Securing the Linux Kernel - Security Features and Attack Vectors

Bachelor/Master Seminar SoSe 2020 Barbora Hrdá and Monika Huber March 3, 2020

Topic Distribution

© Fraunhofer

Tonic	Student
	Stadent
(Security Issues in) Hardware Virtualization	Samuel Hopstock
Privilege Escalation	Markus Budeus
Isolation with Namespaces and Cgroups	Mathis Engelbart
Sandboxing with seccomp	Mete Polat
Security Enhanced Linux (SELinux)	Benjamin Orthen
AppArmor	Sebastian Warter
Full Disk Encryption I: Comparison of LUKS and Bitlocker	David Maul
Full Disk Encryption II: Full Disk Encryption on Android	Jan Schopohl
Integrity Management and Secure Boot	Julian Scheipl
Spectre	Samy El Deib
Meltdown	Fabian Wührer
Linux Audit Framework	Philipp Friese

Orientation Questions for Security Features

- Goal: What asset is protected with this security measure?
- Functionality: How does the mechanism achieve its intended goal? Where in the system does it take effect?
- Usage: Which tools use this mechanism and how do they do it? What (popular) implementations are there? What must be considered during use?
- Security Evaluation: How successfully does it achieve its goal? What are limitations or weaknesses of the mechanism? Are attacks against this feature known (and can they be mitigated)?
- Related Topics: Are there other ways of achieving the same goals? Can similar concepts be used to achieve different goals?
- Outlook: Are there current developments?
 Are further improvements or changes to be expected?

Orientation Questions for Attack Vectors

- Goal: What asset is targeted with this attack?
- Functionality: How does the mechanism achieve its intended goal? What fault in the system does it exploit?
- Security Evaluation: Which security features are circumvented? What impact did the attack have? Who was affected by it? How hard is it to mitigate the effects?
- Countermeasures: How can the attack be prevented? What security features were developed to mitigate it?
- Related Topics: Are there similar attacks?
- Outlook: Is the attack still relevant nowadays?

Starting Point

© Fraunhofer

- (Security Issues in) Hardware Virtualization: https://dl.acm.org/doi/10.1145/2480741.2480757
- Privilege Escalation: https://ieeexplore.ieee.org/document/8443329
- Isolation with Namespaces and Cgroups: https://ieeexplore.ieee.org/document/8693491
- Sandboxing with seccomp: https://ieeexplore.ieee.org/document/7560422
- Security Enhanced Linux (SELinux): https://selinuxproject.org
- AppArmor: https://gitlab.com/apparmor

Starting Point II

- Full Disk Encryption I Comparison of LUKS and Bitlocker: https://eprint.iacr.org/2016/274.pdf
 Full Disk Encryption II - Full Disk Encryption on Android: https://pdfs.semanticscholar.org/e8cc/ ca4394e1f4728f35af4cf077f3d5f3a77c4f.pdf
- Integrity Management and Secure Boot: https://ieeexplore.ieee.org/document/8804799
- Spectre: https://spectreattack.com/spectre.pdf
- Meltdown: https://meltdownattack.com/meltdown.pdf
- Linux Audit Framework: https://github.com/linux-audit

Securing the Linux Kernel | Barbora Hrdá and Monika Huber | March 3, 2020 | 5

Objectives

- Understand Linux Kernel security mechanisms and attack vectors.
- Preparing and writing a scientific paper in LaTeX (in English, 8-10 pages, LNCS).
 LaTeX-Template for Paper: ftp://ftp.springernature.com/ cs-proceeding/llncs/llncs2e.zip
- Presenting a scientific topic (in German/English): 30 minutes
 + 15 minutes discussion.
- Active participation.

Securing the Linux Kernel Grading

- Scientific paper: 40% (Content, Style, Effort, Grasp)
- Presentation: 40% (Content, Lecture Style, Understandability)
- Presentation Slides: 10% (Content, Style)
- Active participation: 10%

Time Table

03.03. 10:00-11:00
20.04.
04.05. 23:59
06.05 20.05.
17.06. 23:59
24.06. 23:59
01.07. 10:00- 13:00 ²
02.07 13:00-16:00
08.07. 10:00- 13:00 ²
09.07 13:00-16:00

- Kickoff meeting with topic distribution¹ (today)
- Deadline for deregistration (afterwards: 5.0!)
- Deadline for submission of table of contents (ToC)
- Individual meetings¹ to discuss ToC
- Deadline for submission of paper
 - Deadline for submission of presentation slides
 - Presentation meetings¹
 - (attendance compulsory!)

¹All seminar meetings will be held at Fraunhofer AISEC

²The meeting time was extended to fit the higher number of student (12 instead of 10)

Contact Information

© Fraunhofer

Barbora Hrdá and Monika Huber

Department Secure Operating Systems

Fraunhofer-Institute for Applied and Integrated Security (AISEC)

Address: Lichtenbergstr. 11 85748 Garching (near Munich) Germany Internet: http://www.aisec.fraunhofer.de

Phone: +49 89 3229986-167 (Barbora) or +49 89 3229986-148 (Monika) E-Mail: barbora.hrda@aisec.fraunhofer.de or monika.huber@aisec.fraunhofer.de

