the second
variable will replace the second placeholder, and so on.

There is one final step that is still missing. As you may have noticed by now, the
compiler and the machine itself are very primitive and need to be told everything.
This means you need to explicitly state what variable type will be replacing the
placeholder. This is done with a letter after the ’%’. For example, if the placeholder is
to be replaced by an signed integer, the placeholder is “%d” and if the placeholder is
to be replaced by a string, the placeholder “%s” is used. So our call to printf would
look as follows:
printf(‘‘Hello, I am %d years old and my name is%s.\n’’,age,name);
This is due to the fact that age is an integer variable and name is a string variable.

A table with placeholders relevant for this course follows:

Placeholder Type
%d signed integer
%u unsigned integer
%f floating point
%c single character
%s null terminated string

24

Important: Format strings can be dangerous. As shown, the first argument must
always be a string to be output. This means that the following will compile and run
with seemingly no problem:
printf(name);

where name is a variable containing a string. This can be very dangerous and lead to a
vulnerability if the user can influence the name variable in any way (which is generally
the case). The class of exploit that abuses this vulnerability are called format string
exploits. I will not go into details, but know they exist. The proper way to output a
single string is as follows:
printf(‘‘%s’’,name);

This may seem redundant, but is very important!

2.5. Console Input

Accepting input from the user is very common place in most programs. One of the
most basic methods for accepting input is directly from the console. For now, we will
learn to accept all input as a string first. This is very straightforward with the fgets

function. As always, I will explain with an example.

1 #include<s t d i o . h>
2 . . .
3 char i n pu t s t r i n g [1 2 8] ;
4 f g e t s (i npu t s t r i n g , 128 , s td in) ;
5 . . .

Listing 2.13: Accepting input

The first thing you may notice is that the same header that was included above for
printf is included here on Line 1. Also, we must first create the string that is to
contain the input the user types. On Line 3, you see we declare a string of size 128
to hold the input. Finally, on Line 4 the input is actually collected with the fgets

function and stored in the input string variable. Let us take a closer look at fgets.
fgets accepts three arguments. The first is the string variable that is to hold the

input (input string in the example). The second is the size of the string passed as the
first argument (128 in the example). Finally, the third argument is the file descriptor
of the input stream (stdin in the example). For our purposes, the first two are of
most interest. It is very important that the second argument correctly reflects the size
of the first argument. As I have reiterated several times, neither the compiler nor the
machine know (or care) how large your arrays are. Therefore, you must explicitly tell
the function how large the array is. If you tell fgets that the input string is larger
than it actually is, it will happily write past the string buffer in memory. If this occurs,
bad things will happen.

The final argument will always be the same for this purpose. stdin is the file
descriptor for keyboard input and fgets is a generic function that can get input from
any open file. In Linux, everything is handled as a file and reading and writing from/to
the console is the same (for the programmer/user) as reading and writing from/to a

25

file. In this case, stdin simply tells the function to read from the keyboard (and not
from a “actual” file).

Finally, it is important to understand what fgets actually does. There are some
questions you might be asking yourself: Does the user have to enter exactly 128 char-
acters? If not, how does the function know to stop getting characters early? Does
the fgets function automatically add the NULL terminator? Well, first of all, the user
does not have to enter exactly 128 characters in the above example. fgets will accept
input until the the buffer is full or a newline (enter key) is received from the user.
So, if a user enters 5 characters, then presses enter, the input string will contain the 5
characters entered followed by a NULL terminator. This answers the third question as
well, the fgets will automatically NULL terminate the string. So, this actually means
that if the second argument is 128 as in our example, the function will only receive a
maximum of 127 characters as it saves space for the NULL terminator.

Important: There are many ways to accept input into a string using C. However,
it is important that you the programmer ALWAYS make sure that you are able to
control the amount of input received based on the size of your buffer. This is such
a critical point as it results in a most basic vulnerability. You should never allow a
user to enter input past the bounds of an array. This will almost always result in a
vulnerability that can be exploited by a user.
There exist functions that do not allow you as the programmer to pass the size of the
buffer and simply stop collecting input once the user presses return. These functions are
extremely dangerous and should never be used. These functions are deprecated,
but you must still be careful. If you ever think there might be a good reason to use
such a function in C, you are wrong! Never use them.
Never.

Important: Really, never.

Converting Strings to Numbers

One point that remains is that with fgets we only can accept strings. That is, a user
can of course enter “74863”, however the machine stores this as a string and not as
an integer, which is what you may want. This means, we must take one additional
step to convert the string “74863” to the integer 74863. Luckily, we have a function
at our disposal to do this for us, namely the atoi (ascii to integer) function. The
atoi function accepts a single string variable and returns an integer. See the example
below.

26

1 #include<s t d l i b . h>
2 #include<s t d i o . h>
3 . . .
4 char i s t r [1 2 8] ;
5 int i i n t ;
6
7 f g e t s (i s t r , 128 , s td in) ;
8
9 i i n t = a t o i (i s t r) ;

10 . . .

Listing 2.14: atoi in action

I will begin by pointing out that this function requires you include stdlib.h as can
be seen on Line 1.

In the example above, you see on Line 9, the string istr being converted to an
integer and stored in iint. You will need to exercise caution as this function will not
validate the input. That is, if the input string does not represent a decimal number,
the function will generally return 0. Specifically the function will ignore all leading
whitespace (e. g., spaces and tabs), then start processing decimal digits character by
character. If the first character is not a decimal digit, the function simply returns 0.
If the first character(s) is/are decimal digits, it will process them until there are no
more. That is, if the user enters “123abc567”, the function will return 123.

Additionally, there exists a similar function for floating point numbers, namely atof

(ascii to f loat). This function works in exactly the same manner except that it returns
a floating point rather than an integer.

27

3. Functions

Until now, we have been organizing our code into a single main function that is called
automatically and using functions that have been predefined and implemented for us.
In this section we will discuss declaring, implementing, and using our own functions.
First let us talk about why functions are helpful and useful. Most programs could
be written in a single function, however it would lead to code that is difficult to read,
difficult to understand, and unnecessarily long. Let us assume there was a task that
you found yourself needing several times in a single program. As a simple example,
let us assume this task was finding the mean of three floats. This is simply calculated
with the following C code:

1 . . .
2 f loat a ;
3 f loat b ;
4 f loat c ;
5 f loat r e s u l t ;
6 . . .
7 a = 1 . 2 ;
8 b = 34 . 2 ;
9 c = 12 . 4 44 ;

10 r e s u l t = a + b + c ;
11 r e s u l t = r e s u l t / 3 ;
12 . . .

Listing 3.1: Calculating the mean of three floats

While this is a very simple example, I hope you can see that if you had to perform
this task several times, it may make sense to write the code once and reuse it each
time you needed it, rather than copy and pasting this code segment everywhere you
needed it. This has the added benefit that if you realize halfway through your program
that you actually need the median of the three numbers and not the mean, you simply
need to change the code once rather than finding all the points in your code where
you calculate the mean and change it.

3.1. Declaring Functions

Function declarations generally have three main parts, first, the return value. This
declares the type of the data that will be returned by the function. Next is the
function name itself. Similar to a variable name, you can arbitrarily name your
function when declaring it. Finally, you must specify the function arguments. This
is a list of variables that will serve as the input to the function.

28

After the declaration itself, you can immediately implement the function within
curly brackets. Let us look at an example:

1 . . .
2 f loat mean(f loat a , f loat b , f loat c) {
3 f loat r e s u l t ;
4
5 r e s u l t = a + b + c ;
6 r e s u l t = r e s u l t / 3 ;
7
8 return r e s u l t ;
9 }

10 . . .

Listing 3.2: A function declaration

In the above example on Line 2, you see the declaration itself. The first keyword,
float identifies the return value of the function. In this case the result (i. e., the mean
of the three numbers) will be a float. This value is returned within the function with
the return keyword. You can see this on Line 8. After the float keyword on Line 2,
you see the function name, mean. This simply defines the name of the function such
that it can be called and used later. Following this in parenthesis, you see a list of
variable declarations separated by commas. This defines the input to the function
and the names of those variables within the function. You will notice, on Line 5, the
variables a, b, and c being used seemingly without declaration. However, the variable
declaration within the function arguments is enough in this case. Additionally, the
parenthesis may remain empty if there is no variables to be passed to the function.

After the declaration, you see the implementation of the function within curly braces.
This should look very similar to the implementation used in Listing 3.1, except that
it is encapsulated in a function.

As a final note, you may wish to declare a function that does not return any value.
If this is the case, the return type should be void. For example, the following function
declaration identifies a function that does not return any value:
void function name()

In this case, the return statement may be used without a value following it to imme-
diately return from the function.

3.2. Using Functions

Using functions is very straightforward and is something you have already done with
functions that are implemented for you (e. g., printf).

Assuming that the mean function is declared and implemented (as in Listing 3.2),
the code in Listing 3.1 could be rewritten as:

29

1 . . .
2 f loat a ;
3 f loat b ;
4 f loat c ;
5 f loat r e s u l t ;
6 . . .
7 a = 1 . 2 ;
8 b = 34 . 2 ;
9 c = 12 . 4 44 ;

10 r e s u l t = mean(a , b , c) ;
11 . . .

Listing 3.3: Using the mean function

In the above example you see the mean function we declared in Listing 3.1 be put
to use on Line 10. Keep in mind that the function you want to use should be declared
before you use it.

3.3. The main Function

Now that we know what a function declaration looks like, we will take a closer look at
the main function and its declaration. For reference, the declaration looks as follows:
int main(int argc, char **argv)

You will notice immediately that the main function returns an integer. It is general
convention that a successfully executed program will return 0, while an unsuccessful
execution will return a non-0 value. How “successful” and “unsuccessful” are defined
and what the non-0 values represent are left a bit to the programmer and should be
documented.

You will further notice that the main function takes two arguments, argc and argv.
Up to now, we have not touched these, but we will take a closer look now. argc’s type
is straightforward, this argument is an integer. argv’s type declaration may look a bit
scarier. This is actually a double pointer to a character, but for now you can simply
consider argv to be an array of arrays. Specifically, argv is an array of strings, hence
the char type. We will consider pointers in more detail in the next section.

You may be asking, “What do these variables actually contain if I never call main?”.
In fact, main is called by the underling system and will populate these variables with
the command line arguments. You may have noticed that command line programs
can be called with additional information on the command line after the name of
the executable. For example, ls -la /etc/ calls the program ls with additional
information. You as the programmer must be able to retrieve this information within
the program.

It is this information that is present in argc and argv. Specifically, argc is an
integer that contains the number of arguments passed. This includes the executable
itself. argv is an array of strings containing the arguments themselves. That is, the
string that is typed into the command line is divided by spaces and each word or string
is separated into an individual string.

30

Let us consider an example. Assume that your program, cl is called as follows:
$ cl arg1 arg2

In this case, argc contains the value 3 as there are three separate arguments on the
command line (including cl). Additionally, argv is an array of length 3 (argc) of
strings that contain the arguments. Specifically, our example array would look as fol-
lows:
argv[0] = ‘‘cl’’

argv[1] = ‘‘arg1’’

argv[2] = ‘‘arg2’’

Now with this information you can handle the command line arguments within your
program.

31

4. Pointers & Type Casting

This chapter introduces the concept of pointers and type casting which is where C can
get a bit confusing to the newcomer. Before we get into the details, I will cover a bit
of background.

4.1. Memory Basics

The memory in which your program resides is simply an array of 8-bit bytes. Further,
through the magic of modern operating systems (OSs), you can assume that you have
the maximum amount memory possible (despite the amount of physical memory in
your PC) and you don’t need to worry about sharing it with other programs (assume
you are the only program running in memory). As with an array, each byte of memory
has a numeric index or address starting at 0. In a 32-bit machine this address is 32
bits long, while in a 64-bit machine this address is 64 bits long.

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

char a = 'j';
char b = 'p';

int x = 1264;
int y = -13;

'j'

'p'

1264
-13

Figure 4.1.: Memory layout of variables

32

So each variable that is stored in memory has a value, but also has an address.
Consider Figure 4.1. This figure assumes that characters are 8 bits in size and integers
are 32 bits in size. Here you see four variables, two characters (a and b) and two
integers (x and y). The value of a, for example, is ’j’ and the address of a is 02.
Analogous, the value of x is 1264 and the address of x is 04. You will notice that since
integers have a size of 32 bits, each integer takes up 4 entries in the array.

So, while it is possible to pass around the value of a variable, it is equally possible to
pass around the address of a variable. A variable that contains the address of another
variable is called a pointer. It is a variable that “points” to another variable, hence
the name pointer.

4.2. Pointer Basics

Now that we know that a pointer is simply a variable that contains the address of
another variable, hopefully some of the anxiety has died down. A pointer variable
is identified at the time of declaration with an asterisk (’*’) after the type. We still
need to declare the type, so that the compiler and system know what variable type
the pointer is pointing to. Consider the following declaration:
int *int pointer;

The above declaration declares a pointer to an integer and has the name int pointer.
A pointer to any other type (including structs) can be declared in the same manner.

4.3. Referencing Variables

Now that we have pointers, we also need a way to reveal the address of variables.
Assume that you have a variable whose address you wish to assign to a pointer. In
order to reveal the address of a variable, we use an ampersand (’&’). Consider the
following example:

1 . . .
2 int x ;
3 int ∗ x pntr ;
4
5 x = 5 ;
6
7 x pntr = &x ;
8 . . .

Listing 4.1: Variable reference example

In this example, we see an integer declaration on Line 2 and an integer pointer
declaration on Line 3. On Line 5, x is assigned the value of 5. Finally, on Line 7 the
pointer variable x pntr is assigned the address of the variable x. Just to drive this
point home, let us look at one more figure that visualizes what memory looks like.

33

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

int x = 5;
int *x_pntr = &x;

5
04

Figure 4.2.: Pointers in action

In the above figure, we again assume that integers are 32 bits in size. We also
assume that pointers are 32 bits in size (32-bit architecture). As in Figure 4.1, we see
the integer variable x assigned the value 5. Additionally, we see the integer pointer
variable x pntr being assigned the address of variable x. Since x is stored at address
04, this value is stored in the memory assigned to x pntr.

4.4. Pointer Dereferences

In the same way that we may be interested in revealing the address of a variable, we
may also be interested in revealing the value of a variable that a pointer points to.
This is again done with the asterisk (’*’). The difference is that instead of using the
asterisk during declaration, we prepend it to a variable name that has already been
declared. Consider Figure 4.2 again and assume that we want to output the value of
x through the pointer x pntr. If we were simply to output the value of x pntr, we
would get 04 as this is what is stored in memory there (the address of x). If we want
the value of what is stored at address 04, we use the asterisk in the form *x pntr.
This is illustrated in the following example:

1 . . .
2 int x ;
3 int ∗ x pntr ;
4
5 x = 5 ;
6 x pntr = &x ;

34

7
8 p r i n t f (” x pntr r e f e r e n c e s the value %d\n” ,∗ x pntr) ;
9 . . .

Listing 4.2: Following a pointer reference

Listing 4.2 is identical to Listing 4.1 except for the call to printf on Line 8. This
call will result in the string, “x pntr references the value 5 ” being printed as x pntr

is prepended by an asterisk when passed to printf.

4.5. Arrays and Pointers

Up to this point, we have spoken about arrays and pointers separately. However,
they are related such that it makes sense to discuss the interplay between them. In
Chapter 2, I mentioned that a variable that is declared as an array “decays” into a
pointer when you leave the brackets away. More precisely, this is true when the variable
is used on the right-hand side of an expression or as input to a function. Additionally,
any pointer can be used as an array by adding the bracket notation to it.

If you declare an array of integers as follows:
int intarray[10];

you can access the individual elements with brackets as discussed in Chapter 2 (e. g.,
intarray[2]). When we pass an array to a function (as we saw when discussing the
string functions in Chapter 2), for example, we leave the brackets away completely
(e. g., somefunction(intarray);). Effectively, what we are doing is passing a pointer
to the array to the function. This pointer points to the first element in the array and
since each subsequent element is stored sequentially in memory, they can be accessed
within the function as well.

The reverse is true too. If we have a pointer, which is what we receive within a
function, for example, we can access subsequent elements in memory simply by adding
brackets. Consider the following diagram:

35

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

int x[3];
x[0] = 0;
x[1] = 1;
x[2] = 2;
some_func(x);

0
04

1
2

Figure 4.3.: Pointers and arrays

Here, we see that x[3] is declared as an array of size 3 and each element is assigned
a value. You will also notice that the elements of x are stored sequentially in memory
one after the other. When I pass x to the function some func, I pass it without
any brackets. This essentially passes a pointer to the first element in the array to the
function. If I now (within some func) begin using bracket notation again, the compiler
will know to automatically dereference the pointer and access the proper index. Let
us consider an example:

1 . . .
2 void some func (int ∗x) {
3 p r i n t f (”%d\n” , x [1]) ;
4 return ;
5 }
6
7 int main (int argc , char ∗∗ argv) {
8 int x [3] ;
9

10 x [0] = 0 ;
11 x [1] = 1 ;
12 x [2] = 2 ;
13
14 some func (x) ;
15 }

Listing 4.3: Pointers and arrays

You will notice on Line 2 that some func is declared to accept a int* (i. e., a pointer

36

to an integer), however on Line 3, we use the bracket notation to access the second
element within the original array. That is, the printf function on Line 3 will output
“1” when called from Line 14. The compiler automatically dereferences your pointer
and jumps ahead one to access the 1 in memory.

In class exercise: Explain why string copies and compares need special functions
as described in Chapter 2.

4.6. Type Casting

Type casting is a construct that allows you to access a variable as if it were of a different
type. Some care must be taken when performing a type cast, but the principle is very
simple. Let us assume that you have an integer variable x, however you have a function
that requires you pass it a floating point decimal. This should be possible, an integer
15 can be expressed as a floating point 15.0 without issue, however we need to explicitly
tell the compiler this is what we want to do. This is done by prepending the variable
in use with the type to be cast to in parenthesis. Consider the following example:

1 . . .
2 void p r i n t f l o a t (f loat x) {
3 p r i n t f (”%f \n” , x) ;
4 return ;
5 }
6
7 int main (int argc , char ∗∗ argv) {
8 int x ;
9 f loat y ;

10
11 x = 5 ;
12
13 y = (f loat) x ;
14
15 some func ((f loat) x) ;
16 some func (y) ;
17 }

Listing 4.4: Simple type casting

In the above example we see two examples of type casting, once on Line 13 and one
on Line 15. On Line 13, we see the variable x being type cast to a float before its value
is assigned to y and on Line 15, we see he variable x being type cast to a float before
it is passed to a function. It is important to note that the type cast does not change
the type of x, x remains an integer variable. Only its value is accessed as a floating
point value on Lines 13 and 15.

It is also important to note that the type cast only affects the expression immediately
following it. So (float)x + y is different from (float)(x + y) in that the former
casts the value of x to a float, then adds that value to y, while the latter adds x and
y, then casts the result of that addition to a floating point value.

37

Finally, it is very important to keep the size of variables in mind. Remember that I
told you in Chapter 1 that characters are actually represented as numbers and integers
can be printed as numbers. Well if you refer to the ASCII table in Appendix A, you
will see that the letter ’a’ is represented by the number 97. In fact you can print the
letter a to the screen with the following:

. . .
int x = 97 ;
p r i n t f (”%c” , (char) x) ;

. . .

The above example will print the character ’a’. This is all well and good, however you
must be careful because characters are stored with 8 bits, while integers are stored
with 32 bits (this can vary depending on architecture, but let us assume 32 bits). This
means that a character has a potential maximum value that is much smaller than
that of an integer. Let us consider decimal numbers. If I tell you that you only have
two digits available to represent a decimal number, you know that maximum possible
value you can store is 99. On the other hand if I tell you that you have four digits
available, you can store a maximum value of 9999, a much larger number. This is the
same concept except that we are acting in the binary world rather than in the decimal
world. The problem occurs when we cast a variable that has a value larger than what
the new variable is capable of storing. So, if we go back to our decimal example, what
happens if I want to store the value 199 in a variable that can only store two digits?
The explanation of what happens on your PC is beyond what I want to get into in
this course. Simply be aware of this issue and avoid it.

Important: It is important to know that arithmetic performed on a single type will
remain an this regardless of the type of the variable it is assigned to. Consider the
following:
int x = 1;

int y = 2;

float z;

z = x/y;

The above will result in the value 0.0 being assigned to z. This is due to the fact that
x/y is performed over integers and the result is therefore stored as an integer and is
then cast directly before the assignment. In order to force the arithmetic to take place
on floating point values, one or more of the variables must be cast to a float. The
resulting assignment should look like this:
z = (float) x/z;

4.7. The void Pointer

We discussed the void keyword very briefly in the context of a function’s return value
in Chapter 3. I mentioned that this keyword simply meant the function had no value
to return. In the context of pointers, the void keyword allows you to declare a pointer
to an unknown type (void*). This may be helpful in situations where you do not

38

immediately know the type of the variable a pointer points to (or don’t need to). I
mention this as it is a construct that you will see in the next chapter, but we won’t
spend too much time with void pointers. Simply know that you can cast pointers in
the same way you can cast other variables and you will simply need to cast a void
pointer to a usable pointer before you use it. We will see an example of this in the
next chapter.

39

5. Dynamic Memory

Until now we have statically allocated the memory for all our variables. That is, we
assume that we know beforehand how much memory our data needs. For example,
we declared all our arrays with constant values. However, we may have a problem in
situations where we don’t know how large the data will be at the time we are writing
our code. Let us assume that we are tasked with writing a program that allows the
user to repeatedly enter names into our program and it is our program’s job to store
them (in order to sort them alphabetically, for example). Well, we can’t know whether
the user will enter two names or 200 before hand. There is simply no way for us to
know. We could simply declare a very large array and hope that a user never enters
more than this. This is not a good solution, however. First, it unnecessarily wastes
memory if the user only enters two names. Second, it creates an arbitrary maximum
value that we would like to avoid.

In fact there is a way to handle this situation in which we can allocate memory at
runtime. We call this dynamic allocation of memory.

5.1. Address Space Layout

This section will cover some points not directly related to C, but will rather give you
some background as to what is happening on the machine. It will cover some computer
architecture and operating systems (OSs) principles, though just enough to give you
some background.

When we code in C and compile that code, we create a program. Once that
program is running on the system, we call it a process. If the same program is
running multiple times, we say the same program is running as multiple processes.
In fact, there are many processes running on your system constantly. Through the
magic of modern OSs, each one of these processes may run as if it has all the memory
to itself. That is, it (or you, as the programmer) do not need to be concerned with
sharing memory. You may act as if it all belongs to you.

In addition to this, we may assume that a process has the maximum amount of
memory available to it regardless of how much physical memory is actually in the
machine. On a 32-bit architecture, this maximum amount of possible memory is 4GB
of memory and we can assume that we can use all of it, even if there is only 2GB of
physical memory in the machine! You may ask why a 32-bit machine has a maximum
memory amount of 4GB. This is simple. On a 32-bit machine, the largest number we
can represent in binary is 11111111111111111111111111111111 (32 1s). This number
in decimal form is 4,294,967,295 (4GB). That is, if you consider the memory to be an
array of bytes as I mentioned in Chapter 4, the largest index the machine is capable

40

Code

Global Data

Stack
(Static Data)

Heap
(Dynamic Data)

0x00000000

0xFFFFFFFF

Figure 5.1.: A Process’ Address Space

of using and understanding is 4,294,967,295. So even if there were more memory the
machine would be unable to address it because its index is a number higher than what
it can produce! On a 64-bit machine, this maximum number is obviously much higher,
but the same principle applies.

In computer science we often use other numbering systems such as binary (as you
have seen) and hexadecimal. Hexadecimal is a base-16 numbering system that is
often used in computing. I mention this because 4,294,967,295 is often represented as
0xFFFFFFFF in hexadecimal and you should recognize this.

Now that we have covered this we can talk about a process’ address space. This
address space is simply the process’ view of the memory it has and is depicted in
Figure 5.1. In this figure, you see that the process’ memory begins at 0x00000000 at
the top of the figure and goes to 0xFFFFFFFF at the bottom. As we mentioned, the
process may assume it has 4GB of memory and doesn’t need to share it. We also see in
the figure that this address space is split up into sections. The first from the top is the
code section. This is where the program’s instructions reside. All the code that you
write in C is translated to something the machine can understand and is stored here.
The global data section below that is where all global variables are stored. Below
that we have the heap. The heap is where all the dynamic data we talked about in
the previous section is stored. This section may grow as the program runs and as the
process allocates additional memory. Finally, the the very end of the address space is
the stack. This is where all the static variables in your various functions (including
the main function) are stored. As additional functions are called this section may also
grow. Since both the stack and the heap may grow at run time, they are placed at

41

opposite ends of the remaining space and grow towards one another.
I mention this as it may be interesting to see where the dynamic data we will learn

to allocate in the next section is stored and how that differs from where static data is
stored.

5.2. malloc and free

In this section, we will look at the specific mechanisms for allocating and deallocating
memory.

5.2.1. Allocation

In C, we allocate dynamic memory with the malloc function. This function is very
straightforward and it accepts the size of the memory block you want to allocate in
bytes while it returns a void pointer to the newly allocated memory. This function
returns a void pointer because it does not know what you want to do with that
memory, therefore it cannot associate a type with it. However, we learned in the
previous chapter that we can cast void pointers to any other pointer so this is not an
issue for us. For example, if we want to allocate an integer on a 32-bit system and we
know that an integer is four bytes in length, we simply call:
void *void pointer;

void pointer = malloc(4);

After the above statement has executed, the variable void pointer is a void pointer
pointing to a newly allocated four bytes of memory. We can now cast void pointer

to an integer pointer and assign it to an integer pointer. We can also do this casting
immediately as in the following example:
int *int pointer;

int pointer = (int*) malloc(4);

In the above example, we are casting the output of malloc directly to an integer
pointer.

As a final point of interest, C offers the sizeof built-in function. This function
accepts a type as input and outputs the size of that type for the current architecture.
This allows us to write portable code and not to have to worry about how many bytes
each type needs. Finally, an example pulling all of this together.

1 #include <s t d l i b . h>
2 . . .
3 int ∗x ;
4 f loat ∗y ;
5
6 x = (int ∗) mal loc (s izeof (int)) ;
7 y = (f loat ∗) mal loc (s izeof (f loat)) ;
8 . . .

Listing 5.1: Memory allocation with malloc

42

In the above example, we see on Line 1 that malloc requires stdlib.h to be in-
cluded. We then see the declaration of an integer and floating point pointer on Lines 3
and 4. Finally, on Lines 6 and 7, we see the malloc and sizeof functions in action.

5.2.2. Deallocation

As opposed to statically allocated memory, which is automatically deallocated when
the function in which it’s allocated returns, dynamically allocated memory remains
allocated until you explicitly deallocate it. This is done with the free function and is
equally straightforward to use. It simply accepts a void pointer to memory that was
dynamically allocated with malloc. Consider the following example:

1 #include <s t d l i b . h>
2 . . .
3 int ∗x ;
4
5 x = (int ∗) mal loc (s izeof (int)) ;
6 . . .
7 f r e e ((void ∗) x) ;
8 . . .

Listing 5.2: Memory deallocation with free

You will notice, once again, that free requires the stdlib.h header to be included
as shown on Line 1. free is actually used on Line 7 and hopefully you will agree
that its use is very straightforward. It simply takes a void pointer to any previously
allocated memory region.

It is very important that you only free memory that was explicitly allocated by
you. If you attempt to free statically allocated memory, you will have issues. Equally
important is that you must free all memory that you allocate. Generally, we say make
sure you have one call to free for each call to malloc. This might not seem important
to you now and you will not notice any issues in your assignments. It is however very
important as the programs you write get larger (and is simply considered good coding
practice). If you have ever heard the term memory leak, it refers to memory that
is allocated, but never deallocated. This results in a process that constantly allocates
more and more memory without freeing it. This will eventually lead to your process
running out of memory.

43

6. Preprocessor Directives

In this chapter we will very briefly discuss a few useful preprocessor directives. In fact,
we have been using one such directive since Chapter 1. This is the #include directive.
This directive tells the compiler what additional header files to pull into the program
when compiling.

Before we get into further detail however, I will explain exactly what a preprocessor
directive is. These are essentially commands for the compiler and not for the machine
that always start with ’#’. That is, these commands are interpreted by the compiler
and are not translated into machine code.

6.1. The #include Directive

As mentioned, this directive instructs the compiler to include other files in which
external functions are declared. For example, you may have noticed throughout this
primer that the use of various functions requires that a specific header file be included.
This is due to the fact that the function you are interested in using is declared in that
file. In order for the compiler to be able to compile your program it is necessary that
it knows where all the functions you use are declared and defined. As you know the
#include directive is generally called at the beginning of a file and takes the following
form:

1 #include <s t d l i b . h>
2 #include ”custom . h”
3 . . .

Listing 6.1: Using the #include directive

You will hopefully recognize the directive as it is used on Line 1. On Line 2 you
might notice the file is enclosed in quotes as opposed to angled brackets as you are
used to. This simply tells the compiler to look in the same directory as the current
source file. This is used when you are working in larger projects that span multiple
files. We will discuss this further in Chapter 7.

6.2. The #define Directive

This directive allows you to define a macro which is simply a fragment of code which
has been given a name. Whenever this macro is used in the text of your program
the compiler simply replaces it with whatever you have defined it as. Consider the
following:

44

1 . . .
2 #define PI 3 .14
3 #define short name () ve ry ve ry ve ry l ong func t i on name ()
4 . . .

Listing 6.2: Using the #define directive

A #define directive differs from a normal variable definition in that it cannot be
changed at runtime. You can simply think of the compiler going through your program
and replacing all instances of PI with 3.14 before it starts compilation, for example.
You see such a #define on Line 2 of the above listing. On Line 3 you see a long
function name defined as a shorter one.

6.3. The #ifdef, #ifndef, #else, and #endif Directives

These directives form an “if” construct for the compiler. That is, we can tell the
compiler to only bother compiling the following code if a certain macro has been
defined. For example, we may want to make our code compilation work on various
architectures that require different steps. Consider the following:

1 . . .
2 #define X86 1
3 #ifdef X86
4 . . .
5 #else
6 . . .
7 #endif
8 . . .

Listing 6.3: Using the #ifdef #else and #endif directives

In the above example, we see that X86 is explicitly defined. Then on Line 3, the
compiler will look to see if it is defined due to the #ifdef directive. Upon seeing that
it is defined it will compile everything between the #ifdef and the #else directives
and will ignore everything between the #else and the #endif directives.

This construct is also often used in header files to avoid multiple declarations of the
same file as we will see in the next chapter.

45

7. Programming with Multiple Files

In this chapter we will explore using header files and working with larger projects that
span multiple files. We will begin by considering header files.

Up to this point we have used several header files in that we included them into
our project, however in this section we will look at creating our own. The concept is
very simple. We generally create a header file for each C file we create in which the
header file contains declarations that are usable by other files. At this point it may be
worthwhile explaining that functions can be declared without being defined. That is,
we can declare a function in the header file and define it in the C file. We declare a
function in the following manner:
int func1(char*, int);

The above declaration tells us that func1 will be defined and that it will return an
integer and accepts a character pointer and an integer. This is actually enough in-
formation for us to be able to use the function if we know what it does. How it is
implemented might not even concern us. Such declaration can be put into a header file
so that other files can use the functions without having to define them again. Consider
the three files below:

1 #ifndef ARITHMETIC H
2 #define ARITHMETIC H
3
4 int add i t i on (int , int) ;
5 int sub t ra c t i on (int , int) ;
6
7 #endif

Listing 7.1: arithmetic.h

46

1 int add i t i on (int x , int y) {
2 return (x+y) ;
3 }
4
5 int i s g r e a t e r (int x , int y) {
6 i f (x > y) {
7 return 1 ;
8 }
9 else {

10 return 0 ;
11 }
12 }
13
14 int po s sub t r a c t i on (int x , int y) {
15 i f (i s g r e a t e r (y , x)) {
16 return 0 ;
17 }
18 return (x−y) ;
19 }

Listing 7.2: arithmetic.c

1 #include <s t d i o . h>
2 #include ” a r i thmet i c . h”
3
4 int main (int argc , char ∗∗ argv) {
5 p r i n t f (”The sum of 3 and 5 i s %d\n” , add i t i on (3 , 5)) ;
6
7 return 0 ;
8 }

Listing 7.3: my program.c

There are several things you should notice. First, notice in arithmetic.h that we
use the #define, #ifndef, and #endif directives. This is very useful is large projects
as the header file only needs to be included once. This construct makes sure that it
is only ever included into a project once. You will notice it first checks whether the
macro ARITHMETIC H is defined and if it is defined it ignores the entire file. If it is not
defined it immediately sets ARITHMETIC H and performs the declarations. This way
once it has been included once, it will be ignored on each subsequent include.

You will also notice the function declarations in arithmetic.h and notice that these
functions are then implemented in arithmetic.c. You do not have to declare all the
functions you define in arithmetic.c in arithmetic.h, however they will not be directly
visible in another file that includes the header file. You will notice that the function
is greater is defined in arithmetic.c, but not declared in arithmetic.h. This simply
means that any file that includes arithmetic.h will not be able to directly use this
function. It is meant only as a function internal to arithmetic.c.

Additionally, you may notice that arithmetic.c does not have a main function. This
is due to the fact that it is designed to be used as an auxiliary library for the project.
We cannot have more than one main function per program. Therefore if arithmetic.c

47

had a main function and my program.c wanted to include its functions, we would have
an issue.

Finally, you will notice that in my program.c on Line 2, arithmetic.h is included
and is enclosed in quotation marks rather than the angled brackets. This tells the
compiler to look for arithmetic.h in the same directory as my program.c as mentioned
in Chapter 6.

This is, of course, a very simple example of a multi-file program, but hopefully it is
enough to convey the idea.

48

8. Debugging

In this chapter, we will cover debuggers. Debuggers are often overlooked by newer pro-
grammers in favor of “printf debugging”. Perhaps this due to the fact that debuggers
seem complex and daunting. In this chapter we will try to debunk this myth.

The first thing that needs to be mentioned is that it is possible to store debugging
symbols within the binary that the compiler generates. These debugging symbols
help the debugger map machine instructions back to the source code. Remember that
generally the compiled binary is a translation of your source code and the actual source
code is lost. That is, without these debugging symbols you would have to debug your
program on a machine instruction level. In order to tell the compiler to include this
information, we use gcc with the -g flag. For example:
$ gcc -g -o test test.c

This will generate a binary with the name, test and this binary will contain the
debugging symbols. You will notice that the binary is also larger than if it were
compiled without debugging symbols.

49

8.1. Valgrind - Memcheck

From their website1, “Valgrind is an instrumentation framework for building dynamic
analysis tools.”. That is, valgrind is actually much more than a simple debugger.
However, there are tools that leverage valgrind which can be very helpful in debugging
C programs. Specifically, in this course we will consider Memcheck. Memcheck is a
tool for detecting memory leaks, double frees, accesses of unallocated or uninitialized
memory, etc.

Installing Valgrind locally is generally as simple as searching through your Linux
distribution’s application repository. To run it, simply call valgrind with the ap-
propriate options and the binary you want to debug. If you are interested in using
Memcheck, we call valgrind as follows (assuming our binary is called test and has
debugging symbols included):
$ valgrind --tool=memcheck ./test

This will call and run your program. If your program requires input, you may interact
with it as if you had run it natively. After your program has run, Memcheck will
provide a summary of memory usage and errors. If you indeed have a memory leak,
you may notice that Memcheck only provides a summary of the problem with the hint
that we should “Rerun with –leak-check=full to see details of leaked memory”. This
would look as follows:
$ valgrind --tool=memcheck --leak-check=full ./test

Remember, a memory leak is simply a situation in which memory is allocated and
never specifically deallocated.

If you have a memory leak in your program, you may see a report that looks some-
thing like this:

5 bytes in 1 b locks are d e f i n i t e l y l o s t in l o s s record 1 o f 1
at 0x4C2A2DB: malloc (in / usr / l i b / va lg r ind /vgpreload memcheck−amd64−l i nux . so)
by 0x40054C : a l l o ca t e someth ing (t e s t . c : 1 1)
by 0x40056C : main (t e s t . c : 1 8)

The first line tells us that a single block of 5 bytes (i. e., some data structure of
5 bytes) was allocated and no pointer was maintained. The indented portion after
the first line is a call trace or stack trace. This provides a sequence of functions that
were called to get to the allocation within our code, starting at the bottom. We see
(starting at the bottom), that the first function is the main function. You will notice
the text in parenthesis after the name of the function. In this case, it is “test.c:18”.
This indicates to us that, at this location, the program called the next function in
our trace. In this case, it is the allocate something function. Here we see that this
function calls malloc on line 11 of test.c from the text in parenthesis and at the call to
malloc the trace stops. This indicates to us that the offending allocation happens on
line 11 of test.c, which in fact is the case. With this information, we can now try to
determine the situation that lead to this allocation never being freed and correct it.

1http://valgrind.org/

50

http://valgrind.org/

8.1.1. Memcheck Error Overview

In addition to the memory leaks outlined above, Memcheck is able to detect other
memory errors. If Memcheck finds other errors, it will print out a message along with
a call trace similar to the example we saw above with respect to memory leaks. This
section briefly describes each of these error types that Memcheck is capable of detect-
ing. The following information is taken from the official Valgrind documentation2. For
a more detailed explanation of each error, please see this reference.

Invalid reads/writes This error indicates that your program is reading from or writing
to memory which it shouldn’t.

Use of uninitialized values This error indicates that your program is using a variable
which has not be initialized. That is, the variable has never been assigned a
value.

Use of invalid values in system calls You will probably not see this error all to often
unless you are using system calls directly. This error indicates that some value
passed to a system call is uninitialized or unaddressable.

Illegal frees This error means your program is freeing an area of memory that cannot
or should not be freed. This generally comes in the form of a double free. A double
free simply means that your program tries to free the same area of memory twice.

Inappropriate allocation function As we are exclusively using malloc and free for
now, this error should never occur. There are in fact more way to allocate
memory in C++. This error means that your program is trying to “mix and
match” allocation and deallocation functions. That is, if I use a C++ specific
allocation mechanism, I cannot use free to deallocate it, but must rather use a
specific deallocation function.

Overlapping source and destination This error indicates that you are calling a func-
tion such as strncpy, which requires a source and destination buffer, with over-
lapping source and destination buffers. This can result in strange results and
should never happen.

Memory leak detection This error was explained in a bit further detail in the pre-
vious subsection. It indicates that memory has been allocated and was never
deallocated (freed).

8.1.2. Reference

For a look at the complete Valgrid documentation, see http://valgrind.org/docs/

manual/.

2http://valgrind.org/docs/manual/mc-manual.html#mc-manual.errormsgs

51

http://valgrind.org/docs/manual/
http://valgrind.org/docs/manual/
http://valgrind.org/docs/manual/mc-manual.html#mc-manual.errormsgs

8.2. GDB

GDB stands for “GNU Debugger” and is the defacto standard debugger for all GNU
operating systems. GDB is quite powerful and has many features. We will concentrate
on the most basic features required for the debugging of simple programs.

To get started with GDB, simply run gdb with your binary as the first argument.
Make sure that your binary was compiled to include debugging symbols. The call
should look like this (assuming your binary is called test):
$ gdb ./test

This will start gdb and give you a command line environment. Notice that your
program has not yet started execution at this point.

Also, you can exit GDB at any time with the quit or q command on the GDB
command line.

8.2.1. Executing your Program

To execute your program once you have started GDB, use the run command. If you
want to execute your program with some parameters, you may include these after the
run command. For example, to start your program execution with the command line
parameters abc and 123, simply run:
(gdb) run abc 123

This will run your program with the command line arguments abc 123.
You will notice that your program will simply run through as if it had been executed

on the command line. The exception to this is if your program ends in an unhandled
exception (e. g., a segmentation fault). In this case you will be able to inspect the
contents of variables and registers immediately after the exception. This can be helpful
if you are trying to debug segmentation faults, for example. Additionally, you may
press CTRL+C at any time while your program is running it to pause execution. This
will pause execution, but you cannot be sure exactly where your program will pause.
Finally, for more fine grained control, your program will pause execution if it hits a
breakpoint that you set at an earlier time point. Breakpoints and their use will be
discussed in a further subsection.

There are some additional mechanisms by which GDB can pause the execution of
your program, but we will not cover them in this primer.

8.2.2. Listing Source Code

At any time, you can have DBG list the source code around your current position with
the list command. If you would like to print the source code for a specific location,
you can specify a filename and line number in the form of filename:line number.
For example,
(gdb) list test.c:7

will print lines of source code around line 7 of test.c (assuming test.c exists), while a
simple

52

(gdb) list

will print lines of source code around your current location.

8.2.3. Breakpoints

As mentioned in a previous subsection, you may set breakpoints in your code. A
breakpoint is simply a point in the code where you would like the execution to pause
so that you can further inspect the state of your program. This might include looking
at the values of variables or registers, for example.

Setting Breakpoints

To set a breakpoint use the breakpoint command (or b for shorthand).
The breakpoint command requires some additional input. GDB must know where

you want to set your breakpoint. There are two variations that we will cover in this
lecture.

First you can set a breakpoint at the beginning of any function by passing the
function name to the breakpoint command. For example,
(gdb) breakpoint func1

will set a breakpoint at the start of the func1 function (given this function exists).
Additionally, you can set a breakpoint by passing the filename and line number to

GDB. To do this, you simply pass this information to the breakpoint command in
the form of filename:line number. For example,
(gdb) breakpoint main.c:12

will set a breakpoint on line 12 of the main.c file (given this file exists).
Once you have set your breakpoints, you can run your program as described in a pre-

vious subsection and GDB will automatically pause your program when a breakpoint
is hit.

Listing Breakpoints

Of course, you can set multiple breakpoints at once. To list all your breakpoints, use:
(gdb) info break

This will list all set breakpoints.

Deleting Breakpoints

To delete a breakpoint use the delete command. By itself, this will delete all break-
points. If you pass it an argument, you can specify which breakpoint to delete. You
must pass delete the breakpoint number of the breakpoint you wish to delete as given
by the info break command. For example, if I wish to delete breakpoint 2 as specified
by info break, you would execute:
(gdb) delete 2

or to delete all breakpoints, you would execute:
(gdb) delete

53

8.2.4. Continuing Execution

Once your program execution is paused (usually through the use of a breakpoint), you
will eventually want to continue execution. There are several ways to go about this.

Continue

In the simplest case, you may simply want to continue execution until the next break-
point is hit or your program ends. In this case, you can simply execute the command
continue (or c for shorthand). That is, to simply continue execution, execute:
(gdb) continue

Finish

Another simple case is the situation in which you continue execution until the end of
the current function. This can be accomplished with the finish command. Its use is
straightforward, simply execute:
(gdb) finish

Single-stepping

In addition to simply continuing execution of your program you also have the ability
to walk though your program by executing one line at a time. This is called single-
stepping. There are two commands that can perform this for you, namely step (or s for
shorthand) and next (or n for shorthand). They differ in one very important respect:
step will single-step into functions, while next will single-step over functions. That
is, next will execute a function as if it is a single line and step will take you into the
function that is being called.

These are very simple commands that do not require any parameters for the purposes
of this primer and can be used as follows:
(gdb) step

and
(gdb) next

8.2.5. Inspecting State

Any time your system is paused you can also inspect the current state of the machine.
This includes inspecting the values of variables and registers.

Show Arguments

At any time while the system is paused, you can inspect the arguments of the current
function. This is accomplished with the info args command. That is,
(gdb) info args

will print all arguments of the current function along with their current values.

54

Show Local Variables

In addition to the arguments of a function, GDB will allow you to inspect the local
variables of the current function. This can be achieved with the info locals com-
mand. For example,
(gdb) info locals

will print all local variables and their current variables within the current function.

Show Arbitrary Variables

Finally, it also possible to print the value of arbitrary variables with the print com-
mand. This command must be passed the name of a variable as an argument. Of
course, any printed variable must currently be in scope. This command may be useful
if you are interested in a global variable or a variable that is dynamically allocated.
For example,
(gdb) print x

will print the value of a variable named x (given a variable of this name exists in the
current scope).

8.2.6. References

As I mentioned at the beginning of this section, GDB has many functions above what
I have introduced here. There are many additional features that you may find useful
as you get comfortable with using debuggers. For the complete online documentation,
see http://sourceware.org/gdb/current/onlinedocs/gdb/.

Additionally, there are several nice GDB “cheatsheets” out there with a reference to
the most commonly used commands. Two that might find useful can be found at http:
//darkdust.net/files/GDB%20Cheat%20Sheet.pdf and http://www.cs.berkeley.

edu/~mavam/teaching/cs161-sp11/gdb-refcard.pdf.

55

http://sourceware.org/gdb/current/onlinedocs/gdb/
http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf
http://www.cs.berkeley.edu/~mavam/teaching/cs161-sp11/gdb-refcard.pdf
http://www.cs.berkeley.edu/~mavam/teaching/cs161-sp11/gdb-refcard.pdf

A. ASCII Table

Hex Dec Char Hex Dec Char
0x00 000 null 0x40 064 @

0x01 001 start of heading 0x41 065 A

0x02 002 start of text 0x42 066 B

0x03 003 end of text 0x43 067 C

0x04 004 end of transmission 0x44 068 D

0x05 005 enquiry 0x45 069 E

0x06 006 acknowledge 0x46 070 F

0x07 007 bell 0x47 071 G

0x08 008 backspace 0x48 072 H

0x09 009 horizontal tab 0x49 073 I

0x0a 010 new line 0x4a 074 J

0x0b 011 vertical tab 0x4b 075 K

0x0c 012 new page 0x4c 076 L

0x0d 013 carriage return 0x4d 077 M

0x0e 014 shift out 0x4e 078 N

0x0f 015 shift in 0x4f 079 O

0x10 016 data link escape 0x50 080 P

0x11 017 device control 1 0x51 081 Q

0x12 018 device control 2 0x52 082 R

0x13 019 device control 3 0x53 083 S

0x14 020 device control 4 0x54 084 T

0x15 021 negative acknowledge 0x55 085 U

0x16 022 synchronous idle 0x56 086 V

0x17 023 end of trans. block 0x57 087 W

0x18 024 cancel 0x58 088 X

0x19 025 end of medium 0x59 089 Y

0x1a 026 substitute 0x5a 090 Z

0x1b 027 escape 0x5b 091 [

0x1c 028 file separator 0x5c 092 \
0x1d 029 group separator 0x5d 093]

0x1e 030 record separator 0x5e 094 ^

0x1f 031 unit separator 0x5f 095

56

Hex Dec Char Hex Dec Char
0x20 032 space 0x60 096 ‘

0x21 033 ! 0x61 097 a

0x22 034 " 0x62 098 b

0x23 035 # 0x63 099 c

0x24 036 $ 0x64 100 d

0x25 037 % 0x65 101 e

0x26 038 & 0x66 102 f

0x27 039 ’ 0x67 103 g

0x28 040 (0x68 104 h

0x29 041) 0x69 105 i

0x2a 042 * 0x6a 106 j

0x2b 043 + 0x6b 107 k

0x2c 044 , 0x6c 108 l

0x2d 045 - 0x6d 109 m

0x2e 046 . 0x6e 110 n

0x2f 047 / 0x6f 111 o

0x30 048 0 0x70 112 p

0x31 049 1 0x71 113 q

0x32 050 2 0x72 114 r

0x33 051 3 0x73 115 s

0x34 052 4 0x74 116 t

0x35 053 5 0x75 117 u

0x36 054 6 0x76 118 v

0x37 055 7 0x77 119 w

0x38 056 8 0x78 120 x

0x39 057 9 0x79 121 y

0x3a 058 : 0x7a 122 z

0x3b 059 ; 0x7b 123 {
0x3c 060 < 0x7c 124 |

0x3d 061 = 0x7d 125 }
0x3e 062 > 0x7e 126 ~

0x3f 063 ? 0x7f 127 delete

57

	C Basics
	Hello World
	Comments
	Variables
	Declaration
	Data Types

	Operators
	Assignment
	Arithmetic Operations
	Logical Operations
	Relational Operations

	Control Structures
	Branch Structures
	Loops

	Organizing and Outputting Data
	Structures
	Arrays
	Strings
	strlen Function
	strncpy Function
	strcmp Function

	Console Output
	Console Input

	Functions
	Declaring Functions
	Using Functions
	The main Function

	Pointers & Type Casting
	Memory Basics
	Pointer Basics
	Referencing Variables
	Pointer Dereferences
	Arrays and Pointers
	Type Casting
	The void Pointer

	Dynamic Memory
	Address Space Layout
	malloc and free
	Allocation
	Deallocation

	Preprocessor Directives
	The #include Directive
	The #define Directive
	The #ifdef, #ifndef, #else, and #endif Directives

	Programming with Multiple Files
	Debugging
	Valgrind - Memcheck
	Memcheck Error Overview
	Reference

	GDB
	Executing your Program
	Listing Source Code
	Breakpoints
	Continuing Execution
	Inspecting State
	References

	ASCII Table

