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Abstract. Automatic malware classification is an essential improve-
ment over the widely-deployed detection procedures using manual signa-
tures or heuristics. Although there exists an abundance of methods for
collecting static and behavioral malware data, there is a lack of adequate
tools for analysis based on these collected features. Machine learning is
a statistical solution to the automatic classification of malware variants
based on heterogeneous information gathered by investigating malware
code and behavioral traces. However, the recent increase in variety of
malware instances requires further development of effective and scalable
automation for malware classification and analysis processes.
In this paper, we investigate the topic modeling approaches as semantics-
aware solutions to the classification of malware based on logs from dy-
namic malware analysis. We combine results of static and dynamic anal-
ysis to increase the reliability of inferred class labels. We utilize a semi-
supervised learning architecture to make use of unlabeled data in clas-
sification. Using a nonparametric machine learning approach to topic
modeling we design and implement a scalable solution while maintaining
advantages of semantics-aware analysis. The outcomes of our experi-
ments reveal that our approach brings a new and improved solution to
the reoccurring problems in malware classification and analysis.

1 Introduction

Malware has evolved over the years to the point where it generates a global threat
for our digital lives. Nowadays, the amount of malware that arises every day has
increased exponentially. Security companies currently need to analyze hundreds
of thousands of malicious samples on a daily basis, which directly affects their
performance. In some cases, this number can be larger than one million distinct
files per day [34]. Meanwhile, malware classification is becoming increasingly
critical as new malware instances integrate sophisticated techniques to deceive
the signature-based detectors and operate under the radar for longer period.
This fact, along with the rapid increase in the number of malware samples,
presents a very real challenge that cannot be met by manual reverse engineering
efforts or by generating static signatures. Specifically, while it is relatively easy
for antivirus and other security companies to obtain large numbers of malicious
samples, it requires significant effort to successfully classify them.
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To address this problem, researchers proposed statistical machine learning
methods that can enable analysts to focus on new and previously unseen at-
tacks by classifying malware as being part of a larger family [29]. These methods
leverage gathered static and behavioral malware data to generate statistically
confident knowledge. Towards this direction, Schultz et al. [29] used statistical
methods to detect malicious executables based on n-grams of instructions. Rieck
et al. [27], on the other hand, utilized behavioral features of malware for both
detection and classification, and proved the superiority of this approach against
the traditional signature-based methods. This performance improvement is ex-
plained with the inherent advantages of statistical methods in capturing the
variety of malware samples.

Nevertheless, statistical malware classification systems are not without their
own problems. Foremost, there is a scarcity of reliable labels for fully supervised
malware classification systems. Malware analysts could potentially retrieve an-
tivirus results and use them to label malware samples. Although this approach
seems ideal, unfortunately, many times it is difficult to provide confident la-
bels this way. Antivirus companies offer malware signatures, which are mostly
used in the academic community for testing the malware classification systems.
However, we have observed by manual inspection of antivirus results that the
reliability of those signatures is not always high. Every antivirus program has its
own system of labeling malware, and although sometimes the signatures match
between different antivirus programs, very often they are different or even con-
tradictory. Furthermore, there is a limited public information about the process
by which companies assign these signatures and how accurate these signatures
are. Yet another problem is the very high data dimensionality when the exe-
cution logs contain whole system behaviors [6]. Finally, the malware analysis
tools provide different features of malware with respect to static and dynamic
analysis [1–3,19]. Using multiple tools ensures that all the information is consid-
ered, yet, there exist only few efforts that try to join this information [4]. This
problem is non-trivial because data retrieved from the analysis tools is heteroge-
neous, which means that different machine learning models might be optimal for
different data. For example, dynamic malware analysis results have a sequential
nature, while metadata from static analysis, such as code entropy or size of code
sections, do not always have such interdependencies.

The number and variety of malware samples that need to be processed has
surpassed the ability of the classical approaches that analyze the static and be-
havioral characteristics of malicious samples and create signatures. Automation
of detection and classification procedures that take into account the aforemen-
tioned approaches is becoming less effective when dealing with large amount of
data, let alone extracting useful knowledge about malware. Since the problem is
essentially the automatic analysis of high amounts of noisy data, statistical ma-
chine learning methods constitute a superior approach. These methods, however,
need to be adapted to online setting, where a high influx of samples imposes a
necessity for retraining of machine learning models in order to maintain accurate
label predictions.
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In this paper, we evaluate and improve the use of statistical topic modeling
with respect to the curse of dimensionality of long execution sequences. Further,
combined with semi-supervised learning methods of exploiting unlabeled sam-
ples, we effectively overcome the problem of the lack of labeled data. Finally, we
show how the use of data obtained from static and dynamic analysis increases
the reliability of the classification results, demonstrating that data heterogeneity
can in fact boost confidence in classification. In essence, we use a nonparametric
machine learning approach, where parameter set is not set up in advance, but
depends on the training data. Nonparametric approach is, to the best of our
knowledge, novel in malware classification problems. This enables a more sta-
ble approach, where semantic interpretation is automatically updated on arrival
of new malware samples. Our evaluation reveals that our model achieves over
90% precision and recall in classification for most of the tested malware families,
while it retains stability in classification performance and retraining speed.

In summary, we make the following main contributions:

– We create a semi-supervised malware classification system that unifies views
of static and dynamic malware analysis.

– We perform an automatic extraction of semantic behavioral features from
the results of dynamic malware analysis.

– We design and evaluate a nonparametric model that is adaptive in a setting
of online training.

2 Background

The key concepts from the area of machine learning that constitute the lifeblood
of our approach are topic modeling, semi-supervised learning, and nonparametric
learning. In this section, we briefly introduce the aforementioned concepts.

2.1 Topic Modeling

As behavioral malware execution data is a sequence of tokens taken from a pre-
defined dictionary, it closely resembles text documents by structure. Therefore,
methods of information retrieval designed for extracting latent properties of text
can be of great importance. In machine learning, data is very often organized in
long sequences. Most explored examples of this kind of data are audio and video
recordings, genetic sequences, and text documents. For instance, it has been de-
termined that very often news articles belong to a smaller set of latent topics
such as Basketball, Tour De France, Hollywood, FBI Investigation, etc [22]. On a
higher level, topics could be sports, culture, and finance. Furthermore, words in
text documents belong to these topics with certain probability, where one word
can be attributed with multiple different topics as well. If topics are semantically
interpretable, created model also has a semantic meaning. This text modeling
problem and vocabulary can be translated to problems with other types of data.
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Topic modeling methods are mostly constructed as generative methods: they
are not designed just for classification but also for generation of data based on
the probability distributions inferred from the model. In essence, the topics are
constructed in such a way that the training documents can be generated with
high probability using just the topics inferred from the model. Given a reasonable
assumption that our documents can be confidently described by a smaller set of
topics, we can determine these topics and their distribution by training a topic
model. We do not need to know the topics in advance, as they can be inferred
from the data (i.e., from the documents and the words contained in them).

Overall, topic modeling is a method to statistically explain a large set of
documents using a small set of clusters (topics), based on frequency of different
words in these documents. Note that it counts the words independently without
a specific interest of their sequences inside the documents. This approach has
been often called bag-of-words and it greatly simplifies document analysis.

One of the most adequate random processes used for topic modeling is the
Dirichlet process. This is a suitable model especially for datasets where only few
latent topics can describe a large set of documents. The notion of latent top-
ics was popularized with the development of Latent Dirichlet Allocation (LDA)
method [7]. In this method the topic structure is sampled from a Dirichlet distri-
bution as prior, which gives more flexibility in training the generative model. Al-
though there exist related methods of topic modeling [10], LDA is the most used
regarding document information retrieval because of its flexibility and modular
structure. This method has been further adapted to discriminative learning, i.e.,
classification [25]. In its standard form, LDA uses a bag-of-words assumption,
which means that it does not capture the sequential nature of the document: it
only counts words independently.

2.2 Semi-Supervised Learning

The lack of proper labeling has already been defined as an important problem
in malware research [5]. Consequently, one would benefit from a method that
offers maximum utilization of a minimal number of highly confident labels. This
setting is known in machine learning as semi-supervised learning and is halfway
between supervised and unsupervised algorithms. While supervised learning is a
paradigm that encompasses machine learning methods where the training data is
labeled and the purpose of the algorithm is to optimize the classification of data
on the test dataset, unsupervised learning discovers the underlying structure in
the data such as locating clusters in the dataset. We use unsupervised learning
when we do not have information about labels in the time of training. Since
in semi-supervised setting we do have labeled data, but it is scarce, we com-
bine the advantages of two separate methods to overcome this limitation. More
specifically, in semi-supervised learning we leverage the property of data that it
forms natural clusters. Even if we only have a small number of labeled data that
identifies the clusters that exist in the dataset, we can propagate these labels
in the neighborhood of the labeled data, by considering the clusters detected in
the dataset.
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Figure 1. Malware classification architecture.

2.3 Nonparametric Learning

In many scenarios the parameter set of machine learning models cannot be always
defined in advance. This is also the case with malware classification, as high influx
of malware samples imposes a need to adapt the model incrementally. This can
be done using a nonparametric approach, where parameter set grows with the
size of the dataset. Since this growth of the parameter set increases complexity
of the model, additional effort is needed to stabilize the classifier. We utilize an
improved approach in order to maintain this stability.

3 Methodology

We propose a classification scheme aimed at solving the problems indicated in
the introductory sections. In particular, we want to be able to discover semantic
features of malware classes, maintain an adaptive topic model, and maximize
the utilization of a semi-labeled dataset from heterogeneous data sources. To
do so, we first emphasize on extracting semantic features from high-dimensional
and noisy data. Second, we optimize the classification mechanism under the
setting where low number of labeled samples is available. To this end, we join
results of static and dynamic malware analysis to unify these different views
on properties of malware samples. Finally, we design an architecture that is
adaptive in the online training setting. In summary, our malware classification
architecture complies with the scheme displayed on Figure 1.

3.1 Experimental Environment

To perform data extraction against malware samples we employ a malware zoo,
in which we can execute malicious samples while monitoring their behavior. The
zoo back-end infrastructure is composed of a custom version of CRITs [33] that
utilizes large scale analysis concepts proposed by Hanif et al. [15]. Specifically, our
modifications use custom CRITs Services to extract API call information from
Cuckoo [1] and execute the requested work in a distributed fashion. The mal-
ware samples were collected over multiple months from three primary sources:
Virus Share [28], Maltrieve [21], and private collections. We chose these sources
to provide a large and diverse volume of samples for evaluation.
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Data acquisition is done using widely available tools for the static and dy-
namic malware analysis. On the one hand, static analysis provides us with fea-
tures extracted from the code of the malware samples. For this purpose, we use
two sources aimed for static analysis: PEInfo [33, 38] and Yara [3]. We leverage
PEInfo to extract entropy, size of different PE sections, and the collection of im-
ported libraries. Similarly, Yara provides us with a list of used function calls to
the Windows kernel API and other custom signatures extracted from the code.

On the other hand, dynamic analysis enables us to gather reliable behavioral
data without the need for deobfuscation. There exist various tools that enable
tracing the execution of malware and gather logs of execution sequences [1, 19].
We select the Cuckoo Sandbox, which provides a controlled environment for
executing malware. During the execution of malware samples we record calls
to the kernel API that we later use to characterize malware activity. For each
sample we obtain a sequence of API calls, which is preprocessed by removing
subsequences where one API call is repeated multiple times in a row. We cut
these subsequences by using only one kernel API call instance as representative
in the resulting sequence. In multiple samples we have noticed the repetition of
one API call; for example, when malware repeatedly tries to open a file.

In addition, we leverage VirusTotal [2] by extracting antivirus signatures
from its web service, for each malware sample we use. Users can upload MD5
hashes of malware executables to VirusTotal and retrieve results from multiple
antivirus engines through the VirusTotal API. These engines are signature-based
and compare the submitted hash to the data in their own database. By using
the VirusTotal services we access malware analysis results and signatures, out
of which we are mostly interested in retrieving ground truth labels for our clas-
sification. In a lack of other label sources, we use antivirus signatures in label
construction for training and testing our classification scheme. Since antivirus
programs use customized strategies for signature generation, we need to find a
way to extract one numerical training label per unique sample using the diverse
antivirus signatures. We use signature clustering to achieve this goal.

3.2 Signature Clustering

To get more confident training and testing labels, we perform a selection pro-
cess that uses a simplified version of signature clustering method introduced in
VAMO [23]. Specifically, we create signature vectors for every malware sample
that contains signatures given by different antivirus engines. We use boolean fea-
tures to generate these vectors, where each feature reveals presence or absence of
a certain antivirus signature. Our assumption is that the malware samples of the
same family will have the same or similar boolean feature vector. Next, we use a
variant of cosine distance as a measure of difference among signature vectors for
our clustering process. We cluster the samples using DBSCAN [12], as we do not
know their number in advance. Finally, we select ten clusters with the highest
number of members as classes for classification. This way we cover most of our
labeled dataset. Since the classes assigned to our malware resemble the families
defined by antivirus engines, we use the terms class and family interchangeably.
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3.3 Feature Selection

Static analysis tools provide us with a high number of features. In detail, we
retrieve 23,060 features from PEInfo and 3805 features from Yara extracted from
the malware binary files. Using a high number of features makes the classification
problem ill-posed and therefore we choose to utilize feature selection methods to
obtain an optimal feature set. We use univariate feature selection approach and
perform a χ2 test for all training samples. This way we can extract the features
that are most relevant to our classification problem and reduce the computational
effort needed for the training process. For our purpose we achieve best results
by selecting 10,000 features for PEInfo and 1000 features for Yara.

3.4 Topic Modeling Algorithms

To extract features from the kernel API call sequences we utilize the topic mod-
eling approach, which includes a well-developed set of methods already heavily
used for automatic information retrieval from text and image data.

General Approach. As we already mentioned, topic modeling is a method
based on the fact that a collection of tokens (words) from documents can be
grouped to a limited set of topics. More specifically, we apply topic modeling to
process data from dynamic malware analysis, as we consider that a list of API
calls can be divided into a smaller number of latent activities. In our case, docu-
ments are malware execution logs and words are elements of malware execution
sequences—calls to the Windows Kernel API. Additionally, topics are groups
of these elements that constitute an elementary operation, for instance, registry
access and modification, file manipulation, process creation and invocation.

This analogy justifies the attempt to adapt the topic modeling approach for
the malware classification problem. The general topic modeling scheme can be
represented with the following formulas:

G ∼ DP (α,H) (1)

θi | G ∼ G (2)

xj,i | θi ∼ F (θi) (3)

where parameter G (a Dirichlet distribution) controls the topics and generates
the parameter θi. Words (xj,i) are generated based on this parameter. Dirichlet
process is actually a distribution of distributions. The draws from Dirichlet pro-
cesses are probability distributions, which are inferred for the next parameter in
the chain. This parameter controls the word distribution for single topics. Topic
modeling based on a Dirichlet process enables us to define a generative model,
where each document is a mixture of a small number of topics. It is important
to note that topics are not known in advance, but are inferred by the topic
modeling methods. This enables us to uncover previously unknown semantics
from the malware execution logs. Parameters are approximately determined us-
ing variational inference and Markov Chain Monte Carlo methods [35], as exact



8 B. Kolosnjaji, A. Zarras, T. Lengyel, G. Webster, and C. Eckert

inference is not tractable. This also enables fast retraining in case of need for
online update of the model. Figure 2 contains a graphical model used for topic
inference, where the directed edges show the process of word generation.

H

Words
(Kernel	API	Calls)

G0

Gn

θ11

G1

Hierarchical
Dirichlet
Process

X1m1

θ1m

X1mk

Topics

Figure 2. Graphical model for our Hierar-
chical Dirichlet Process.

Topic models can be essential for
classification performance, as impor-
tant latent structure is inferred and
noise canceling is implicitly executed
by extracting the important topics.
However, even more crucial is the pos-
sibility of semantic interpretation. Al-
though malware analysts are able to
get a rich set of information from the
dynamic malware analysis tools, this
information needs to be further an-
alyzed and significant expert knowl-
edge is required to extract the im-
portant information out of the logs
retrieved from these tools. Thus, it
would be extremely useful to auto-
mate this procedure and to extract
relevant data about the malware ac-
tivity. This would enable analysts to
achieve their goals faster and with statistically confident results. Therefore, we
develop a more efficient alternative to the cumbersome deterministic manual
analysis procedure. Even if the topics do not have an obvious semantic meaning,
comparing the topic structure among different malware families can enhance the
classification process and provide new knowledge about the dataset in use.

Previous work demonstrated the utility of topic modeling for extracting
semantics out of kernel API call logs by using LDA, where topic parameters
are drawn out of the Dirichlet distribution [7]. Furthermore, this method was
adapted from a bag-of-words method to a new scheme that takes account of se-
quential data ordering [39]. However, this approach is not scalable on large sets
of malware and online learning, and is sensitive to noisy sequences. It also re-
quires a predefined number of topics, which would need to be manually updated
by the malware analyst as new data is acquired. In case of an organization that
maintains its own malware dataset and receives a high amount of submissions
on a daily basis, this kind of setting may not be satisfactory.

Hierarchical Dirichlet Processes. Given the limitations of LDA, we take
a different approach, using methods that bring the required improvement to
online learning. More precisely, we utilize an adaptive method called Hierarchical
Dirichlet Process (HDP) [32]. In this method the topic distributions are also
determined by Dirichlet processes, yet there exist different processes for each
document. These processes, however, are not independent. They are drawn from
a prior Dirichlet process, which depends on parameters that control the growth
of topics and their distribution as the dataset grows in time:
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G0 ∼ DP (α0, H) (4)

Gj | G0 ∼ DP (αj , G0) (5)

where Dirichlet processes Gj are conditioned by the prior G0.
Overall, the general setting of the topic modeling remains the same: docu-

ments belong to multiple topics and words depend on topic distributions. HDP
is an instance of nonparametric machine learning methods. As a difference from
parametric methods, like LDA, nonparametric methods are used when we want
the parameter set to change with the dataset. HDP introduces a more flexible
approach, which is also more computationally demanding. Actually, this is the
case with all the nonparametric machine learning methods. Nevertheless, there
exist modifications that trade the accuracy of the method for performance in
an online setting [36]. We use these modifications to create a scalable approach
with respect to the computational demand. Our implementation is based on the
GenSim library [26], developed for the estimation of text document similarity.

3.5 Semi-Supervised Malware Classification

Unlabeled	data Labeled	data

Topic	Modeling Sta3c	Feature
Selec3on

Semi-supervised	Learning

Postprocessing

Features

Labels

ResultsNew	Clusters

Data

Code	Proper3esKernel	API	Calls

Figure 3. Semi-supervised learning
scheme.

Accurate malware classification is of-
ten difficult due to lack of confident
label sources. We can find proper sig-
natures only for a small subset of
malware samples, even by utilizing
services such as VirusTotal. To deal
with the scarceness of labeled data, we
use semi-supervised learning, where
we influence the usual malware clus-
tering procedure with high-confidence
labels. Figure 3 displays our semi-
supervised classification scheme. Our
system unifies advantages of topic
modeling and semi-supervised learn-
ing. To this end, data retrieved from
static and dynamic analysis tools are
run through feature extraction and
forwarded to the classification stage.

To achieve an effective semi-
supervised learning model, we take
two separate approaches to classify
the static and dynamic analysis results. For results retrieved from static analy-
sis we use label propagation. This method uses labeled data and density-based
clustering to propagate the given labels through the dataset. The propagation of
labels is conditioned by the similarity structure between data samples. In par-
ticular, we use a regularized variant of label propagation, to take account of the
possible noise in labeling [42].



10 B. Kolosnjaji, A. Zarras, T. Lengyel, G. Webster, and C. Eckert

For dynamic analysis results we use another alternative. In a semi-supervised
setting we can use unlabeled data for initial pretraining of topic models before
using the actual labeled data. To discriminate between classes of malware, we
make use of a maximum-a-posteriori (MAP) approach. This approach is used in
machine learning very often when estimating distributions and parameters of a
model. As a result, when classifying, we assign the class label to the data that
is inferred with a highest probability.

We create a topic model for every existing class, based on the available logs of
API calls. For each new log we evaluate the likelihood that its API call sequence
would be generated from each topic model (P (D = x | y = ci)). We also estimate
independent prior probability of a certain class (P (y = ci)) by simply calculating
the share of certain class in the labeled dataset. Using the MAP approach, we
evaluate the conditional probability of a certain sample belonging to the class i:

P (y = ci | D = x) =
P (D = x | y = ci)P (y = ci)∑
i P (D = x | y = ci)P (y = ci)

(6)

After computing the conditional probabilities for all classes, we find the most
probable class by maximization:

CLASS(x) = argmax
i

(P (y = ci | D = x)) (7)

Malware sample is classified to the class to which it belongs with the highest
probability.

Once the separate classification procedures finish for the outputs of available
static and dynamic malware analysis tools, we forward the classification results
to the aggregation and postprocessing stage.

3.6 Result Aggregation and Postprocessing

Our semi-supervised learning method returns probabilities of malware belonging
to the predefined classes. These probabilities are results of separate classification
using our three data sources (i.e., PEInfo, Yara, and Cuckoo). We combine these
results to get a reliable class probability estimation. In machine learning-based
classification it is often beneficial to combine multiple data sources and different
classifiers to reduce model overfitting and use advantages of different methods
in one system [18]. This approach is called ensemble learning. Multiple methods
of various sophistication exist for combining different classifiers. We argue that,
since we do not have a large set of classifiers, there is no need for complicated
ensemble learning approaches. In case of a larger number of data sources, an
approach such as mixture of experts can be used, however, we did not notice any
advantage of this approach in our case. For our experiments we use median and
average of probability values, and majority voting of class assignments resulting
from the three data sources. By aggregating the classification results, we get
a more robust classifier. In fact, we combine the advantages of the static and
dynamic analysis, to get a better classification performance. The combination of
multiple views on data makes our results more reliable.
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During the online classification procedure our system can detect the appear-
ance of a new cluster. This can happen in one of the following cases: (i) new
data has been put in the learning algorithm that contains a previously unknown
label, or (ii) there is a new region of high local density that is detected during
the execution of the learning algorithm. With the postprocessing algorithm, it is
determined if the new sample can be confidently assigned to one of the existing
classes, or a new class needs to be defined. Introduction of new classes can be
done automatically by tuning the machine learning model, and in addition the
new labels can be approved by a malware analyst. If we do not expect the new
classes to appear very often, we can assign this job to the analyst, who can give
a reliable estimation and help avoid possible mistakes in labeling. If indeed a
new cluster is confirmed, the algorithm must be retrained in order to include
this new fact into the machine learning model.

4 Evaluation

In this section we evaluate our approach. The extracted results prove advantages
of topic models, semi-supervised methods, and combining results of static and
dynamic malware analysis into a unified classification procedure.
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Figure 4. Samples distribution by family.

For this purpose, we took ten re-
curring malware families from our la-
beled dataset of 2000 malware sam-
ples. The class titles were directly ex-
tracted from VirusTotal, where we
manually chose signatures from multi-
ple antivirus programs that were most
prominent in our dataset. In addition
to the labeled samples, we had 15,000
samples that we used as unlabeled, as
the results of VirusTotal did not pro-
vide us with signatures for them. We
then divided the dataset into train-
ing and test sets using a variant of
three-fold cross-validation. More pre-
cisely, the dataset is divided randomly
in three parts, where two parts are
used for training and the last part for evaluation. This division and accuracy
experiment were repeated ten times and we took the average of the results. The
distribution of samples in our dataset is mostly uniform, except for one signif-
icantly bigger and three smaller families (see Figure 4). However, we take this
into account in cross-validation when determining the training and test set, as
well as during the evaluation of our approach.
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Family LDA for a different number of topics HDP

1(%) 5(%) 10(%) 20(%) 40(%) 80(%)

Amonetize 0.0 0.0 10.0 100.0 100.0 100.0 100.0
Somoto 0.0 0.0 0.1 30.3 20.4 30.0 99.8
Kryptik 0.0 18.0 30.0 70.0 60.0 30.5 91.5
Multiplug 0.0 57.4 80.0 30.0 40.0 69.4 80.0
Bladabindi 0.0 1.7 5.7 4.0 7.0 10.3 93.0
Eldorado 0.0 0.0 0.0 0.0 0.0 0.0 54.4
Morstar 0.0 0.0 0.0 0.0 0.0 0.0 100.0
Preloader 0.0 0.0 7.5 71.0 50.0 60.0 100.0
SProtector 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SoftPulse 0.0 4.2 4.1 6.7 5.0 6.9 86.2

Table 1. Accuracy evaluation of LDA for different number of topics.

4.1 Topic Models

Using the training set, we created a topic model for each class using HDP.
We computed the statistical likelihood of drawing each particular sample from
the model. Based on this likelihood we classified the samples using the already
described MAP approach. Next, we executed ten cross-validation tests with a
random division into training and test set and averaged the obtained results.
We also executed the equivalent tests for LDA with different number of topics
in order to compare our work with this approach. Table 1 displays the aver-
aged results for different malware families. These results are obtained using the
supervised learning approach, however, the distribution is similar in the semi-
supervised case. The outcomes justify the use of Hierarchical Dirichlet Processes
over the Latent Dirichlet Allocation. More specifically, the classification accu-
racy is higher for most classes in case of using HDP, and in the worst case the
performance is equal. This result along with the property that the HDP can
automatically optimize the number of topics, gives us an adaptive and accurate
classification component.

An interesting aspect of using LDA is that depending on the malware family
we want to detect, we should apply different number of topics. Although the
overall results reveal a significant advantage when using a higher number of
topics on average, the correlation is not clear for all the families we tested. An
example of this is Multiplug which exhibits better detection accuracy by selecting
just ten topics, while Amonetize offers better accuracy when selecting 20 or more
topics. Unfortunately, we could not detect any samples that belong to Eldorado
and Morstar families using LDA. One possible reason is that we did not find the
optimal number of topics for these samples.

In our experiments we noticed that the topics that were results of our topic
modeling experiment often have an obvious semantic meaning. This makes our
classification approach semantics-aware. Some examples of semantically mean-
ingful topics are presented in Table 2. It is worth to mention that some kernel
API calls belong to different topics simultaneously, which is a useful property
of topic models, since activities represented by topics can consist of overlapping
sets of operations.
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Registry manipulation Memory management File manipulation Process Handling

NtWriteFile VirtualAllocEx NtReadFile OpenProcess
RegOpenKeyExW VirtualQueryEx NtWriteFile ReadProcessMemory
RegCloseKey VirtualQuery NtDelayExecution WriteProcessMemory
RegEnumValueW VirtualFreeEx LdrGetProcedureAddress CloseHandle
RegQueryValueExW VirtualFree NtSetInformationFile LocalAlloc
LdrGetProcedureAddress LdrGetProcedureAddress NtCreateFile LocalFree
RegOpenKeyExA NtQueryDirectoryFile

Table 2. Overview of main semantically relevant topics.

Family [Cuckoo + HDP](%) [Yara + LP](%) [PEInfo + LP](%) Average(%) Median(%) Majority(%)

Amonetize 100.0 99.6 100.0 100.0 100.0 100.0
Somoto 99.0 100.0 51.0 100.0 100.0 100.0
Kryptik 100.0 100.0 100.0 100.0 100.0 100.0
Multiplug 99.2 100.0 100.0 100.0 100.0 100.0
Bladabindi 93.2 96.6 100.0 96.6 96.6 99.0
Eldorado 56.6 80.2 83.0 84.9 86.8 81.0
Morstar 100.0 40.0 100.0 40.0 100.0 100.0
Preloader 100.0 100.0 100.0 100.0 100.0 100.0
SProtector 100.0 100.0 100.0 100.0 100.0 100.0
SoftPulse 86.1 88.8 0.0 88.8 88.8 77.8

Average 93.4 90.5 83.4 91.0 97.2 95.8

Table 3. Comparative accuracy test using results from static and dynamic malware
analysis data, separately and combined.

4.2 Static and Dynamic Analysis Combination

Table 3 illustrates a comparison of classification accuracy of our three data
sources, determined by executing cross-validation with these sources separately,
using a semi-supervised procedure. More specifically, we combined on the one
hand the Cuckoo sandbox with HDP, and on the other hand Yara and PEInfo
with label propagation. It is evident from the results that even in cases with
a small number of labeled samples we can achieve a sufficient accuracy. Fur-
thermore, we notice that each separate data source is significant for the overall
performance, as none of the data sources gives maximal classification accuracy
for all classes. The maximal accuracy is, however, achieved when combining the
three data sources. All the methods of combining results give a high accuracy
for most of the families, with slight advantage for median and majority voting.
These results justify our motivation for combining multiple data sources in order
to get a better performance.

4.3 Comparing Supervised and Semi-Supervised Learning

We gathered results from semi-supervised and fully supervised learning. Table 4
shows the comparison of results of both approaches, when taking median class
probability from all available data sources as classification criterion. The two
colons for semi-supervised learning represent two separate experiments that we
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Family Supervised(%) Semi-supervised(%)

1st Experiment 2nd Experiment

ACC PR RC ACC PR RC ACC PR RC

Amonetize 100.0 100.0 100.0 100.0 88.3 100.0 100.0 98.4 100.0
Somoto 100.0 100.0 100.0 93.6 72.2 93.3 100.0 96.8 100.0
Kryptik 100.0 100.0 100.0 100.0 86.4 100.0 100.0 100.0 100.0
Multiplug 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Bladabindi 99.4 98.1 96.0 83.5 95.4 82.9 96.6 95.8 96.6
Eldorado 75.6 26.3 86.0 31.4 98.1 31.6 86.8 98.9 86.8
Morstar 100.0 98.5 100.0 99.2 97.5 99.2 100.0 99.0 100.0
Preloader 100.0 100.0 100.0 57.1 100.0 55.4 100.0 100.0 100.0
SProtector 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SoftPulse 64.4 75.4 87.0 49.5 51.1 50.8 88.9 86.5 88.9

Average 93.9 89.8 96.9 81.4 88.9 81.3 97.2 97.5 97.2

Rieck et al. [27] 88.0 - - - - - - - -
Dahl et al. [9] 90.5 - - - - - - - -

Table 4. Performance experiment with fully supervised and semi-supervised classifi-
cation models regarding the accuracy, precision, and recall.

executed in order to evaluate the advantages and disadvantages of a partially
labeled sample set.

The first experiment for supervised and semi-supervised methods is done
using the same set of labeled examples, with the difference that in the semi-
supervised case two thirds of the labeled data are used as unlabeled. We can
notice that despite of using only a small number of labeled examples, we can get
an adequate performance in classification. This performance is provided by our
label propagation procedure, where we used the local density around the labeled
points to propagate the class affiliation through the affinity matrix.

For the second experiment we used the samples for which we do not have
antivirus labels as unlabeled samples and attempt to improve the classification
performance. This approach shows that in most classes we can obtain a marginal
improvement in the classification performance, as the unlabeled data helps in
inferring the high density regions in the dataset.

Finally, we compared our classification performance with the results from
related papers. Our results on average represent a significant improvement with
respect to the related work in terms of average accuracy.

4.4 Open World vs. Closed World

We measured the performance of our closed world experiment to an open world
situation, where not all classes are known in advance. We did this by executing
the cross-validation test, always leaving out one class from the training set. In
the test phase, we classified the samples that belonged to one of the training
classes with probability higher than 50% into the appropriate training class. We
put the samples which did not belong to any classes with such a high probability
into the “outlier” class. Our hypothesis is that the “outlier” samples will be the
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ones belonging to the class that is missing from the training set. This method
was previously used by Rieck et al. [27], where the drop in accuracy in the open
world was around 20 %. Our experiments showed that in our case, for most of the
families, the performance dropped by 10 % or less. However, our system could
not reliably detect the family Eldorado in the open setting, as the performance
drop was over 40 %. This may be due to the comparatively shorter system call
sequences, which makes the discrimination against other classes more difficult.

4.5 Time of Training
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Figure 5. Time of training.

In our last experiment we wanted to
measure the time of training of our
approach. Therefore, we executed var-
ious number of samples and measured
the time frame in which the training
was complete. Figure 5 illustrates the
distribution of the time it takes to re-
train the topic models on arrival of
new data points. It is noticeable that
training time growth is linear, which is
acceptable in online setting, consider-
ing that usually computational com-
plexity of topic models grows not only
with the number of documents, but
also with the number of topics [7].

4.6 Summary of Findings

The outcomes of our experiments reveal that our methodology is adaptive, as our
topic model can deal with varying number of topics and with this outperforms the
standard LDA approach. Additionally, we show the semantic awareness of our
method by displaying topics retrieved from system call sequences. Furthermore,
we justify our approach by showing performance advantages of semi-supervised
learning and joining static and dynamic analysis results. Finally, we compare
the performance of our approach to previous works and show improvement in
classification accuracy. Overall, our approach can assist analysts by offering them
a more accurate malware classification.

5 Discussion

The experiments provide an insight into the performance of the methods used in
our classification system. Our classification accuracy experiment on topic models
shows a comparison of HDP and LDA, where HDP outperforms LDA in most
classes. Nevertheless, it is also noticeable that the overall accuracy varies between
different classes. For most of the classes the accuracy is high, yet there exist
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outliers. An explanation for this would be the overall limited reliability of the
ground truth labels based on the antivirus signatures and lack of possibility of
explicit evaluation of label confidence. The results could be more reliable if a
more trustworthy source of labels was available. For instance, it would be useful
to initially perform unsupervised learning with unknown number of clusters and
in addition enhance the results with custom labeling using the analyst domain
knowledge. As a difference from work done by Xiao et al. [40], we use the sequence
of kernel API calls as a bag-of-words (i.e., we ignore the information about
order between the calls). This gives flexibility to our model, however, it may
reduce accuracy. A further study is needed to experimentally compare these two
approaches. Aside from the obtained accuracy of our classification, we are able
to add another feature to our approach. This feature is the ability to extract
semantics out of kernel API logs using inferred topics of Hierarchical Dirichlet
Processes. Although a minority of the extracted topics has such an obvious
semantic interpretation as in the presented examples, it can be very useful for a
malware analyst to have such an insight.

In our evaluation, we compared results of static and dynamic malware anal-
ysis. While both static and dynamic analysis data were very useful for malware
classification, the combination of the two methods proves to be the best of both
worlds. Unfortunately, we had two data sources for static analysis data and only
one source of dynamic analysis results. Therefore, the utilization of more data
sources that provide additional data related to the program execution path, such
as Drakvuf [19], would enhance the inference capability of our method.

Finally, we evaluated precision and recall of our classification and compared
it with related work. Overall our system achieves a significant improvement
over the previously published work in terms of classification performance, while
retaining semantic model interpretation.

6 Related Work

This section contains the description of the research efforts that precede our
work. These efforts are mostly divided into research dedicated to (i) application
of machine learning methods in malware analysis and (ii) designing systems to
support the malware analysis process. Therefore we explain the evolution and
current state of those two groups of methods separately. Furthermore, we explain
how the methodology used in our approach takes into account the related papers
and builds a new approach upon this work.

6.1 Machine Learning Methods for Malware Detection

Machine learning has been used in multiple research efforts as a malware detec-
tion and classification method. Various features that characterize program be-
havior have been used as input data for the machine learning-based procedures:
system calls [37], registry accesses [16], and network packets [31]. These event
sequences are analyzed using unsupervised (e.g., clustering), semi-supervised, or
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supervised learning (classification) methods. Static program code features have
also been deployed for malware classification [29]. The classification methods
can be further divided into one-class anomaly detection [16], binary classifica-
tion [24], and multiclass learning [27]. One-class classification is used in case that
we want to create a model for normal behavior (benign samples) and detect mal-
ware as a deviation from that model. In binary classification we optimize the
classification boundary between benign and malicious samples. Multiclass clas-
sification methods are able to differentiate between different—previously known
and defined—classes of malware instead or in addition to differentiating between
benign and malicious samples.

Researchers that perform malware detection, usually maintain a sample set
from different malware families with their static and behavioral patterns, and use
them as a baseline to properly classify the suspicious applications. For instance,
in the case of sequential data, automatic methods for extraction of relevant fea-
tures can be used to cope with the possibly noisy and high-dimensional data.
An example of this is given by recent application of statistical topic modeling
approaches to the classification of system call sequences [40]. This approach
could be extended by taking system call arguments as additional information
and including memory allocation patterns and other traceable operations [39].
Support vector machines with string kernels represent an another novel method-
ology, where a standard classification scheme is augmented to work robustly with
system call sequences of variable length [24]. However, most of these approaches
only consider malware detection, and do not focus on classifying malware sam-
ples into families. Another example of sequential data is the network traffic. To-
wards this direction, the network traffic produced by the analyzed samples can
be classified by taking into account the frequency and length of different types
of packets or generating n-gram features out of packet payloads. As a matter of
fact, researchers have already proposed various approaches to model the network
data and design anomaly detection procedures for network infrastructures with
purpose of network security [13,20,30,41].

Previous works have considered many potential solutions for semantics-aware
malware classification and analysis, including topic modeling. However, they
have not dealt with the typical setting in malware analysis systems where a high
number of samples is acquired online and models must be updated to give an
accurate result. Therefore their methodology is only adequate in a scenario of
offline malware analysis.

6.2 Big Data Malware Analysis Systems

Since security companies get overwhelmed with hundreds of thousands of mal-
ware samples on a daily basis, the problem of malware classification can be
defined as a Big Data problem. Recently, there have been many efforts to create
Big Data platforms for malware analysis. Examples of such systems are Bina-
ryPig [14], Polonium [8], BitShred [17], and WINE [11]. BinaryPig is a system for
distributed processing of data obtained by static malware analysis, leveraging
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the recent advances in tools for Big Data domain. It uses Hadoop File Sys-
tem, MapReduce, and ElasticSearch as building blocks for scalable processing
of static analysis data. Polonium is an another system for large-scale mining of
malware. It leverages graph mining approaches to build a reputation-based sys-
tem to identify malware among terabytes of anonymously submitted suspicious
files. BitShred, on the other hand, is an attempt to design and build a scalable
malware analysis system. It focuses on increasing efficiency of similarity analy-
sis with feature hashing and uses similarity information for clustering. Finally,
WINE is an approach that leverages Big Data and creates a scalable reputation-
based security intelligence system, which also includes intrusion detection for
network-based attacks.

These systems use machine learning-based technology and represent advances
in scalability of malware detection and feature extraction. However, they do not
emphasize on the development of statistical methods and do not consider se-
mantic interpretability of the statistical models. Machine learning models very
often need tuning and the absence of semantics can make such efforts extremely
difficult for malware analysts. It is very important for analysts to be able to
interpret the model in order to focus their efforts properly. In our approach, we
do not only consider advanced topic modeling methodology for semantics-aware
modeling, but we also take into account the scenario that a high influx of mal-
ware induces changes in the dataset and requires adaptation of the classification
model. We automate this adaptation in order to maintain topic modeling fea-
ture extraction, using the nonparametric modeling methodology. Furthermore,
our approach joins results of static and dynamic malware analysis and acknowl-
edges the case where labeled examples are scarce.

7 Conclusion

In this paper, we presented an improved semi-supervised malware classification
approach that joins the results from static and dynamic malware analysis to give
an optimal classification performance. It uses separate algorithms for classifica-
tion of static and dynamic analysis results: static analysis results are classified
using a semi-supervised label propagation procedure, while the results from dy-
namic malware analysis are preprocessed by statistical topic modeling, which
uncovers the latent semantically interpretable topics that capture the important
properties of malware families. The method used for topic modeling is flexible
and offers automatic adjustment of the topic set in case of online learning. Over-
all, our nonparametric approach creates an adaptive online system for malware
classification that outperforms previous approaches.
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