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Abstract. In many C programs, debugging requires significant effort
and can consume a lot of time. Even if the bug’s cause is known, detect-
ing a bug in such programs and generating a bug fix patch manually is a
tedious task. In this paper, we present a novel approach used to generate
bug fixes for buffer overflow automatically using static execution, code
patch patterns, quick fix locations, user input saturation and Satisfia-
bility Modulo Theories (SMT). The generated patches are syntactically
correct, can be semi-automatically inserted into code and do not need
additional human refinement. We evaluated our approach on 58 C open
source programs contained in the Juliet test suite and measured an over-
head of 0.59 % with respect to the bug detection time. We think that our
approach is generalizable and can be applied with other bug checkers
that we developed.
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1 Introduction

“If one tries to put or to retrieve data from a non existing place/index
he is going to make a mess” Mother Nature Law.

According to the 2011 CWE/SANS top 25 of most dangerous software errors [23]
which can lead to serious vulnerabilities in software, buffer overflows are ranked
on 3rd place after SQL injection and OS command injection. Buffer overflows
can generate risky resource management vulnerabilities as the recent Heartbleed
bug [24] confirms. This bug generates a buffer over-read in the OpenSSL library
by leaking sensitive information to the outside world without the need for the
attacker to have root access on the attacked system and without leaving any trace
on the attacked system. This proves that buffer overflows can lie undiscovered in
software for many years and can lead to extremely dangerous information leaks
in highly used open source software.

In this paper we focus on fault localization and repairing of buffer overflow
bugs by leveraging precise information (failure detection, bug diagnosis, buggy
variables (program variables which are directly responsible for bug appearance),
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e.g., buffer index or buffer size) provided by our buffer overflow checker [13].
The failure detection and bug diagnosis data is used to generate quick fixes for
buffer overflows and to support the repair process of removing the bug with a
refactoring wizard. A novel algorithm is used to detect possible insertion loca-
tions in code for the generated code patches ((a) “in-place”—directly before the
statement which contains the bug and (b) by searching for other, not “in-place”
locations where the bug can be fixed). Our approach for generating program
repairs is based on: code patch patterns, SMT solving and possible quick fix
locations searching in program execution paths which could affect the program
behavior by inserting a patch at a not “in-place” location. The generated patches
are sound (e.g., do not change the behavior of the program for input which does
not trigger the bug), final (no further human refinement needed), human read-
able (no alien code), syntactically correct and compilable.

We address offline behavioral repair [25] (by modifying the source code).
Others have addressed state [8] or test-suite based program repair such as Gen-
Prog [19] and PAR [18]. The defect class which we address is inappropriate index
variable assignment which results in an incorrect usage of the buffer index range.
The fix defect class consists of input checks based on semi-defined patch pat-
terns. The aim of the quick-fix is fail-secure error mitigation (e.g., to prevent
that an attacker exploits the error in order to gain system access). The final
version of the patch is determined using SMT solving.

Program repair lies at the conjunction of two dimensions (first, an oracle is
needed to decide what is incorrect in order to detect the bug (first dimension)
and another oracle to tell what should be kept correct for sake of non-regression
(second dimension)) of software correctness [25]. We used the same SMT con-
straint system which was used to trigger the bug for defining what is incorrect
in the program. Additionally, we created a second SMTLib (constraint system
definition language used by the Z3 [5] solver) constraint system consisting of the
previously mentioned constraint system and new SMTLib constraints used to
impose input saturation constraints on the buggy variable.

Our patches are generated automatically and inserted semi-automatically
offline with the possibility to insert them also online.
Our problem statement: Provide code patches (“in-place” or not “in-place”)
which can be used independently to remove a buffer overflow bug using a bug
detector (checker).

In summary we make the following contributions:

– An algorithm for generation of “in-place” and not “in-place” bug fixes,
Sect. 4.1.

– A novel approach for bug fix generation based on input saturation, Sect. 4.2.
– Semi-automated patch insertion based on source files differential views,

Sect. 4.3.
– Automated check for behavior preserving of the patched program, Sect. 6.4.

Further we present related work in Sect. 2 and a motivating example of a buffer
overflow bug and why automated bug repair merits future research in Sect. 3.
We present the algorithm used to search for quick fix locations and generation
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of quick fixes in “in-place” (at the location where the bug was detected) and not
“in-place” in Sect. 4. We discuss implementation details of our tool in Sect. 5 and
present experimental results and the evaluation in Sect. 6. Finally, we conclude
in Sect. 7.

2 Related Work

Source code patches for quick fixing bugs can be generated in different repairing
ways [12], from free form bug reports [1,2,33], from statically defined patch
patterns [11,18], from test suite using SMT solver [7,28], from test suite and
genetic programming [19,34], by replacing the unsafe libc [29,32], functions with
safe functions [3]. Hafiz et al. [30] addressed buffer overflows quick fixing by
replacing unsafe library functions with safe alternatives. Cowan et al. [4] have
used static analysis for generating code patches based on four approaches
in which the buffer overflow vulnerabilities can be defended. Jacobs [16] has
proposed to use buffer overflow refactoring patterns as an extension for
the C language called SMART C. In recent years, many quick fix generation
tools for buffer overflows have been proposed: AutoPaG [21], SafeStack [17],
DYBOC [31], TIED [6], LibsafePlus [6], LibsafeXP [20], HeapShield [9].

To the best of our knowledge the AutoPAG [21] tool developed by Lin an
colleagues is most similar to our approach from the backward visiting of program
statements perspective. Our tool can not be compared with AutoPAG from
the point of view of computation time and quick fix quality at this stage of
development since AutoPAG has several limitations which we will briefly list.
Our algorithm stops the search after encountering the first not “in-place” bug
fix location whereas AutoPAG tries to detect all possible not “in-place” bug
fix location by running a repeated inefficient data flow analysis (no program
execution paths used). AutoPAG is not aware of program execution paths and
uses a rudimentary backward information flow propagation approach based on
the sequential ordering of program statements. The analysis (no SMT solver
used) is repeated until there are no visited variables in the previously constructed
set of tainted variables. This set can contain all program variables and can
generate a significant overhead as already mentioned in the AutoPAG paper.

3 Motivating Example

In this section we present two real-world bug fixes as an example to highlight the
fact that bug patch generation is not a trivial task. It needs deep insights into
the functionality of the program and merits further study. There are typically
an endless number of programs who adhere to a formal specification. As such,
a bug can be fixed with infinite number of functionally correct patches. The
automatically generated patches will change the behavior of the program or not.
We present two distinctive patches depicted in Listing 1 on lines 5–6 and 11–13
with “+” and by using an italic font. Note, that these two fixes do not change
program behavior for program input which does not trigger the bug. Listing 1
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contains on line 6 code comments we present other possible quick fixes usable to
remove the buffer overflow bug located at line 12 which most likely will change
program behavior.

Listing 1 displays a C code snippet extracted from the test case CWE-121 [22]
which is contained in [27]. The code snippet contains a buffer overflow bug at line
12 which can be removed by using one of the two patches depicted in Listing 1 on
lines 5–6 and 11–13. Note, that the patch structure, the used constraint variables
and the bug fix insertion locations are different for each buggy C program.

Listing 1. Buffer overflow bug due to missing input checks

0. void foo_bad (){
1. int data = -1;
2. char input_buf[CHAR_ARRAY_SIZE] = "";
3. i f (fgets(input_buf ,CHAR_ARRAY_SIZE ,stdin) != NULL){
4. data = atoi(input_buf);
5. + if (data > 9 || data < 0)
6. + exit(EXIT FAILURE); // data = 9; or data = rand() % 9; or return 0;
7. }else{
8. printLine("fgets() failed.");}
9. int i, buffer [10] = { 0 };

10. i f (data >= 0){
11. + if (data <= 9 &&data >= 0){
12. buffer[data] = 1; // Buffer overflow bug , index out of range
13. +}else{exit(EXIT FAILURE);} // stop program execution
14. for(i = 0; i < 10; i++){printIntLine(buffer[i]);}
15. }else{
16. printLine("ERROR: Array index is negative.");}
17. }

Finding the right program variables in order to impose a constraint through a
patch is a hard task because, in the worse case the values selection depends on
all the other program variables. Determining not “in-place” bug fix locations is
not a trivial task and this should be based on correct bug detection and on a
kind of backward program execution technique on all program execution paths
which contain the bug. In general, the insertion location and structural form of
the quick fix patch can influence the overall program behavior. Thus, care should
be taken that a patch is syntactically correct, compilable and does not change
program behavior for program input which does not trigger the bug.

4 Quick Fixes Generation

In this section we present our quick fix locations search algorithm, the steps
needed to automatically generate buffer overflow fixes and the mechanism for
inserting the patches semi-automatically into the buggy program.

4.1 Quick Fix Locations Search Algorithm

The Algorithm 1 contains two phases as follows: (a) Finding the first program
execution path which contains the buggy statement and generating the “in-
place” quick fix. This quick fix will be suggested to the user in the GUI only if
it is sound (e.g., the buffer size is equal on all buggy program executions paths).
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Note, that the buffer index and size are context-sensitive. In case there are
different buffer sizes on different paths then in order to preserve the soundness
of the patched program a complex “in-place” patch can be generated containing
one “if” branch and N “if else” branches (N represents the number of different
buffer sizes on each buggy path). Furthermore, the size (LOC) of this patch grows
exponentially with the number of paths containing different buffer sizes which
renders such a quick fix to be not always practical (*). (b) Traversing the current
selected path in backward program execution order from the location where the
bug was found until a not “in-place” fix location is detected and generating a
new quick fix at that location. At this program location the program execution
can be safely finished (e.g., exit(EXIT FAILURE);) (this will not change the
program behavior for input which does not trigger the bug) if the buffer index
is out of bounds or a numeric value can be set if desired (this will not terminate
program execution and most likely will change program behavior). The second
quick fix is sound as it can be observed that it does not change program behavior
for program input which does not trigger the bug—similar to the first “in-place”
quick fix. Quick fix (b) represents an alternative for the first quick fix which
is not always feasible (e.g., (*)) and will be suggested in the GUI only if it
does not change program behavior for input which does not trigger the bug
and for each buggy program execution path at least one not “in-place” quick
fix was successfully generated. This is assessed with the counters countBP and
countGQF indicated in Algorithm 1 which must be equal (each buggy path has
a not “in-place” quick fix associated) when the algorithm finishes the search.
If the counters are not equal when the search algorithm finishes then there is
at least one path where a not “in-place” bug fix location was not found. Thus,
the whole quick fix will be not offered in the GUI since there could exist one
program execution path on which the bug was not fixed.

Phases (a) and (b) are repeated for all program execution paths which contain
the buggy statement (line number and file name) where the bug was detected
as follows: first, the algorithm searches for possible insertion locations (e.g., “in-
place” and not “in-place”) for buffer overflow quick fixes and second, it generates
bug fixes. The algorithm uses: startIndex() to set the start index from where
to search on the initial path, setWorkList(), to initialize the buggy first path,
initNode(), to initialize the node at which the bug was found and refact(), to
create a new refactoring. We now extend the notation, Spaths, consisting of all
program execution paths, Wset, used to hold the current selected execution path,
Nset, is a set of nodes used to store “in-place” and not “in-place” path nodes
(these represent program locations where refactorings will be later on inserted)
and Rset, is the set of refactorings. In line 3, Nset, and, Wset are initialized to
empty set. In line 6, the algorithm picks a new path from the, Spaths, in each
new iteration. Upon verifying that the chosen path contains the buffer overflow
bug (previously detected), hasBug( sk), the start index, i, and the initial buggy
path, wk, are initialized. In line 11 and 12, the number of quick fix locations,
NLocs, is initialised to 1 and the quick fix location counter, C, to 0 respectively.
On encountering the condition statement, getLength(wk) > 0, the algorithm
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Algorithm 1. Quick fix locations searching and patches generation

Input: Satisfiable program execution paths set SPaths := {sk| 0 ≤ k ≤n, ∀ n ≥ 0}
Output: Refactorings set Rset := {rj | 0 ≤ j < 2}

1 Wset := {wk| 0 ≤ k ≤ n, ∀ n ≥ 0}; // set of working lists, k’th list
2 Nset := {nt| 0 ≤ t ≤ n, ∀ n ≥ 0}; // set of nodes
3 Nset := ∅;Wset := ∅; // initializing both nodes set and working list set to empty set
4 countBP :=0; countGQF :=0; // init. counters, count buggy paths and generated fixes
5 Rset :=∅;
6 while ((Satpaths.hasNext)) do
7 if (hasBug(sk) then
8 countBP := countBP + 1; // count the buggy paths
9 i := startIndex(sk); // set the start index of the path

10 wk := setWorkList(sk); // set the detected buggy path into the work list
11 NLocs := 1; // number of quick fix locations
12 C := 0; // quick fix locations counter
13 // if the work list length greater than 0 else skip path
14 if (getLength(wk) > 0) then
15 nt := initNode(wk); // the node at which the bug was detected
16 Nset :=Nset ∪ {nt}; // add a node for the in-place fix
17 rj := refact(nt); // create a new bug refactoring
18 Rset :=Rset ∪ {rj}; // add new refactoring to the set R
19 while (i >0 ∧ C <NLocs) do
20 fNode := {wk,i}; // get next node from work list located at index i
21 if (isQuickFixNode(fNode)) then
22 nt+1 := fNode; // store current node
23 Nset:=Nset ∪ {nt+1}; // add the node for a not in-place fix
24 setConsObject(wk); // store constraint
25 if (notAffectedPaths(SPaths, nt+1)) then
26 pLoc := probLoc(nt+1);
27 putMarker(pLoc); // put new marker
28 rj+1 := refact(nt+1); // create a new bug refactoring
29 Rset :=Rset ∪ {rj+1}; // add refactoring
30 countGQF := countGQF + 1; // count the generated fixes

31 end
32 C := C + 1; // increase not in-place quick fix locations counter

33 end
34 i := i - 1; // go one step backwards on the path

35 end

36 end
37 k := k + 1; // get next satisfiable program execution path

38 end

39 end

checks the working list, wk, length if it is greater than 0 and then initializes
the node where the bug was found updating the nodes set, Nset. In line 17 a
new refactoring is created updating the refactorings list in line 18. From line 19
to line 35, the algorithm traverses the path backwards in order to find a not
“in-place” fix location of the bug until the index value, i, is greater than 0 and
the counter value, C, is less than number of quick fix locations, NLocs = 1.
While visiting each path node it checks for potential not “in-place” locations,
isQuickFixNode( fNode). Upon encountering a not “in-place” location, it stores
the current node, nt+1, and then Nset is updated. This node is used for generating
the bug patches. In line 24 the constraint object is set at the index, k. The
algorithm traverses the current selected program execution path to check if there
are any influenced paths using, notAffectedPaths(SPaths, nt+1). At this stage of
development a simple check is performed in order to see if the context-sensitive
buggy variable appears on the right hand side of an expression (e.g., var = expr.;
e.g. expr. = a binary expression, expr. contains our buggy variable which will
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be constrained with the patch). Furthermore, it is needed to be checked if the
other influenced variables (e.g., var) are dead or live variables along a program
path. In future we plan to compute a distance-bounded weakest precondition [10]
(our engine supports the weakest precondition computation; loop and recursion
invariants are not supported) in order to check if program behavior is preserved
or not.

In case the algorithm finds no influenced paths then a new refactor-
ing is created and added to Rset, line 29. Note, that in case of using
“exit(EXIT FAILURE)” in the not “in-place” quick fix than no check for influ-
enced paths is needed. In line 32 the counter, C, is incremented by 1 which
indicates that a second refactoring was created and the index value, i, is decre-
mented by 1 so that the algorithm proceeds one step backwards on the current
path in line 34. Note, that the algorithm can accommodate the search for more
than one not “in-place” location by increasing the value of NLocs and updating
the detection rules.

4.2 Bug Detection with SMT

Our contribution lies in bridging the gap between a buffer overflow bug report
provided by an existing buffer overflow checker and automated generation of
one or more quick fixes (quick fix structure, insertion location and values used
inside the patches) which remove (automatically assessed by re-running the bug
detector on the patched program) the buffer overflow bug.

The bug localization is based on the buffer overflow checker contained in our
static analysis engine [13]. The buffer overflow checker returns the location of
the bug containing the file name, line number and a unique ID which defines the
type of the bug. Based on the bug report ID the following steps are performed
automatically. The SMTLib constraint system which was used to detect the
bug (from the buffer overflow checker) is selected. After obtaining the system a
SMTConstraintObject object is instantiated containing the following attributes:
the buffer size, the offset and the previous mentioned SMTLib constraint system.
Next, we introduce the patch creation process consisting of the following 7 steps.

Step 1. Input Saturation: Listing 1 contains at line 4 a not “in-place” quick fix
location for the buffer overflow bug which can be addressed with a missing input
check, lines 5–6. Due to the missing input check the values of the index variable
data used in buffer[data] can take values outside the buffer index interval [0, 9]
which leads to a buffer overflow or underflow. In order to determine if the index
variable data can take values outside the allowed interval [0, 9] a SMT constraint
system is generated. The SMT constraint system is provided as input to the Z3 [5]
SMT solver which will output the message SAT if data can take values outside
the allowed interval. In order to remove the buffer overflow bug we decided
to generate two types of quick fixes (“in-place” and not ”in-place”) which are
based on the input saturation principle. The input saturation principle consists
of basically limiting the possible values which the index variable data can take to
only values which are contained in the buffer index range. The generated quick
fixes represent additional checks which limit the upper and lower values of data
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(see Listing 1). The upper allowed value for data should not be larger than the
allowed buffer[data] upper index bound value, 9, and not smaller than 0.

Step 2. SMT Constraint System used for Bug Detection: The original
SMT constraint system used to detect the buffer overflow bug (excerpt presented
in Listing 2) had 317 LOC. We depict only the SMTLib statements which mat-
ter most in our context and changed the names of the symbolic variables for
brevity. During buffer overflow/underflow detection the checker uses SMTLib
statements which represent path constraints and other specific statements for
buffer overflow or underflow checking. The statement in bold font located on
line 5 in Listing 2 represents the constraint which we get from the our checker
(assert (>= data bufferSize)) in case of checking for an buffer overflow. In
the case of an buffer underflow check the checker adds to the constraint system
the statement (assert (< data 0)). If one of these two constraints are satis-
fied then this means that the variable data can take values outside the range
of the buffer. Thus, a buffer overflow or underflow bug report will be issued.

Listing 2. First oracle

0. (set-logic AUFNIRA)

1. (declare -fun b () Int)

2. (declare -fun c () Int)

3. % c is the buffer size

4. (assert (= c 10 ))

5. (assert (>= b c))

6. (check -sat)

7. (exit)

Listing 3. Second oracle

0. (set-logic AUFNIRA)

1. (set-option:produce-models true)

2. (declare-fun saturation () Int)

3. (declare -fun b () Int)

4. % c is the buffer size

5. (declare -fun c () Int)

6. (assert (= c 10 ))

7. (assert (>= b c))

8. (assert (< saturation c))

9. (assert (>=(saturation (c-1)))

10. (check -sat)

11. (get-value (saturation))

12. (exit)

The value of data
depicted in Listing 2
with b is constraint to
be greater or equal 10.
The solver answers to
this constraint system
from Listing 2 as SAT.
Thus, the set of pos-
sible solutions for b is
contained in the set
[10, +∞). This means
that if the program variable data takes any value greater or equal to 10 than a
buffer overflow bug will be detected. The checker is checking each possible exe-
cution path by asking the Z3 solver if the SMT constraint system is satisfiable or
not. If a bug report is issued then a SMTConstraintObject will be instantiated.
The buffer size, buggy variable and the SMT constraint system used to trigger the
bug are added as attributes to the previously generated SMTConstraintObject
object.

Step 3. Bug Type Classification: The bug type classification is based on the
checker which was used to detect the bug. The bug checker generates a report
containing a unique identifier for each type of bug detected. Currently we have
other checkers (information flow checker [26], infinite loop checker [15], integer
overflow checker and race condition checker [14]) which can run in parallel and
have unique checker identifiers. We used for our checkers a unique ID which was
saved in the checker bug report. Based on the generated bug identifier we can
decide which type of bug we are dealing with. After obtaining the unique bug
identifier the bug patch pattern is selected which will be used for bug fixing.

Step 4. Patch Pattern Selection: Based on the bug type classification we
select the patch pattern(s) which can be used to fix this type of bug. Our patch
patterns consist of empty C code skeletons where certain values have to be
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computed based on the used SMT solver (e.g., (1) +if (buff size > N ‖ buff size
< 0); e.g., (2) +if (buff size <= N && buff size >= 0);). N represents the buffer
size determined during static analysis. Note, that N can have different values on
different program execution paths.

Step 5. Constraint Values Selection: We construct our SMT constraint
system based on the attributes stored in the SMTConstrintObject object. These
attributes have to be added to the SMT constraint system which was used to
detect the bug. After solving the SMT constraint system we will obtain the
numeric values which will be inserted into the previous selected patch patterns.

Step 6. Generating SMT Constraint Values: The generation of the con-
straint values is based on the previously stored SMTLib system as an attribute of
the SMTConstraintObject. The new SMT constraint system (see Listing 3) con-
tains the same SMT statements presented in Listing 2 plus some new SMTLib
statements used to perform the calculation of the needed value which will be
later on used inside our selected patch(es). Note, that the newly added SMTLib
statements are marked with bold font in Listing 3. The added SMTLib state-
ments are used to perform input saturation on the variable data. The solver
answers to this constraint system from Listing 3 as SAT. After solving the gener-
ated SMT system we obtain the value 9 for data. This value will be used later
when we generate our final code patches. b represents the symbolic variable data
and the symbolic variable saturation represents our constraint variable used to
constrain the variable data. The symbolic variable saturation is used to con-
strain the solution space of the real variable (source code variable) data. The
symbolic variable saturation can have as solution only the numeric value 9.

Step 7. Generating Final Code Patches: After solving the constraint sys-
tem from Listing 3 we obtain the numeric value 9 as solution for the symbolic
variable saturation. The value 9 will be inserted in the previously selected
patch patterns in order to constrain the possible values which data can take.
After this step, we obtain code patches which are syntactically correct, can be
compiled and could be further on edited after insertion if desired.

4.3 Semi-automatic Patch Insertion Wizard

(a) (b)

Fig. 1. Patch insertion wizard (Color figure online)
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The buffer overflow checker places a bug marker depicted in the Fig. 1(a) with
a yellow bug icon, on the left of the C statement if the statement contains a
buffer overflow bug. By pressing on this bug marker the user can start the code
refactoring wizard. The code refactoring wizard is composed of two user pages.
The first user page is used to make patches selections (in-place or not in-place
fix, only one can be selected at a time). The second page depicted in the Fig. 1(b)
contains a differential files view presenting the differences between the original
file containing the bug and the modified file with the selected patch(es) inserted.
The user has the possibility to navigate between this two pages using the buttons
“<Back”, “Next>” and “Cancel” in order to compare the results of applying the
in-place or the not in-place quick fix. Finally, by pressing on the “Finish” button
the user accepts the selected quick fix, the patch will be written in the file and
the wizard will be stopped.

5 Implementation

We have integrated our bug fixing tool into our existing Static Analysis Engine
(SAE) [13] which is developed as an Eclipse IDE plug-in. We implemented a
refactoring wizard based on the Eclipse Language Tool Kit (LTK), JFace and
CDT in order to introduce semi-automatically the generated bug patches into
the buggy program. Our bug patching technique is composed of two steps. First,
the bug detection analysis is performed. If the bug is detected then this will
be marked with a marker. Second, the bug fixing algorithm starts to search
backwards on the buggy path until it detects a first not “in-place” location. If
such a bug fix location is found then our tool marks visually the location in code
with another marker. The backward searching algorithm can be easily updated
in order to accommodate the suggestion of multiple quick fixing locations which
can be addressed with other techniques than input saturation.

6 Evaluation

6.1 Methodology

We ran our refactoring generation tool on each of the programs and generated
two types of patches used for fully automatically fixing the detected bugs. We
used our previously developed buffer overflow checker for bug detection and
classification. The time needed to generate the patches and the total time needed
to run the bug detection were measured in milliseconds and then converted to
seconds [s]. We used as test system an 64-bit Linux kernel 3.13.0-32.57, Intel
i5-3230 CPU @ 2.60 GHz × 4. Note, that we replaced in the sound not “in-
place” quick fix depicted in Listing 1 the string “exit(EXIT FAILURE);” with
“data = 9;”, which is equivalent to “data = (bufferSize−1);” (bufferSize can have
different values for different program paths) in order to see if our apporach for
detecting affected paths works. Note, that by using the not “in-place” quick fix
depicted in Listing 1 (contains “exit(EXIT FAILURE);” instead of “data = 9;”)
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the program behavior is preserved w.r.t. program input which does not trigger
the bug. We evaluated our approach by addressing three research questions:

RQ1: What is the overall computational overhead of our tool? We
wanted to find out what was the overhead introduced by our patch generation
tool with respect to the bug detection time.

RQ2: Are the generated patches useful for bug fixing? We wanted to
find out if the final generated patches containing the values obtained from the
Z3 solver are useful for the bug fixing.

RQ3: Is the behaviour of the patched program preserved? We wanted
to find out if the generated patches change the program behaviour. Finally, we
addressed threats to validity of our approach.

6.2 RQ1: Performance of Our Tool

We addressed RQ1 by measuring the performance of our tool in terms of the
patch generation overhead compared with the bug detection time.

Figure 2(a) presents the results of running our tool on 19 memcpy programs
contained in CWE-121. The introduced overhead is calculated by comparing the
times represented with black bars (patch generation time) located on top of the
yellow bars (bug detection time). The total overhead of 1.97 % was obtained by
comparing the bug detection time, 21.030 [s] (21.454[s]−0.424[s]), and the patch
generation time, 0.424 [s], column 7 of Table 1.

Figure 2(b) contains the results obtained during patch generation for the 39
fgets programs contained in CWE-121. We used the same index enumeration
which was used in the open source Juliet test suite [27] in order to have a
clear mapping between analyzed programs and programs extracted from the
test suite. In comparison with the Fig. 2(a) we used in Fig. 2(b) a logarithmic

Table 1. Bug detection and patches generation results

Test #LOCS # Paths # Affected # Nodes # Not Patches Prevented

programs paths “in-place” generation [s]

locations

CWE-121

memcpy

1980 39 0 2918 18 0.424 �

CWE-121

fgets

8771 641 20 231337 38 0.755 �

Total 10751 680 20 234255 56 1.197 �

Table 2. Comparison of time cost between our system and GCC

Test programs Bug detection + GCC recompile Total [s] GCC compilation [s] Ratio

Patch generation [s] time [s]

CWE-121 memcpy 21.454 2.813 24.267 2.813 8.6x

CWE-121 fgets 178.276 6.713 184.989 6.713 27.5x

Total 199.730 9.526 209.256 9.526 36.1x
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(a)

 

(b)

Fig. 2. Quick fix generation for memcpy and fgets programs (Color figure online)

scale in order to make the results better readable. From Fig. 2(b) we observe
that the patch generation times indicated with black bars on top of the yellow
bars are considerably lower than the bug detection times indicated with yellow
bars. The total overhead of 0.4 % was obtained by comparing the bug detection
time, 17.7521 [s], (17.8276[s] − 0.755[s]) and the patch generation time (0.755
[s]) contained in column 7 of Table 1.

Fig. 3. Total overhead
(Color figure online)

The obtained results show that the patch genera-
tion time grows by a factor less than 2 (from 0.424 [s]
to 0.755[s]) if the number of execution paths increases
by a factor of 16.4x (641/39, see Table 1 3rd col-
umn) and the number of nodes by a factor of 79.2x
(231337/2918, see Table 1, 5th column). We demon-
strated that our approach is applicable to open source
C programs and the induced overhead is under 1 %.

Figure 3 presents the overall overhead with yellow
bars (the bug detection time) for the fgets and mem-
cpy programs. The black bars on top of the yellow bars
represent the overhead introduced by the patch gener-
ation algorithm for the fgets and memcpy programs.
The patch generation overhead is 1.197 [s] which rep-
resents 0.59 % from the bug detection time of 199.730 [s] indicated in column 7
of Table 1 and in column 2 of Table 2.

Table 2 shows that there is no compilation difference between the patched
programs and the un-patched programs. This is because our patches have a
small size and introduce no compilation overhead. We observed an overhead
decrease from 1.97 % (memcpy programs) to 0.4 % (fgets programs) for 79.27
times (231337/2918, see Table 1, 5’th column) more nodes and for 16.4 times
(641/39, see Table 1, 3’rd column) more paths. With regard to RQ1, the results
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confirm that the patch generation overhead is 0.59 % when compared to the bug
detection time.

6.3 RQ2: Usefulness of the Generated Fixes

We addressed RQ2 by considering following scenarios: First, the syntactical
correctness of our generated patches and if the code can be recompiled after
the patch was inserted. Second, if the bug patch was useful for removing the
detected bug. Third, the usefulness of the not “in-place” patch which is depicted
in Table 3, column 4. Table 3, column 2 shows if the resulted program after the
insertion of the “in-place” or the not “in-place” patches remained compilable.
Columns 3 and 4 depicted in Table 3 indicate if the bug was removed by inserting
the patch “in-place” (bug location) or at the not “in-place” location.

Table 3. Bug fixing results

Test programs Recompile “in-place” Fix Not “in-place” Fix

CWE-121 memcpy � � �
CWE-121 fgets � � �*

Table 3, column 3 shows that all the bug
could be removed by inserting the patch
at the place where the bug was detected.
Table 3, column 4 shows that all the bugs
were removed by inserting the patch at the
not “in-place” location except the ones indicated with �*. The notation “N (M)”
was used to denote the control flow variant “N” and the number of detected
affeted paths, “M” contained in the Juliet test case CWE 121 fgets [27]. In total
8 C programs: 42 (3), 45 (2), 61 (1), 63 (4), 64 (5), 66 (2), 67 (1), 68 (2) contained
20 ((3) + (2) + (1) + (4) + (5) + (2) + (1) + (2)) affected paths. An affected path
contained at least one usage of the constrained variable (e.g., “data”) in another
statement as the path was traversed in program execution order. Thus, the
program behavior can be in this way influenced by the set of values that the
constraint variable can take after it was constrained. Note, that this is not a
sufficient condition to guarantee soundness. Thus, the results presented in Table 3
confirm RQ2, that the generated bug patches were useful for removing the bugs.

6.4 RQ3: Program Behavior Preserved After Patch Insertion

Table 4. Programs behavior preserving
Test programs # Programs # IPrograms # IPaths % Ratio

CWE-121 memcpy 18 0 0 0
CWE-121 fgets 38 8 20 14.2

Total 56 8 20 14.2

We addressed RQ3 by checking
if the inserted patch at the not
“in-place” location influences other
existing program paths. The abbre-
viations in Table 4 mean: Total
number of programs containing influenciable paths (IPrograms), Influenciable
Paths (IPaths), % Ratio represents the ratio between the total number of pro-
grams to the total number of programs containing at least one influenced path.
Our Algorithm 1 visits not “in-place” candidate nodes in backward program exe-
cution manner in order to find bug fixing locations. Next, it checks if by patching
the found node contained in the affected path the behavior of the program will
change. If the algorithm finds an affected path then the not “in-place” quick fix
will be not generated since it could influence other variables contained in the
affected paths. We successfully avoided changing the behavior of all the analyzed
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programs by proposing the fix at the bug location which is indicated in column
3 of Table 3. For 14.2 % of the programs (56/8, # Programs/# IPrograms
presented in Table 4 in columns 2 and 3) we avoided changing the behaviour
by not proposing the not “in-place” quick fix. Thus, we can confirm that for
85.8 % (100% − 14.2%) of the analyzed programs the program behaviour did
not changed with regard to RQ3.

6.5 Threats to Validity

Internal Validity: In case we did not interpret the results of our execution
measurements right then the overhead of 0.59 % could not be achievable. To avoid
time measurement mistakes we carefully designed our time measuring mechanism
and measured for all the 58 programs three times. Some of the decisions we make
are static (select type of patch patterns for a bug type) and some are dynamic
(SMT constraint system solving). Thus, only the dynamic decisions can influence
the overhead introduced by our tool. We are aware that in case the bug checker
cannot detect or diagnose the bug type then our approach would suffer from
imprecision or does not work at all.

External Validity: We are aware that there are some threats which could hin-
der our approach from being generalizable for large programs. We think that our
patch generation approach can be generalized since we followed the basic auto-
matic program repair steps (failure detection, bug diagnosis, bug cause localiza-
tion and repair inference). We think that 0.59 % overall overhead is negligible
and by addressing other types of checks than input saturation or by using other
bug patterns no major time increase would be noticeable. Thus, programs con-
taining long execution paths would not increase the overhead significantly with
respect to the bug detection time.

7 Conclusion and Future Work

We presented a novel approach which can be used to automatically fix buffer
overflow bugs by generating bug patches using static execution and SMT solving.
Our automatically generated patches do not need any human refinement, are
compilable and can be semi-automatically inserted into buggy programs with
the help of our refactoring wizard. Our experimental results show that our tool
is efficient and successfully removed all bugs. We think that our approach can
be applied to high quality projects since the generated quick fixes remove the
bug and preserve program behavior.

We are confident to say that our approach can be applied in future in con-
junction with other types of bug checkers [14,15,26] which we developed.
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