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Abstract. To develop a robust classification algorithm in the adver-Motivated by Tikhonov regularization, we present an optiation

sarial setting, it is important to understand the advelsatyategy.
We address the problem of label flips attack where an adyecsar
taminates the training set through flipping labels. By arialy the
objective of the adversary, we formulate an optimizati@nfework
for finding the label flips that maximize the classificationoer An
algorithm for attacking support vector machines is deriexper-
iments demonstrate that the accuracy of classifiers isfgigntly
degraded under the attack.

1 INTRODUCTION

We focus on the binary classification for security applimasi in
which adefenderattempts to separatastancesnto malicious and
benign classes. The threat is that gversarywill manipulate in-
stances to mislead the decision of a classifier [7]. Accgrdathe
capability of the adversary, attacks may be eitbgrloratoryin that
they exploit the blind spot of a classifier but do not affeairting,

or they may becausativein that they subvert the learning process

by controlling the training data [1]. For example, in an exptory
attack, the adversary disguises the spam by adding urdehaieds
to evade the spam filter [9, 10, 14]. In a causative attackativer-
sary flags every legitimate mail as spam while the defendeatis-
ering the training data. Consequently, the spam filter é&hion such
data is likely to cause a false alarm and may block all legitean
mails [12, 11].

The causative attack has recently attracted growing isitérem
the scientific community due to its long-lasting impact oarféng
algorithms. In general, if one attempt to harness humaruresse for
training models, then the training data is in danger of aoimation.
Specifically, the adversary can carry out the causativelagither by
introducingfeature noiser label noiseto the training data. Different
types of feature noise have been extensively studied irraeiter-
ature [4, 6, 9, 11]. However, little is known on how adverabiabel
noise is induced. Most of previous work either assume thei$sare
erased at random [3], or they restrict the underlying distion of
label noise to certain families without considering thaeittstrategy
from the adversary’s perspective [5, 8]. Recently, a latyes ftrat-
egy based on heuristics is proposed to attack support vectchines
(SVMs) [2].

This paper formalizes the problemadversarial label flips attack
in the supervised learning setting, where the adversanaotinates
the training data through flipping labels. More exactly, dldeersary
aims to find a combination of label flips under a gilermgetso that a
classifier trained on such data will have maximal classificegrror.
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framework for solving this problem. We then devise an altponifor
attacking support vector machine, which can be efficierdlyex as
two minimization problems. Experiments demonstrate thaattack
maximally degrades the accuracy of SVMs with different késn

While solving problems for adversaries may seem countdrro
tive, we believe that investigating the strategy of the askwy and
the vulnerability of the defender is the only way to develaplaust
learning algorithm in the future. The rest of this paper igamized
as follows. The problem of adversarial label flips is desatin Sec-
tion 2. A framework for finding the near-optimal label flipspge-
sented in Section 3. The algorithm for attacking SVMs is\atiin
Section 4, followed by experimental results on both symthand
real-world data in Section 5. Section 6 provides conclusimd dis-
cussions.

2 PROBLEM STATEMENT

In the supervised classification problem, we have a traisatgpfn
instancesS' := {(x;,v:) | x: € X, ys € Y}i—1, with theinput space
X and thelabel spacey := {—1, 1}. Given ahypothesis spac®
and aloss functionV/, the goal is to find a classification hypothesis
fs € H by solving Tikhonov regularization problem

Js = argminy y OV (ys, f(x0)) + /1, &
i=1

wherefs denotes the classifier trained Shand~ is a fixed positive
parameter for quantifying the trade off. Remark that the fiesm
in (1) reflects the empirical loss gfon S, and the second term re-
flects the generalization ability ¢f. Given an instance € X, the
classification decision is made according to the sigrisdix).

To express the label flips, we first introduce a set of var@blec
{0,1},i=1,...,n. Then replace; with | := y;(1—2z;) so that if
z; = 1then the label is flipped; = —y;, otherwisey, = y;. Denote
S’ := {(xs,y;) }i=: thetaintedtraining set, which shares the same
instances a$ but with some flipped labels. The adversary constructs
S’ in such a way that the resultinfy, yields maximal loss on some
test setl'. Thus, the problem of finding the near-optimal label flips
can be formulated as

S Viy fs (%), @)

(x,y)eT

max
z

st for €argminy YV (vl [(x) + ISl ()

i=1
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wherec; € Ry is the cost (or risk) of flipping labe}; from the ad-
versary'’s viewpoint. Constraint (4) limits the total adserial cost of
label flips toC. Unfortunately, the abovbilevel optimization prob-
lem is intrinsically hard due to the conflict and the intelattbe-
tween (2) and (3). The conflict arises from the fact that foivery
training set the defender learns a classifier with minimapieical
loss and good generalization ability, whereas the adversgrects
that the classifier has maximal loss and poor generalizaoility.
That is, the beneficial outcome in one of them is associatéd avi
detrimental outcome in another. Moreover, since any sifigiped
label may lead to a change to the classifier, the greedy giratat
flips labels based merely on the current classifier is ingffecEs-
sentially, the adversary has to evaluate each combinatiabel flips
and selects the one that deteriorates the classifier the most

As solving even the simplest linear bilevel problem is stydfiP-
hard [13] and an exhaustive search on all combinations of fip
prohibitive, we resort to a relaxed formulation of finding thear-
optimal label flips. In particular, we assume that the acgrenly
maximizes the empirical loss of the classifier on the origiraaning
set, yet indulges the defender in maximizing the generadizabil-
ity of the classifier. To obtain a set of label flips that jojndeterio-
rates the classifier's performance to the greatest extengdversary
must foresee the reaction of the defender to the flippeddaléith
these considerations in mind, we relax the original bilgreblem
and present a loss minimization framework in the next sactio

3 LABEL FLIPSATTACK FRAMEWORK

of S so that each instance ifi is duplicated with a flipped label.

Formally, the set/ := {(x:,v:)}:", is constructed as follows

(xi,9:) €S, i=1,...,n,
X; ‘= Xij—n, t=n+1,...,2n,
Yi = —Yi—n t=mn-+1,...,2n.
We introduce an indicator variablg € {0,1},7 = 1,...,2n for

each element i/, whereq; = 1 denotes thafx;,y;) € S, and
g; = 0 denotes that it is not. Replac® by U and substitute (5) into
(6), we can rewrite the near-optimal label flips problem as

2n
min 70V (o ) =V o Ss e+ 1 @)
on
s.t. Z ciqi < C,
i=n+1
¢+ qisn=1, 1=1,...,n,
g €{0,1}, i=1,...,2n.

We ignore || fs||3, as it is a constant with respect to the opti-
mization variables. Indicator variabl@s1, . .., g2» correspond to
z1,...,2n iN the previous bilevel formulations, respectively. The
constrainty; 4+ gi+» = 1 reflects that only one label can be chosen
for the instancex;. Due to the acquiescence on the defender’s behav-
ior of maximizing the generalization ability of the tainteldssifier,

the conflicting objectives of the defender and the adveraegynow
incorporated into one minimization problem. Given a trainset we

Let A and B be two sets of labeled instances, we first define an auxcan employ the above framework to compute the set of labed flip

iliary loss function

g(B7fA) =7 Z V(y7fA(x))+HfAH'2H7

(x,y)€B

(®)

wheref4 denotes the classifier trained @n Note that the first term
in (5) reflects the empirical loss incurred lfy over the seB3, which
differs from (1).

To maximally degrade the classifier's performance, we s&féc
so that it has maximal loss under the original classifigbut yields
minimal loss under the tainted classifigy,. The intuition is as fol-
lows: the adversary shifts the classification hypothesishab the
“terribly” mislabeled instances i8’ asserted by the original classi-
fier are now identified as “perfectly” labeled instances byyttinted
classifier. With this strategy, the adversary can proagtivause the
defender to produce a classifier whose loss is lowsohut high on
S, which in turn has high loss on the test set. Formally, thégidan
be represented as

lein g(Sl7fS’)_g(S,7fS)7 (6)

s.t. Zcizi <C, z¢€ {07 1}.
=1

Remark that givemnytraining set the defendatwaysfinds the opti-
mal classifier by solving Tikhonov regularization probleFhus, the
first term in (6) reflects the defender’s destined action @ntthin-
ing setS’. The second term quantifies the empirical lossS6mising
the classifierfs trained on the original sef, which represents the
adversary’s strategy of selecting instances with high.loss

We further refine the objective function and constraints6)ff¢r

that will jointly degrade the classifier's accuracy withexceeding

a specified budget. Recall that SVMs can be considered asabkpe
case of Tikhonov regularization, it is straightforward ®velop an
attack on SVMs subject to this framework, as we shall seeaméxt
section.

4 ATTACK ON SVM

SVMs project the original training instances from the inppaceY
to thefeature spacer by & : X — F. In general, SVMs trained on
S has the form

fs(x) = Z a; K(x,%x3) + b,
i=1

whereK is aMercer Kernelwhich satisfies the property (x, x;) =
®(x) T ®(x;) andb € R denotes the bias. The classifier can be also
rewritten as

fs(x) :=w'x+0b,

wherew := 37"  o;®(x;) andw € F. Thus, the classification
boundary of a SVM is a hyperplane i with normal vectorw.
Given thehinge lossfunction V' (y, f(x)) := max(0,1 — yf(x)),
Tikhonov regularization for SVMs is a constrained quadratio-
gramming (QP) problem

n
. 1, s
min ’Y;fz + 5wl (8)

st yi(w' xi+b)>1—&, &>0, i=1,...,n,

where¢; represents the hinge loss(of;, y;) resulting from the clas-

the algorithmic convenience. Dendtethe expanded representation sifier fs. Denotee; := max(0,1 — y; fs/(x:)) the hinge loss of



(x4, ys) resulting from the tainted classifi¢g.. By plugging (8) into
(7), we have

Algorithm 1: Adversarial Label Flips Attack on SVMs (ALFA)

Input : original training setS, adversarial costy, . . ., ¢,
2n 1 budgetC, parametery
min 7y Z qgi(es — &) + 5 [w]| 9) Output: tainted training se§’ with flipped labels
dWEr = 1 Find fs by solving (8) onS; [* QP */
s.t. yi(wai +b0)>1—-€, >0, i=1,...,2n, 2 foreach (x;,y:) € U do
om 3 L &+ max(0,1 — y; fs(xi));
Z ciqi < C, 4 € < 0;
i=n+1 5 repeat
G+ qm=1 i=1,...,n, 6 ‘ Findgu, ..., g2 by solving (11); [+ LP x/
@ e{0,1}, i=1,...,2n. 7 .Flndq, ..., €2y, by solving (10); [ QP */
8 until convergence
Observe that (9) involves an integer programming probleritchvh 9 L <=Sort ([gn+1, ..., g2s], “desc”) ;
is in general\"P-hard. Therefore, we first relax it into a continu- /* L is an array of sorted indices */
ous optimization problem by allowing aj} to take values between 10 for i <— 1ton doy; < y;;
[0, 1]. Then we decompose (9) into two sub-problems and devise an j < 1;
iterative approach to minimize them alternatively. On the band, 12 WhiIeZ{:1 qr < Cdo
YL()—n < —YL[j]—n /* Flip | abel =/

by fixing q, the minimization ovewv, €, b is reduced to the following 13
J<i+ 1
return S’ « {(xi, yi) Hiz1;

QP problem 14
. 2n 1, v
min ’y;qiei + 5wl (10)
st. yi(w' xi+b)>1—¢, >0, i=1,...,2n.

On the other hand, by fixing/, b and using the computedthe min-

imization overq can be described as a linear programming (LP) as,

follows

2n
m&n v Z qi(ei — &) (11)

2n
Z ciqi < C,

i=nt1
Gi + Qiyn =1,
0<¢q <1,

s.t.

i=1,...

1=1,...,2n.

y 1y

It is easy to see that by minimizing (10) and (11) the objecfinc-
tion (9) decreases monotonically. Note tijattan be computed be-
forehand, the algorithm can be implemented efficiently wifkithe-
shelf QP and LP solvers. After the algorithm converges, veedy
ily select the largest subset §§,,+1,...,q2,} Meeting the given
budget and flip the corresponding labels. The complete proees
summarized in Algorithm 1, which we denote as ALFA.

5 EXPERIMENTAL RESULTS

We demonstrate the label flips attack on SVMs with linear &kand
radial basis function (RBF) kernel using two sets of experits.
First, we employ some two-dimensional synthetic data taalige
the decision boundaries of SVMs under the label flips. Thersdc
set of experiments is conducted on ten real-world datawbese we
concentrate the influence of label flips on SVMs with respeclif
ferent budgets. In all experiments, the proposed ALFA is pared
with the following three label flip strategies

e Uniform random flip: instances are uniformly chosen at rando
from the training set and their labels are flipped. This camebe
garded as introducing label noise to the training set froemidn-
adversarial perspective.

e Nearest-first flip: instances that have small distanceseal#ti-
sion hyperplane in the feature space are first flipped. Thieeo
sponds to a thoughtless labeler who erroneously labelarioss
that are difficult to be distinguished.

Furthest-first flip: instances that have large distancebealeci-
sion hyperplane in the feature space are first flipped. Invihig
we simulate a malicious labeler who deliberately gives \grtan
bels on instances that are easy to be distinguished.

The adversarial cost is setas:= 1fori = 1,...,n. Thus, given
a budgetC' one can flip at mostin(|C |, n) labels. Experiments
are conducted as follows. First, we randomly select the samber
of instances from two classes and construct the trainingrse:tthe
test set, respectively. Second, the training set is taioyguerforming
different flip strategies. Third, we train SVMs (with:= 1) on the
original training set and four tainted training sets. Hidhe classi-
fication error of each SVM is measured on the test set, reispbct
As our test set is balanced, the worst performance of a @ikrsis

with 50% error rate, which corresponds to the random guess. Hence,

an error rate around0% indicates an effective attack strategy on
SVMs.

In the experiments, the convergence of ALFA typically osciur
5 ~ 10 iterations. On a training set wits00 instances, our MAT-
LAB implementatiof without special code-level optimization takes
about3 seconds for computing the near-optimal label flips

5.1 Synthetic Examples
We generate linear and parabolic patterns in two dimenkgpece

for this experiment. From each pattern, we sel@tinstances as the
training set an&00 instances as the test set. l(@t:= 20, decision

2 MATLAB implementation and more experimental results areilable at
http://home.in.tum de/ ~xi aoh

3 We tried an exhaustive search to find the groundtruth optiatel flips. For
example, To obtain the optimaD label flips out 0f300 training instances,
our program has to check ovex 1039 combinations. Due to the extremely
slow progress, we terminated the program after one montimgron al 2-
cores workstation.
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Figurel. Decision boundaries of SVMs under different flip strategiee first and second rows illustrate results on the linetiepg the third and fourth
rows illustrate results on the parabolic pattern. For eaeteg)y, the number of flipped labels is fixed2@ (i.e. 20% of the training data). Each point
represents an instance. Labels are denoted in red and bleach plot, decision regions of SVMs are shaded in differefdrs. Only flipped instances in the
training set are highlighted. The percentage under eadhingizates the error rate of SVM measured on the test sgtectisely.(a) The synthetic data
generated for the experimei(h) Decision boundaries of SVMs trained on the original tragnget without label flips(c) Decision boundaries of SVMs under
random label flips(d) Decision boundaries of SVMs under nearest-first flip stratég) Decision boundaries of SVMs under furthest-first flip sogit€f)

Decision boundaries of SVMs under ALFA.

boundaries of SVMs under different flip strategies are fthied in
Fig. 1.

By comparing Fig. 1(b) with Fig. 1(f), one can clearly obsetive
dramatic changes on decision boundaries of SVMs under AEBA.
instance, the original decision plane of linear SVM on theapalic
pattern is almost tilted b90 degrees under ALFA (see t13&! row
of Fig. 1). Moreover, when ALFA is applied to SVMs with RBF ker
nel, the error rate increases frasi2% to 32.4% on the linear pat-
tern and5.1% to 40.8% on the parabolic pattern. Not surprisingly,
the nearest-first strategy is least effective due to thedote nature
of soft-margin SVMs. While the furthest-first strategy ieases the
classification error as well, it is less compelling than ALFArther
note that the performance of SVMs is quite stable under tiferam
random label noise and the error rate hardly changes2iftipped
labels, as shown in Fig. 1(c). This implies that previoususttearn-
ing algorithms based on the assumption of random label moise
be too optimistic as they underestimate the adversary’adtngn the
classifier's performance.

5.2 On Real-World Data

We continue the investigation of different flip strategiesing 10
real-world data sets, which are downloaded from LIBSVM wibs
For each data set, we randomly sel2@d instances as the training
set and800 instances as the test set. As in practice the adversary
usually controls only a small portion of the training dat& demon-
strate the effectiveness of label flips with respect to kit budgets,
especially with low budget.

Figure 2 depicts the error rate of SVMs up@o label flips (i.e.
C:=1,...,60). As expected, the error rate of SVMs increases with
the growth of label flips. While SVMs sometimes show the feside
to the random label noise, the error rate significantly iases under
ALFA and the furthest-first strategy due to their adversaraure.
The advantage of ALFA is most significant when SVMs are tréine
with RBF kernel. On many data sets, by flipping oiylabels (i.e.
10% of training data) with ALFA the error rate of RBF-SVM rises to
50%, which is turned into the random guess. Moreover, we remark
that ALFA is more cost-effective than the furthest-firsastgy es-
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(b) Error rate of SVMs with RBF kernel under different flipategies.

Figure2. Error rate of SVMs as a function of the number flipped labelgh\W each experiment, the training set consista@j instances {00 for each
class) selected randomly. The adversary can flip at Gkbels (i.e.30% of the training data). The classification error is measured(d test instances with
balanced labels. Results are averaged 60eepetitions. Note thai0% error rate corresponds to the random guess.

pecially with small flips. When the number of flipped labeltaige,

ALFA keeps trapping SVMs with worst performance5a% error

rate. On the contrary, the furthest-first strategy increétseerror rate
over50% (see Fig. 2(bp9a,connect - 4,1 et t er), which in fact

regains the predictive power of SVMs. This behavior is dubédact

that our framework captures the classifier’s reaction tpéiblabels,
whereas the furthest-first strategy merely considers tfognration

about the current classifier.

From the perspective of a cost-averse adversary, it is ateo-i
esting to know the required budget for turning a SVM into a-ran
dom guess. Table 1 shows the required percentage of latshftipn
the tainted SVM reache®0% error rate on the test set. First of all,
observe that the required percentage of label flips greatedds
on data sets, or how training instances are distributeddrfeature

space. Moreover, comparing with the linear kernel it is exatsi taint
SVMs with RBF kernel. This is because by mapping instances to
the infinite dimensional feature space, instances are nuaesealy
distributed. Hence, flipping a label will result a signifitamange

on the separating hyperplane. Furthermore, in both cas&aAllps

less labels than other strategies. For the linear kerneéthéred per-
centage of label flips is roughly stable with respect to tke sf the
training set. That is, the required flips rises linearly witemsize of
training set increases. On the contrary, for RBF kernel ¢dugiired
percentage increases as the training set becomes larger.

Finally, we adapt ALFA to attack the label noise robust SVNA(L
SVM) based on a simple kernel matrix correction [2]. Our ekpe
ment indicates that, although LN-SVM shows resilience & rimn-
dom noisy labels, it still greatly suffers from ALFA.



Tablel. The percentage of flipped labels when a SVM reactt¥s error rate. Experiment is conducted on ten data setsMith 200 and300 training
instances, respectively. The classification error is nregison the randomly selected test set v#iti) instances. From the adversary’s viewpoint, smaller
percentage value indicates a more cost-effective flipegyaas it requires lower budget. For each data set, the nfestieé strategy is highlighted with the
boldface. Results are averaged o§@mrepetitions.

100 200 300
Datasets | Rand. Near. Furt. ALFAl Rand. Near. Furt. ALFA] Rand. Near. Furt. ALFA
SVM with linear kernel
a%a 41.9 70.4 29.5 31.5 43.7 72.2 271 29.8 44.5 72.9 26.7 29.9
acoustic 38.5 77.6 19.2 17.1 41.5 77.4 18.8 17.3 42.5 76.6 18.8 17.4
connect-4| 38.2 67.7 27.7 29.1 40.1 73.7 244 27.5 42.2 773 214 25.2
covtype 32.1 73.7  25.0 23.8 37.0 74.4  24.6 22.6 36.9 75.1 23.9 21.7
dna 43.4 47.6  50.7 47.8 42.5 51.6  45.8 44.2 43.5 54.6 42.6 43.2
gisette 47.7 56.6  43.7 43.6 47.0 61.8 379 37.9 47.6 63.8 35.6 35.6
ijjcnnl 33.9 62.6  26.5 254 37.9 72.7 215 20.8 38.2 76.4 19.7 17.6
letter 36.7 80.6 18.2 19.0 40.2 82.6 17.1 18.6 41.5 82.1 174 19.1
seismic 38.7 73.8  26.3 25.5 40.7 71.3 28.3 28.7 41.3 70.7  28.8 28.1
satimage 44.5 70.5 30.0 32.2 45.4 70.3  29.8 25.5 46.4 69.2  30.6 22.3
SVM with RBF kernel
a%a 21.6 65.3 12.8 7.7 31.5 74.9 18.8 12.0 36.1 76.1 20.4 14.1
acoustic 6.3 14.7 4.1 2.9 16.3 36.8 10.2 7.1 22.6 52.7 13.7 7.8
connect-4 7.2 33.8 3.7 2.8 18.5 68.8 8.7 5.3 25.2 76.2 12.3 6.8
covtype 2.5 13.2 1.8 1.4 6.6 55.8 4.3 2.2 11.6 71.2 7.3 3.9
dna 27.6 53.6  20.8 11.6 40.9 63.7 31.6 17.0 46.7 66.5 32.6 19.2
gisette 29.4 68.9 234 14.1 38.7 70.8 284 17.8 43.4 69.2 29.0 19.3
ijcnnl 8.1 27.2 4.2 3.5 194 41.0 13.6 8.4 25.0 40.3 204 104
letter 22.6 780 11.7 8.0 31.0 84.4 14.1 10.9 35.3 84.5 14.2 11.9
seismic 11.0 33.4 6.4 4.3 24.0 64.4 13.5 7.4 29.3 69.0 16.4 9.6
satimage 39.1 69.2  25.5 23.7 41.8 68.8  28.7 22.3 43.4 67.8 30.3 23.3
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