
Automated Detection of Information Flow
Vulnerabilities in UML State Charts and C Code

Paul Muntean, Adnan Rabbi, Andreas Ibing, and Claudia Eckert
Department of Computer Science

Technical University Munich

Email: {paul, rabbi, ibing, eckert}@sec.in.tum.de

Abstract—Information flow vulnerabilities in UML state
charts and C code are detrimental as they can cause data leakages
or unexpected program behavior. Detecting such vulnerabilities
with static code analysis techniques is challenging because code
is usually not available during the software design phase and
previous knowledge about what should be annotated and tracked
is needed. In this paper we propose textual annotations used to
introduce information flow constraints in UML state charts and
code which are afterwards automatically loaded by information
flow checkers that check if imposed constraints hold or not. We
evaluated our approach on 6 open source test cases available
in the National Institute of Standards and Technology (NIST)
Juliet test suite for C/C++. Our results show that our approach
is effective and can be further applied to other types of UML
models and programming languages as well, in order to detect
different types of vulnerabilities.

Keywords—model-based verification, information flow vulnera-
bility, static code analysis

I. INTRODUCTION

The US National Vulnerability Database (NVD) [44] lists
8454 common vulnerabilities and exposures in the last 12
months from which 403 (4.77%) are information leaks caused
by inappropriate handling of information flow in software
applications. Inappropriate handling of information flow can
cause a wide range of problems as, information flow leak-
ages/disclosure, weird program behavior and weaker crypto-
graphic algorithm encryption.

These types of vulnerabilities are introduced during design,
architecture or coding phase and can be potentially exploited
if not discovered early. Information flow vulnerabilities in
UML models and code are introduced by software designers
or programmers who are sometimes ”blind” with respect to
the fact that they are trained to focus point-wise (one code
line and one data flow at a time). This is why it is important
to develop techniques and tools which can detect this type of
vulnerabilities before they materialize in production code.

Information flow vulnerabilities are hard to detect because
static code analysis techniques need previous knowledge about
what should be considered a security issue. Code annotations
which are added mainly during software development [6] can
be used to provide additional knowledge regarding security
issues. On the other hand code annotations can increase the
number of source code lines by 10% [27]. In order to detect
information flow vulnerabilities software artifacts have to be
annotated with annotations attached to public data, private data
and to system trust boundaries. Next, annotated artifacts have
to be made tractable by tools which can use the annotations

and check if information flow constraints hold or not based on
information propagation techniques.

The detection of information flow vulnerabilities in code
and UML state charts is not well addressed and is particularly
challenging. Foremost, there is no common annotation lan-
guage for annotating UML state charts and source code with
information flow security constraints such that vulnerabilities
can be detected also when code is not available. Second, there
are no automated checking tools which can reuse the annotated
constraints in early stages of software development to check for
information flow vulnerabilities. We think that it is important to
specify security constraints as early as possible in the software
development process in order to avoid later costly repairs or
exploitable vulnerabilities.

In this paper we address this open problem by providing:
a light-weight security annotation language, two editors used
to edit source code files and UML state charts and four
information flow checkers. The checkers can automatically
load and use code annotations in order to detect explicit
and implicit information flow [53] vulnerabilities based on
Extended Static Checking (ESC) [10] in UML state charts and
C code.

In summary, our contributions are:

• A novel light-weight security annotation language
used to define information flow constraints in UML
state charts and source code, §III.

• Definition of information flow inference rules which
were implemented inside our information flow check-
ers, §IV-2.

• Two annotation language editors designed as Eclipse
plug-ins which are used to edit UML state charts and
source code files, §V-B and §V-D.

• Experiments are presented in section §V based on
automatic loading and usage of textual annotations
inside 3 new checkers, §V-C and a checker, §V-E
which is an extended version of [39].

The remainder of the paper is organized as follows: §II
introduces two motivating examples of information flow vul-
nerabilities. §III presents addressed challenges, the annotation
language tag set and the used language design process. §IV
gives a brief overview about the implementation. §V presents
experimental results. §VI addresses related work. Finally, §VII
contains the conclusion and future steps.

2015 IEEE International Conference on Software Quality, Reliability and Security Companion

/15 $31.00 © 2015 IEEE

DOI 10.1109/QRS-C.2015.30

128

2015 IEEE International Conference on Software Quality, Reliability and Security Companion

/15 $31.00 © 2015 IEEE

DOI 10.1109/QRS-C.2015.30

128

2015 IEEE International Conference on Software Quality, Reliability and Security Companion

/15 $31.00 © 2015 IEEE

DOI 10.1109/QRS-C.2015.30

128

2015 IEEE International Conference on Software Quality, Reliability and Security - Companion

978-1-4673-9598-4/15 $31.00 © 2015 IEEE

DOI 10.1109/QRS-C.2015.30

128

II. MOTIVATION

The scenarios II-1 and II-2 highlight that: first, in order
to detect implicit information flow vulnerabilities during the
design phase a design tool is needed where for instance a
cryptographic algorithm can be modeled and annotated so that
the model is tractable afterwards for information flow prop-
agation checkers; second, for detecting explicit information
flow vulnerabilities in source code an information flow checker
is needed that can track confidential (private) information
on all satisfiable program execution paths. Next, we present
two scenarios which usually arise in a software company
specialized in producing software that has to satisfy imposed
security requirements during design and coding phase. Lets
assume, Bob is a software engineer in this security software
company. Due to his years of experience Bob is frequently
involved in both the design and coding phase.

1) Detecting Vulnerabilities During Design: During the
design phase of a new software product Bob gets the following
requirement from the stakeholder Alice.

Make sure that the cryptographic algorithms used in the
”security packages” contain all algorithm steps in the right
order as specified in the algorithm API.

Note, that if a step of an cryptographic algorithm was
forgotten inside a program then this can lead to software
vulnerabilities [36].

� �

�������

�������

�������

�����	�

�����
�

��
�����������
��������������

�������

�������

�������

�����	�
��
�����������
��������������

�������

�������

�������

�����
�

�����	�

��
�����������
��������������

�������������������

������������������������������� ��������������

�����������������
� �����������������	�

Fig. 1: Implicit information flows sketch (� no bug, � bug)

Figure 1 depicts three distinct implicit information flows
(Denning [53]) of a cryptographic algorithm contained in three
packages, (S1), (S2) and (S3), where each flow starts with ”call
1” and ends with ”call n”. The ”call 1” up to ”call n” depicted
in figure 1 represent C function calls. The dotted lines represent
implicit information flows between ”call 1” up to ”call n” and
indicate indirect interdependency between the presence and
ordering of the function calls. This indirect interdependency
we call implicit information flow. The solid arrows represent
function calls to the cryptographic algorithm (CA) which is
depicted as a solid rectangle in figure 1. The first information
flow depicted in figure 1 with (S1) is a correct flow (�) since
the function calling ordering is respected and no algorithm
call is missing. The information flows contained in S2 and S3
marked with (�) in figure 1 contains a bug respectively. The
information flow contained in S2 does not contain the required

”call 2” whereas the flow contained in S3 has ”call 2” switched
with ”call 3”. This scenario highlights the situation that in case
a function call is missing and/or the ordering between one or
more function calls is switched then a bug report should be
created.

2) Detecting Vulnerabilities During Coding: Alice
remembers during the coding phase that the software product
contains multiple software modules which are responsible
for handling confidential information inside secure software
packages and issues Bob the following requirement.

Make sure that no confidential/private information is leaked
out of the ”security packages” contained in our system.

After a short period of brainstorming Bob comes with the
requirement remodeled in figure 2.

� �

������

��	

�����
�	���

�����
�	��	

�����
�	���

�����
�	���

����������
��������

�

�

�

�

�

�

������

��	

�����
�	���

�����
�	��	

�����
�	���

�����
�	���

������������	� ���������������	�

�

����������
��������

Fig. 2: Explicit information flows sketch (� no bug, � bug)

Figure 2 depicts two explicit information flows (Den-
ning [53]) contained in two secure packages (F1) and (F2)
where each of the flows starts with ”statement 1” and ends
with ”statement n”. The ”statement 1” up to ”statement n”
represent C language statements. F1 is depicted with a solid
line containing the flow from the ”source” to the ”sink”
indicated with circles at the top and bottom of each of the
two information flows. A ”source” is any function or program-
ming language statement which provides private information
through a system boundary. A ”sink” can be a function call
or programming language statement which exposes private
information to the outside of the system through a system
boundary. Note that a system boundary can be a statement,
function call, class, package or module. In figure 2 the ”source”
and ”sink” represent language statements where information
enters and respectively leaves F1 or F2. The solid arrows
represent an explicit information flow between the ”statement
1” up to ”statement n”. The ”source” was tagged with label ”c”
(confidential) as it inserts confidential information into F1. The
dotted arrows represent the passing of the confidential label ”c”
between the program statements. When a variable labeled with
”c” is about to leave F1 then a bug report should be created.
This is indicated in figure 2, (�), at the bottom of F1. Figure 2
depicts inside F2 the same information flow as before but the
”source” in this information flow is not tagged. This represents
a non-restricted information flow and no bug report should be
issued—depicted in figure 2 at the bottom of F2 with �.

129129129129

III. CHALLENGES AND LANGUAGE IMPLEMENTATION

A. Challenges and our Idea

Our goal is to overcome the challenge of not being able
to detect implicit and explicit information flow bugs in UML
state charts and C code. Thus, we need an annotation language
which can be used to annotate UML state charts (during
risk analysis [6]) and code by inserting information flow
restrictions during two software development phases (design
and coding). Our insight is that the same annotation language
can be used to add information flow constraints to UML
state charts and code in order to detect information flow
vulnerabilities.

The challenge was addressed by designing a light-weight
annotation language containing textual annotations which can
be used to annotate source code and UML state charts which
are backward compatible. The textual annotations (single-line
and multi-line annotations) are similar to [46], [47] from
annotation format perspective. The single-line annotations have
the start tag "//@" and the multi-line annotations have the
start tag "/*@" and the end tag "@*/".

For the sake of brevity we will briefly list other ad-
dressed challenges throughout our approach: converting textual
comments into annotations objects, introducing syntactically
correct annotations into files, how to use the same annotation
language in order to annotate UML state charts and source
code, dealing with scattered annotations and attaching annota-
tions to the right function declaration or variable.

B. Annotation Language Tags

A

Target Type Description
@function function name tagging

B

Target Type Annotation Tag Description
@function sink uses info.

source provides info.

declassification declassifies info.

sanitization sanitizes info.
trust_boundary is a trust-boundary

C

Target Type Description
@preStep previous function call name
@postStep next function call name

D

Target Type Annotation Tag Description
@parameter confidential H/L confidential High/Low tags

source H/L source High/Low tags

E

Target Type Annotation Tag Description
@variable confidential H/L confidential High/Low tags

source H/L source High/Low tags

F

Target Type Description
Parameter Name the tagged parameter name
Comment optional textual comment

TABLE I: Security language annotation tags

Table I contains in section: A the annotation language
target types, B the annotation tags which can be used in
combination with the target tag @function, C the tags
@preStep and @postStep which are used to specify
information about previous and post function calls, D the tag
@parameter and the labels confidential and source which
can be accompanied by labels L and H which are used to
tag public and private variables. Source can be used as file

descriptor (e.g., in Posix: 0 stdin, 1: stdout, 2: stderror, 3...),
E the tag @variable which can be used only inside single
line annotations whereas @parameter is used only in multi
line annotations and F the tags which are used to specify
the name of a parameter or a string comment. The tags were
defined and implemented iteratively based on the work flow
presented in figure 3 and by using the xText [12] language
definition grammar.

C. Language Implementation Process

� �

�������	��
������
��
����	���

����������
��
����	�

��������������	�

�����������	���������
���������
��������

������������������	���� �����	!�
�������	��
�������������	�

����������"������
#�������������������

$���������
%�
��
��������������

$���������&'���
���������������

(

)��������������
��������

�

*

+

,

-

.�������	
�����
���������	�

���	�����	
���������������	�

/

�

Fig. 3: Language design process

The process depicted in figure 3 was used in order to
implement our annotation language. Figure 3 depicts the
annotation language implementation process. The process is
comprised of the following steps: Foremost, the .xtext file
containing the language grammar indicated in figure 3 with 1
was edited. Next the grammar file is ”compiled” and software
artifacts are generated, indicated in figure 3 with 2 . After
editing the .mwe2 file we ”compile” it, depicted with number
4 in figure 3. The result of compiling is: a parser, a lexer

and class bindings between these two (lexer and parser) and
the grammar ECore model indicated in figure 3 with the two
boxes located on the right of 2 and 4 . The generated parser,
lexer and the bindings were reused inside our engine, 5 and
in the UI source file editor indicated with 6 in figure 3. After
opening and editing a source file with the editor, 7 , the file
can be parsed and the annotations can be automatically loaded
and used inside our checkers. This process can be repeated as
many times as needed, 8 .

IV. IMPLEMENTATION

1) The Grammar of Our Annotation Language: Figure 4
contains in Extended Backus–Naur Form (EBNF) notation
the grammar of our annotation language. The following type
face conventions were used: Italic font for non-terminals,
bold typewriter font for literal terminals including keywords.
Our annotation language grammar has two grammar rules
S_L_Anno and M_L_Anno used for defining security anno-
tations. The Func_Decl and Attr_Definition rules are
used to recognize C/C++ function declarations and variable

130130130130

Ann Lang ::= HeaderModel*;

H Model ::= S L Anno; ;single line comment rule

| M L Anno; ;multi line comment rule

| Func Decl; ;function declaration rule

| Attr Def ; ;variable declaration rule

S L Anno ::= ”//@ @function ”, Func Type, [H | L];

| ”//@ @parameter ”, p Name, Sec Type, [H | L];

| ”//@ @variable ”, v Name, Sec Type, [H | L];

| ”//@ @preStep ”, pr s Name, [H | L];

| ”//@ @postStep ”, po s Name, [H | L];

M L Anno ::= [”/*@ ”], [”* ”], Func Ann, (” @*/”)

| (”*”), [” ”]*, (”@*/”);

Func Ann ::= ”@function ”, Func Type, [H | L];

| ”@parameter ”, p Name, Sec Type, [H | L];

| ”@preStep ”, pr s Name, [H | L];

| ”@postStep ”, po s Name, [H | L];

Func Type ::= declassification;

| sanitization;

| sink;

| source;

| trust boundary;

Sec Type ::= confidential;
| source;

Fig. 4: Light-weight annotation language grammar excerpt

declarations. Without the previous two rules the source file
editor could not parse existing library files and make annota-
tion language suggestions which are presented in figure V-D.
Due to paper space limitations we do not present the details
of Func_Decl and Attr_Def grammar rules.

2) Inference Rules for Secure Information Flows: The goal
is to prevent the information flowing from H (high security
level, private) variables to L (low security level, public)
variables through trust boundaries. The inference rules are
implemented inside our static analysis engine which can handle
pointers. Lets consider the following C if statement, if
a(L) ≤ b(H) then{} else{}, where variable a has at-
tached the label L and variable b has attached the label H.
There could be implicit (the variables inside the then or else
branch do not depend on the values of a or b) and explicit
(the variables inside the then or else branch depend on the
values of a or b) flows between variables contained in the
then or else as follows: L to L, H to H, L to H and H
to L. If a variable labeled H is used afterwards inside a trust
boundary then a information flow leakages should be reported
and a bug report should be created.

A (data types) τ ::= H | L | PreStep | PostStep

B (phrase types) ρ ::= τ | τ var | τ cmd

Fig. 5: Secure typing system specialized on trust boundaries

Figure 5 presents the typing system on which our informa-
tion flow inference rules, depicted in figure 6, are based on. In
the first row of figure 5, A , we define the following data types:
H and L used to attach private and public labels to program
variables (High/private and Low/public) and PreStep and
PostStep used to attach function call ordering labels to
previous and post function calls. Figure 5, B , presents three
types of phrases on which our inference rules are based.

� 0 (INT) γ � n : L

� 1 (VAR) γ � x : H var if γ(x) = H var

2 (ARITH)

γ � e : L
γ � e′ : L

γ � e+ e′ : L

� 3 (R-VAL)
γ � e : H var

γ � e : H

� 4 (ASSIGN)

γ � e : H var
γ � e′ : H

γ � e := e′ : H cmd

5 (COMPOSE)

γ � c : L cmd
γ � c′ : H cmd

γ � c; c′ : H cmd

6 (IF)

γ � e : H
γ � c : H cmd
γ � c′ : H cmd

γ � if e then c else c′ : H cmd

7 (WHILE)

γ � e : H
γ � c : H cmd

γ � while e do c : H cmd

� 8 (F-CALL-P)
γ � e : τ (PreStep, Poststep) H, L

γ � e : τr (PreStep, PostStep) H, H

� 9 (F-ORDER)
γ � e : τ1(PreStep1, PostStep1) ∗ τ2(PreStep2, PostStep2) . . .

γ � e : τr1(PreStep1, PostStep1) ∗ τr2(PreStep2, PostStep2) . . .

Fig. 6: Typing rules specialized to L, H, PreStep, PostStep for
secure explicit and implicit information flow (�implemented)

Figure 6 depicts our secure information flow inference rules
which are based on the Denning [53] lattice model and Volpano
et al. [58]. We used only two security levels (L and H) which
correspond to 0 and 1 whereas one could use multiple levels if
required, (e.g., [. . . , –3, –2, –1, 0, 1, 2, 3, . . .]). The expression
γ � e : L, 3 , means that expression e has security level L.
γ � e : τ (PreStep, Poststep) H, L, 8 , means that if
a function call was tagged with the labels PreStep (H) and
PostStep (L) then the label of PostStep is replaced with H
after execution. (e.g., strcpy(var1(L), var2(H)) after execution
we have strcpy(var1(H), var2(H))).

Note that for inference rules, 1 , 3 , 4 , 5 , 6 and 7
we instantiate them with security level H. We decided to
do this in order to give concrete inference rules instances.
The rules are intended to work the same if instantiated with
label L. The rules 0 , 2 , 8 are instantiated with L and

131131131131

work the same when instantiated with security level H. The
inference rules presented in figure 6 describe how the label(s):
0 L is attached to an integer value, 1 H is attached to a

variable 2 L is passed to the result of an arithmetic addition
operation 3 H is passed during a return statement 4 H
is passed during an assignment statement 5 L and H are
passed during a composition statement, 6 H is passed during
an if statement, 7 H is passed during a while statement,
8 PreStep and PostStep are used to pass the label H

between the parameters of a function call, 9 PreStep_i
and PostStep_i are used to define a fixed ordering and
presence of function calls (implicit information flow, functions
are not calling each other), no security level was needed (see
listing 2).

3) Information Flow Checkers: We developed 4 C code
checkers based on the Codan API [26] for 4 types of bugs ((a)
one checker for the programs contained in CWE-526, CWE-
534 and CWE-535 used to detect information exposure bugs)
and ((b) three checkers for each of the programs generated
from: CWE-259, CWE-325 and CWE-666 (three new C pro-
grams were obtained by remodeling the programs contained
in CWE-259, CWE-325 and CWE-666 with UML state charts
and then C code was generated). The available or generated
source code was parsed and a Control Flow Graph (CFG)
was constructed for each program. The Juliet test suite contain
many ”good” and bad paths. We decided to model only one
”good” path and ”bad” path in each UML state chart for the
sake of brevity. Thus, the user can model and generate as many
CFG paths as he wants. The checker (a) uses the inference
rules: 3 and 8 and the other three checkers (b) use the rules:
0 , 1 , 4 , 8 and 9 , depicted in figure 6 in order to detect

the bugs. The plug-in checker (a) was developed in 3 person-
days and the other three checkers (b) were developed in 1
person-day for each of them. Thus, the most time consuming
tasks was implementation of inference rules.

4) UML State Chart Editor: We developed an UML state
chart editor based on the open source Yakindu SCT [21]
framework. We extended the existing language grammar with
our annotation language grammar in order to support our set
of tags. Furthermore, we implemented an annotation proposal
filter which was used to filter out (not present to the user)
the annotation language tags of the Yakindu SCT language
grammar.

5) Source Code Editor: We implemented a source code
editor which offers annotation language proposals which are
context sensitive with respect to the position of the currently
edited syntax line. If for example, a C expression is not
properly parsed then the proposal mechanism would not work
from that line on until the end of the file. Thus, the editor
suggestions work only if the whole file is parsed without errors.

6) C Code Generator: A C code generator was developed
based on Eclipse EMF and xTend which is used to generate
the state chart execution code containing the previously added
security annotations from UML state charts. The code gener-
ator outputs two files per UML state chart (one .c and one
.h file). Generated annotations can reside in both header file
and source code file. Previously annotated UML state chart
states are converted to either C function calls or C variables
declarations, both have been previously annotated. We use
the available state chart execution flow functionality which is

responsible for traversing the UML state chart during state
chart simulation. The UML state chart will be traversed by
the code generation algorithm and code is generated based on
the mentioned state chart execution flow. The generated code
will contain at least one bad path (contains a true positive) and
a good path (contains no bug) per UML state chart if those
paths were previously modeled inside the UML state chart.

V. EXPERIMENTS

A. Methodology

We selected 6 C test cases contained in the open source
Juliet test suite [43], ((a) CWE-259 [32](the programs contain
a hard-coded password, which it uses for its own inbound
authentication or for outbound communication to external
components), CWE-325 [36](the software does not implement
a required step in a cryptographic algorithm, resulting in
weaker encryption than advertised by that algorithm), CWE-
666 [33](the software performs an operation on a resource at
the wrong phase of the resource’s lifecycle, which can lead to
unexpected behaviors) and (b) CWE-526 [37](environmental
variables may contain sensitive information about a remote
server), CWE-534 [34](the application does not sufficiently
restrict access to a log file that is used for debugging),
CWE-535 [35](a command shell error message indicates that
there exists an unhandled exception in the web application
code. An attacker can leverage the conditions that cause these
vulnerabilities in order to gain unauthorized access to the
system)).

Vulnerabilities (a) were selected: first, because these con-
tain information flows which can be modeled with UML state
charts and second, in order to present how our approach
can address the first scenario presented in section II-1. The
vulnerabilities (b) were selected since they contain information
flow bugs inside C code and they represent a good fit with
regard to how our approach addresses the second scenario
depicted in section II-2. The first three programs contained
in (a) were remodeled with our UML state charts editor in
order to detect implicit and explicit information flow bugs in
the generated code.

First, we remodeled programs (a) with our UML state
chart editor V-B by attaching to the UML state chart states
information flow propagation restrictions. Next, C code was
generated from the UML state charts using our C code
generator. After code generation, we ran our three (one explicit
and two implicit) checkers for CWE-259 (explicit information
flow propagation checker), CWE-325 (implicit information
flow propagation checker) and CWE-666 (implicit information
flow propagation checker)) on the generated code. Second, we
annotated programs (b) with information flow restriction anno-
tations using our source code language editor V-D. Next, we
ran our explicit information flow checker on the annotated code
(for CWE-526, CWE-534 and CWE-535 (explicit information
flow propagation checker)).

The goal of the experiments presented in sections V-B, V-C
and V-D, V-E are to find out the followings: (1) if all
vulnerabilities could be successfully detected, (2) if false
positives were generated, (3) the vulnerabilities detection run-
time overhead and (4) if our approach is usable for detecting
explicit and implicit information flow bugs in UML state charts

132132132132

Fig. 7: The process of annotating UML state charts and/or source code and bug detection

and source code. Furthermore, we have given a brief overview
of bug reports in figures 9 and 11 in order to describe how bugs
can be traced back to the location where they were detected.
As testing platform we used the Ubuntu OS running kernel
3.8.0-35-generic, 64-bit, Intel i7-4770 CPU @ 3.40GHz × 8,
16 GB RAM. Finally, we addressed threats to validity.

B. Annotating UML State Charts

Fig. 8: First C program contained in the CWE-325 test
case [43] remodeled with an UML state chart

Figure 8 depicts the first program contained in CWE-
325 [36] (”Missing Required Cryptographic Step” and contains
implicit information flows) remodeled with our UML state
chart editor. The user can edit the UML state chart using the

tool palette containing the following: transition, state,
state annotation, composite states, region, initial entry

node, shallow history, deep history, final state, exit

node, choice and synchronization. For the sake of brevity
we highlight the remodeling of only CWE-325 and exclude
showing remodeling details for CWE-259 and CWE-666.

Figure 8 depicts with boxes having rounded corners (e.g.,
figure 8 circled number 1) UML state chart states which
were added for each of the function calls of the first program
contained in CWE-325 [43] (depicts ”good” and ”wrong”
usage of a cryptographic algorithm). The good path (not
buggy path) and bad path (buggy path) (”good path()” and
”bad path()” strings) are contained inside two large boxes
depicted in figure 8 with circled numbers 3 and 4 . In
those two boxes we remodeled the ”good” and ”bad” program
execution paths contained in Juliet test case CWE-325 [43].
Next, we attached to each UML state chart state transition
representing a program function call an annotation box (e.g.,
figure 8 circled number 2). The annotation boxes contain
annotation tags marking what is the correct, previous and next
(post) function call for the used cryptographic algorithm inside
the first program contained in CWE-325 [43]. Concretely, we
used the tag sink (was used since each processing step uses
data in order to perform some internal operations) and the tags
@preStep and @postStep in order to mark the previous
expected function call and the next expected function call with
respect to CWE-325. These annotations were used to specify
allowed information flows. The modeling of the UML state
chart (each algorithm function call was successfully modeled)
was performed by one user which needed 10 minutes for
modeling the UML state chart and adding the annotations.
Each consecutive algorithm function call can be regarded as
a forbidden information flow if the order of the call does
not match the information stored in his @preStep and
@postStep tags.

The annotations depicted in listings 1, 2 and 3 were
obtained from the first three programs contained in CWE-
259, CWE-325 and CWE-666 [43] which were previously
remodeled with UML state charts and then code was generated.

133133133133

Listing 1: cwe 259.h

/ /@ @ v a r i a b l e b H
char ∗b ;
/ /@ @ v a r i a b l e a L
char ∗a ;
/∗@ @funct ion s i n k
∗ @parameter b H
∗ @parameter a L @∗ /
void s t r c p y (char ∗a , char ∗b) ;
/∗@ @funct ion s i n k
∗ @parameter a L @∗ /
void LogonUserA (char ∗a) ;
/∗@ @funct ion s o u r c e
∗ @parameter a L @∗ /
void f g e t s (char ∗a) ;

Listing 2: cwe 325.h

/∗@ @funct ion s i n k
∗ @postStep C r y p t C r e a t e H a s h @∗ /
void C r y p t A c q u i r e C o n t e x t () ;
/∗@ @funct ion s i n k
∗ @preStep C r y p t A c q u i r e C o n t e x t
∗ @postStep CryptHashData @∗ /
void C r y p t C r e a t e H a s h () ;
/∗@ @funct ion s i n k
∗ @preStep C r y p t C r e a t e H a s h
∗ @postStep CryptDer iveKey @∗ /
void CryptHashData () ;
/∗@ @funct ion s i n k
∗ @preStep CryptHashData
∗ @postStep C r y p t E n c r y p t @∗ /
void CryptDer iveKey () ;
/∗@ @funct ion s i n k
∗ @preStep C r y p t D e r i v e k e y @∗ /
void C r y p t E n c r y p t () ;

Listing 3: cwe 666.h

/∗@ @funct ion s i n k
∗ @postStep l i s t e n @∗ /
void b ind () ;
/∗@ @funct ion s i n k
∗ @preStep b ind
∗ @postStep a c c e p t @∗ /
void l i s t e n () ;
/∗@ @funct ion s i n k
∗ @preStep l i s t e n @∗ /
void a c c e p t () ;

The programs were remodeled with UML state charts by

following the steps presented in figure 7 sequentially: 1a

(select tool from palette), 1b (select annotations) 2a , 2b ,

2c , 2d , 2e (insert annotations) and 3a which represents
the C code generation step based on the C code generator
presented in section IV-6. On the generated code the editor V-D
can be applied as many times as needed in order to refine

the annotations, indicated in figure 7 with 1c . Next, the C
language comments (annotations) depicted in listings 1, 2
and 3 are used to detect bugs in the generated programs.
Steps 4 , 5 , 6 and 7 depicted in figure 7 are performed
sequentially and automatically by our three checkers on each
of the three generated programs in order to detect the bugs.

C. UML State Chart Information Flow Checkers Results

File SLoC LoCo FP TP TTP T [s] DB

cwe 259.c 26 - 0 1 1 0.005 �
cwe 259.h - 24 - - - 0.008
cwe 325.c 34 - 0 1 1 0.003 �
cwe 325.h - 13 - - - 0.005
cwe 666.c 24 - 0 1 1 0.002 �
cwe 666.h - 11 - - - 0.003

Total 84 48 0 3 3 0.026 �

TABLE II: Bug detection results for generated programs

Table II contains the following abbreviations: Source Lines
of Code (SLoC), Lines of Comments (LoCo), FP (False-
Positives), True Positives (TP), Total True-Positives (TTP) per
Test Case (TC) with all programs included, Time in seconds
(T [s]) and Detected Bug (DB). Table II presents the results of
running our three checkers (2 implicit information flow check-
ers for CWE-325 and CWE-666 and one explicit information
flow checker for CWE-259) on each of the generated programs.
The three generated programs contained respectively three
true positives which were successfully detected as indicated
in table II column 8. In general if a UML state chart is
properly modeled and annotated then every kind of information
flow related bug can be addressed since our approach is
based on program execution paths which assure full program
path coverage. The trustworthiness of our approach (true/false

positive) is based on correct information flow inference rules.
Proving correctness of the used inference rules is beyond the
scope of this paper.

Fig. 9: Bug reports for the three generated programs

Figure 9 depicts the bug reports obtained by running the
checkers in parallel on the generated programs. The circled
numbers in figure 9 indicate the following: number 1 in-
dicates the analyzed programs (generated programs), number
2 presents three bug reports (each generated by one of our

checkers for the analyzed programs) and number 3 shows the
bug location (line number 18) in source code file cwe 325.c by
clicking on the second bug report (Missing Crypto Step Bug
Detected). The bug reports depicted in figure 9 with number
2 , confirm that all bugs were successfully detected and no

false positives and false negatives were generated.

134134134134

D. Annotating Source Code

Fig. 10: Annotating source code files

Figure 10, number 1 , indicates the annotated file
”stdlib dummy.h” contained in the library (AnnoLib) which
is used inside the second Eclipse C project. The library was
edited once and then re-used 90 times in each of the 90
programs contained in the workspace. Number 2 indicates
the place (lines 568–569) inside the current opened file where
one annotation was added.

Listing 4: Source code annotations (→ depicts belonging)

0. /∗@ @funct ion s o u r c e
1.∗ @parameter name c o n f i d e n t i a l @∗ /
2. char ∗g e t e n v (c o n s t char ∗ name) ; → s td l ib dummy . h
3. /∗@ @funct ion s i n k
4.∗ @parameter f o r m a t c o n f i d e n t i a l @∗ /
5. i n t p r i n t f (c o n s t char ∗ r e s t r i c t fo rmat , . . .) ; →

stdio dummy . h
6. /∗@ @funct ion s o u r c e
7. ∗ @parameter password c o n f i d e n t i a l @∗ /
8. i n t LogonUserA (char ∗username , char ∗domain , char password

, . . .) ; → windows dummy . h
9. /∗@ @funct ion s o u r c e

10. ∗ @parameter password c o n f i d e n t i a l @∗ /
11. i n t LogonUserW (char ∗username , char ∗domain , char password

, . . .) ; → windows dummy . h
12. / /@ @func t ion s i n k
13. i n t f p r i n t f (. . .) ; → stdio dummy . h
14. / /@ @func t ion s i n k
15. i n t f w p r i n t f (. . .) ; → wchar dummy . h

Listing 4 depicts all generated annotations as C language
comments for CWE-526, CWE-534 and CWE-535. In listing 4
”→” indicates in which file belonging to AnnoLib each
annotated function declaration is contained. Furthermore, we
used in listing 4 ”...” to denote that not all parameters were
listed due to paper space limitations. We attached in total 6
annotations to the programs trust boundaries of the selected test
programs indicated in listing 4 as code comments. Each code
comment is attached to the next function declaration contained
in listing 4 on the following line. The AnnoLib contains 3902
LOC, 6 annotations and 6 files which are copies of the C
standard library files. The AnnoLib was annotated by following

the steps indicated in figure 7 sequentially: 1d and 1e using

our source code editor V-D. Steps 4 , 5 , 6 and 7 depicted
in figure 7 are performed sequentially and automatically by
our information flow checker after the annotations were added
in order to detect the bugs.

E. Source Code Information Flow Checker Results

TC TPr SLoC FP TP TTP T [s] DB

CWE-526 18 1172 0 17 18 37.432 �
CWE-534 36 5745 0 34 36 88.426 �
CWE-535 36 5218 0 34 36 86.191 �
AnnoLib - 2194 - - - 1.400 -

Total 90 14329 0 85 90 213.399 �

TABLE III: Bug detection results with annotated library

Table III contains the same abbreviations as table II and
uses additionally the abbreviations: Test Case (TC) and Test
Program (TPr). Table III presents the results of running our
explicit information flow checker together with the annotated
library, AnnoLib on 90 C programs. This table is similar to
the table depicted in [39] except the fact that this time we
used an annotated library in order to annotate program sinks
and sources. The average AnnoLib loading time (annotations
parsing and conversion to EObjects) per C program (90 TPr)
was 1.4 [s]. If the AnnoLib would be loaded only once (this
was not possible due to our current engine Eclipse plug-in
implementation) for all the 90 TPr we could save 126 [s] (90
TPr × 1.4 [s]), thus achieving an overhead of 1.1%. We think
that 1.1% is a low overhead value regarding the fact that the
6 annotations were distributed in 6 header files contained in
AnnoLib (3902 LOC).

Fig. 11: Information flow bug report

Figure 11 depicts a bug report obtained after running our
checker on the 7th program contained in CWE-526 [43]. Num-
ber 1 contained in figure 11 indicates the current analyzed
program, number 2 presents the bug report of our information
flow checker and number 3 depicts the bug location (line
number 13) in the program where the information exposure
bug was detected. Next, we tested our checker on the 90
TPr and detected 85 true positives out of 90 true positives (5
programs were not analyzed due to the current limitation of our
engine to deal with C ”goto” statements) without generating
any false positives and false negatives.

135135135135

F. Threats to Validity

Internal Validity: Our experimental results presented in
table III may not support our findings for several reasons.
If our annotation gathering analysis incorrectly skips some
annotations or misses some constraints, then it might report
false positives or false negatives. For these reason we built an
annotation checking mechanism inside our tool which checks
if the generated annotation objects are valid models of the
textual annotation. If we misinterpreted the timing results, then
the potential total overhead of 1.1% could not be feasible. We
addressed these factors by testing our tool extensively on open
source programs with a known number of information flow
bugs and repeating each experiment for three times for each
of the analyzed programs.

External Validity: Our results cannot potentially be gen-
eralized for other scenarios since our light-weight annotation
language has a reduced expressiveness and only 5 inference
rules were implemented. Furthermore, we did not test our
UML state chart editor on very large UML state charts but
as far as we noticed the used UML state chart framework [21]
can deal with a high number of created states (greater than
100 states) inside a single UML state chart. Our two editors
and four information flow checkers are Eclipse plug-ins and
can run only in the Eclipse environment. We mitigate this issue
by arguing that developing a GUI for an Eclipse plug-in is not
a time consuming task for an experienced developer.

VI. RELATED WORK

The detection of information flow vulnerabilities [31] can
be addressed with dynamic analysis techniques [2], [16], [48],
static analysis techniques [17], [41], [51], [58], [60] (similar
to our approach with respect to static analysis of code and
tracking of data information flow) and hybrid techniques which
combine static and dynamic approaches [38]. Also, extended
static checking [10] (ESC) is a promising research area which
tries to cope with the shortage of not having certain program
run-time information.

The static code analysis techniques need to know which
parts of the code are: sinks, sources and which variables
should be tagged. A solution for tagging these elements in
source code is based on a pre-annotated library which contains
all the needed annotations attached to function declarations.
Leino [27] reports about the annotation burden as being very
time consuming and disliked by some programming teams.
There are many annotation languages proposed until now for
extending the C type system [9], [13], [29], [30], [57] to be
used during run-time as a new language run-time for PHP and
Python [61] to annotate function interfaces [13], [29], [57], to
annotate models in order to detect information flow bugs [24]
to annotate source code files [46], [47], [56] or to annotate
control flows [13], [15], [29]. The studies rely on manually
written annotations while our annotation language is integrated
into two editors which are be used to annotate UML state
charts and C code by selecting annotations from a list and
without the need to memorize a new annotation language.

The following annotation languages have made significant
impact: Microsoft’s SAL annotations [29] helped to detect
more than 1000 potential security vulnerabilities in Windows

code [3]. In addition, several other annotation languages in-
cluding FlowCaml [50], Jif [7], Fable [55], AURA [22] and
FINE [54] express information flow related concerns. Recently
taint modes integrated in programming languages as Caml-
based FlowCaml [52], Ada-based SPARK Examiner [5] and
the scripting. However, none of these annotation and program-
ming languages have support for introducing information flow
restrictions in both models and the source code.

Splint [14], Flawfinder [59] and Cqual [49] are used to
detect information flow bugs in source code and come with
comprehensive user manuals describing how the annotation
language can be used in order to annotate source code.
iFlow [24] is used for detecting information flow bugs in
models and is based on modeling dynamic behavior of the
application using UML sequence diagrams and translating
them into code by analyzing it with JOANA [25]. In com-
parison with our approach these tools do not use the same
annotation language for annotating UML models and code.
Thus, a user has to learn to use two annotation languages
which can be perceived to be a high burden in some scenarios.
UMLSec [23] is a model-driven approach that allows the
development of secure applications with UML. Compared with
our approach, UMLSec does neither include automatic code
generation nor the annotations can be used for automated
constraints checking. Heldal et al. [18], [19] introduced an
UML profile that incorporates a decentralized label model [40]
into the UML. It allows the annotation of UML artifacts with
Jif [42] labels in order to generate Jif code from the UML
model automatically. However, the Jif-style annotation already
proved to be non-trivial on the code level [45], while [19]
notes that the actual automatic Jif code generation is still future
work. These approaches can not be used to annotate both UML
models and code. Moreover, these approaches lack of tools for
automated checking of previously imposed constraints.

VII. CONCLUSION AND FUTURE WORK

We developed a keyword-based annotation language that
can be used out of the box for annotating UML state charts and
C code in two software development phases by providing two
editors for inserting security annotations in order to detect in-
formation flow bugs automatically. We evaluated our approach
on open source programs and showed that our approach is
applicable to real scenarios.

To the best of our knowledge our annotation language is
the only light-weight annotation language usable for specifying
information flow security constraints which can be used in the
design and coding phase in order to detect information flow
bugs.

In future we want to extend our source code editor as
a pop-up window based proposal editor used to add/retrieve
annotation to/from a library. The definition of new language
annotation tags should be possible from the same window by
providing two running modes (language extension mode and
annotation mode). The envisaged result is to reduce the gap
between annotations insertion/retrieval and the definition of
new language tags.

ACKNOWLEDGMENTS

This research is funded by the German Ministry for Edu-
cation and Research (BMBF) under grant number 01IS13020.

136136136136

REFERENCES

[1] S. Arzt and et al. SuSi: A Tool for the Fully Automated Classification
and Categorization of Android Sources and Sinks. Technical report,
TUD-CS-2013-0114, EC SPRIDE, 2013.

[2] T. Avgerinos and et al. AEG: Automatic Exploit Generation. Proceed-
ings of the Network and Distributed System Security Symposium (NDSS
11), February 2011.

[3] T. Ball and et al. Annotation-based property checking for systems
software. Technical report, Microsoft, May 2008.

[4] L. Cavallaro and et al. On the Limits of Information Flow Techniques
for Malware Analysis and Containment. International Conference,
DIMVA 2008, pages 143–163, July 10-11 2008.

[5] R. Chapman and A. Hilton. Enforcing Security and Safety Models with
an Information Flow Analysis Tool. ACM SIGAda, 24(4), 2004.

[6] B. Chess and G. McGraw. Static Analysis for Security . IEEE Security
& Privacy, November/December 2004.

[7] S. Chong and et al. Jif: Java + information flow, July 2006. Software
release.

[8] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani. The MathSAT
5 SMT solver. TACAS 2013., 2013.

[9] J. Condit, M. Harren, Z. R. Anderson, D. Gay, and G. C. Necula.
Dependent types for low-level programming. ESOP, 2007.

[10] D. L. Detlefs and et al. Extended Static Checking . Compaq SRC
Research Report 159, 1998.

[11] M. Dietz and et al. Quire: Lightweight Provenance for Smart Phone
Operating Systems. Proc. of the 20th USENIX conference on Security
(SEC’11), 2011.

[12] Eclipse. xText Documentation. Technical report, Eclipse, iTemis. http:
//www.eclipse.org/Xtext/documentation.html.

[13] D. Evans. Static detection of dynamic memory errors. PLDI, 1996.

[14] D. Evans and D. Larochelle. Improving Security Using Extensible
Lightweight Static Analysis. IEEE Software, Jan/Feb 2002.

[15] D. Evans and D. Larochelle. Splint - Manual. http://www.splint.org/m
anual/html/sec8.html.

[16] J. S. Fenton. Memoryless subsystems. Computer Journal, 17(2):143–
147, May 1974.

[17] M. Guarnieri, P. El Khoury, and G. Serme. Security vulnerabilities de-
tection and protection using Eclipse. ECLIPSE-IT 2011, 6th Workshop
of the Italian Eclipse Community, September 2011.

[18] R. Heldal and F. Hultin. Bridging model-based and language-based
security. Computer Security - ESORICS 2003, 2808:235–252, 2003.

[19] R. Heldal and et al. Supporting Confidentiality in UML: A Profile for
the Decentralized Label Model. Technical Report TUM-I0415, 2004.

[20] N. Husted and et al. Android Provenance: Diagnosing Device Disorders.
5th USENIX Workshop on the Theory and Practice of Provenance, 2013.

[21] itemis AG. Yakindu SCT Open-Source-Tool. https://code.google.com/
a/eclipselabs.org/p/yakindu/

[22] L. Jia and et al. Aura: A programming language for authorization and
audit . ICFP, 2008.

[23] J. Juerjens. Secure systems development with UML. Springer Verlag,
2005.

[24] K. Katkalov and et al. Model-Driven Development of Information Flow-
Secure Systems with IFlow. ASE Science Journal, 2(2), 2013.

[25] KIT. JOANA (Java Object-sensitive ANAlysis) - Information Flow
Control Framework for Java. KIT, http://pp.ipd.kit.edu/projects/joana/

[26] A. Laskavaia. Codan- C/C++ static analysis framework for CDT,
EclipseCon, 2011, http://www.eclipsecon.org/2011/sessions/index0a55.
html?id=2088

[27] K. Rustan M. Leino. Extended Static Checking: a Ten-Year Pesrsective.
Proceeding Informatics - 10 Years Back. 10 Years Ahead, Jan. 2001.

[28] NASDAQ Stock Market. Facebook NASDAQ. http://www.nasdaq.com
/symbol/fb, September 2014.

[29] Microsoft. MSDN run-time library reference - SAL annotations, http:
//msdn.microsoft.com/en--us/library/ms235402.aspx, 2014.

[30] Sun Microsystems. Lock Lint - Static data race and ceadlock detection
tool for C, http://developers.sun.com/sunstudio/articles/locklint.html

[31] Mitre. CWE-200: Information Exposure, http://cwe.mitre.org/data/def
initions/200.html

[32] Mitre. CWE-259: Use of Hard-coded Password, http://cwe.mitre.org/
data/definitions/259.html

[33] Mitre. CWE-666: Operation on Resource in Wrong Phase of Lifetime,
http://cwe.mitre.org/data/definitions/666.html

[34] Mitre. CWE-534: Information Exposure Through Debug Log Files,
http://cwe.mitre.org/data/definitions/534.html

[35] Mitre. CWE-535: Information Exposure Through Shell Error Message,
http://cwe.mitre.org/data/definitions/535.html

[36] Mitre. CWE-325: Missing Required Cryptographic Step, http://cwe.mi
tre.org/data/definitions/325.html

[37] Mitre. CWE-526: Information Exposure Through Environmental Vari-
ables, http://cwe.mitre.org/data/definitions/526.html

[38] S. Moore and S. Chong. Static analysis for efficient hybrid information-
flow control . CSF ’11 Proceedings of the IEEE 24th Computer Security
Foundations Symposium, pages 146–160, 2011.

[39] P. Muntean and et al. Context-Sensitive Detection of Information
Exposure Bugs with Symbolic Execution. Proc. of the InnoSWDev’14,
2014.

[40] A. Myers and B. Liskov. Protecting privacy using the decentralized label
model. ACM Transactions on Software Engineering and Methodology
(TOSEM), 9 Issue 4:410–442, Oct. 2000.

[41] A. C. Myers. JFlow: Practical Mostly-Static Information Flow Control.
Proc. of the 26th ACM POPL’99, Jan. 1999.

[42] A. C. Myers and B. Liskov. A decentralized model for information ow
control. Proceedings of the sixteenth ACM symposium on Operating
systems principles, ser. SOSP ’97., pages 129–142, 1997.

[43] NIST. Juliet Test Suite v1.2 for C/C++. http://samate.nist.gov/SRD/te
stsuites/juliet/Juliet Test Suite v1.2 for C Cpp.zip

[44] National Vulnerability Database (NVD), https://web.nvd.nist.gov/view/
vuln/search-results?query=information+exposure&search type=all&cv
es=on

[45] S. Preibusch. Information ow control for static enforcement of user-de
ned privacy policies. POLICY 2011, IEEE International Symposium on
Policies for Distributed Systems and Networks, June 2011.

[46] D. S. Rosemblum. Towards a Method of Programming with Assertions.
ACM, (1), January 1992.

[47] D. S. Rosenblum. A practical approach to programming with assertions.
IEEE Transactions on software engineering, 21, January 1995.

[48] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding
the roller coaster of information-flow control research. International
Conference on Perspectives of System Informatics, 2009.

[49] U. Shankar and et al. Detecting Format-String Vulnerabilities with Type
Qualifiers. 10th USENIX Security Symposium, August 2001.

[50] V. Simonet. FlowCaml in a nutshell. In G. Hutton, ed. APPSEM-II,
2003.

[51] V. Simonet. The Flow Caml System: documentation and user’s manual.
Technical report, INRIA, July 2003.

[52] V. Simonet. The Flow Caml system. Software release. http://cristal.inti
a.fr/∼simonet/soft/flowcaml, July 2003.

[53] Dorothy E. Denning. A lattice model of secure information flow.
Communications of the ACM, pages 236–243, 1976.

[54] N. Swamy and et al. Enforcing Stateful Authorization and Information
Flow Policies in FINE . In proc. of ESOP’10, March 2010.

[55] N. Swamy and et al. Fable: A language for enforcing user-defined
security policies . In S&P, 2008.

[56] L. Tan and et al. aComment:Mining Annotations from Comments and
Code to Detect Interrupt Related Concurency Bugs. ACM, May 2011.

[57] L. Torvalds. Sparse - A sematic parser for C, http://www.kernel.org/p
ub/software/devel/sparse

[58] D. Volpano and et al. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3):167–187, 1996.

[59] D. A. Wheeler. Flawfinder, http://www.dwheeler.com/flawfinder

[60] X. Xiao and et al. Transparent Privacy Control via Static Information
Flow Analysis . Technical report, Microsoft, August 2011.

[61] A. Yip and et al. Improving Application Security with Data Flow
Assertions. SOSP’09, Oct. 2009.

137137137137

