Rootkit Programming
Premeeting

Manuel Andreas & Fabian Franzen

Chair of IT-Security (I20)
Prof. Dr. Claudia Eckert
Technische Universität München

January 30, 2024
What is a Rootkit?

“A rootkit is a collection of computer software, typically malicious, designed to enable access to a computer or an area of its software that is not otherwise allowed (for example, to an unauthorized user) and often masks its existence or the existence of other software.” — Wikipedia
Course Contents

In this course you will create your own rootkit (aka your own piece of malware) with the following features:

- Escalate privileges to root
- Hide files on disk
- Hide processes
- Hide network connections
- ...

Your rootkit will take the form of:

- Linux Kernel Module (LKM)
- Userspace Rootkit
- Hypervisor/UEFI (planned)
- eBPF (planned)

Even more, we will focus on the detection of rootkits using

- Virtual Machine Introspection (VMI) / Memory Forensics
Teaching Goals

▶ Linux kernel hacking
 ▶ How to create your own kernel module
 ▶ How the Linux kernel tracing system works
 ▶ Getting familiar with fundamental linux subsystems
▶ Details about the Linux kernel boot process (e.g. initramfs)
▶ How the kernel, the loader and the libc interact with each other to execute a program
▶ How a hypervisor can interact with and inspect its running VMs
Prerequisites

We do not have formal requirements for students who want to join the course.

However, we strongly recommend being familiar with the following:

▶ How to write a C program and how pointers work
▶ What a Syscall is
▶ Basic knowledge about IT Security (IN0042) and how an operating system works in general (as taught in IN0009)

Having seen or worked with assembly is a plus!
Organizational Matters

- The course has **20 slots**
- We will meet once a week
- You will get **weekly** exercises, which are discussed and presented in the upcoming week (there are exceptions for large tasks!)
 - You therefore have to be present in class!
- You will work with a partner in teams of **two**
- We may finish with a **project** phase, depending on your interests
 - E.g. implementing novel hiding / detection techniques
We want to make sure that motivated students get places!

- **No** letter of motivation
- Instead, solve a **small qualification task**
 - Create a driver for a USB device\(^1\) (in the form of a Linux Kernel Module), that reads out a secret value (flag).
 - Due at **14.02.2024 23:59** (end of matching period)
- Download the challenge & submit your flag at https://courses.sec.in.tum.de/rootkit
- Nonetheless, do not forget to register yourself in the **matching system**!

\(^1\)The USB device is completely made-up and only emulated by QEMU
Qualification Challenge Hints

▶ The challenge runs on the Linux kernel **v6.1.74**
 ▶ Make sure to build your kernel module against this version
 ▶ We provide you with the kernel configuration (**config-6.1.74**). Make sure to rename it to `.config` in the Linux kernel source tree before building the kernel

▶ We include the source code for our USB device as a **patch**

▶ Our challenge runs on an x86-64 CPU with **KVM** enabled

▶ We recommend you to fetch the appropriate kernel sources\(^2\), place our config and develop your kernel module there. For testing you can insert it into our remote VM and debug via **printk**. For a more sophisticated setup, you may build the patched QEMU and build your own VM.

▶ However, if you want to reproduce our remote setup, we ship an appropriate **Dockerfile**

\(^2\)https://cdn.kernel.org/pub/linux/kernel/v6.x/linux-6.1.74.tar.xz
We are now happy to answer your questions :)