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Abstract—Malicious software and especially botnets are
among the most important security threats in the Internet.
Thus, the accurate and timely detection of such threats is of
great importance. Detecting machines infected with malware by
identifying their malicious activities at the network level is an
appealing approach, due to the ease of deployment. Nowadays,
the most common communication channels used by attackers to
control the infected machines are based on the HTTP protocol.
To evade detection, HTTP-based malware adapt their behavior
to the communication patterns of the benign HTTP clients, such
as web browsers. This poses significant challenges to existing
detection approaches like signature-based and behavioral-based
detection systems.

In this paper, we propose BOTHOUND: a novel approach
to precisely detect HTTP-based malware at the network level.
The key idea is that implementations of the HTTP protocol by
different entities have small but perceivable differences. Building
on this observation, BOTHOUND automatically generates models
for malicious and benign requests and classifies at real time the
HTTP traffic of a monitored network. Our evaluation results
demonstrate that BOTHOUND outperforms prior work on identi-
fying HTTP-based botnets, being able to detect a large variety of
real-world HTTP-based malware, including advanced persistent
threats used in targeted attacks, with a very low percentage of
classification errors.

I. INTRODUCTION

Over the last decade, we have witnessed a tremendous
increase in the number of users connected to the Internet [17].
Simultaneously, the number of potential victims of malicious
software (malware) has significantly increased, as many users
run outdated or vulnerable software [20] and are susceptible to
attacks that may lead to a compromise of their devices. These
malware-infected devices, named bots, are typically organized
into botnets (i.e., networks of compromised computers) that are
remotely controlled by an entity, known as botmaster [1, 6].
Today, malware and botnets are the primary means for cyber-
criminals to carry out their nefarious tasks, such as send-
ing spam emails [19, 26, 32], launching distributed denial-of-
service (DDoS) attacks [10,22], spreading new malware [12],
generate revenue from online advertisements by performing
click-frauds [29], or stealing personal data like email accounts
and banking credentials [2]. To this end, bots establish a
Command and Control (C&C) channel that allows botmaster
to remotely control them and perpetrate criminal activities.
There is a large variety of network protocols that have been
used to implement the C&C channel ranging from IRC and
HTTP [1, 6] to peer-to-peer (P2P) [7, 13] for a decentralized
C&C structure.

Recently, numerous techniques have been proposed to
detect botnets at the network level. Many detection systems
focus on the transferred information during clients’ infections.
These systems can automatically generate [21, 23, 28] and
match [24, 27] signatures on packet’s payload. Others, like
BotHunter [15], can recognize the information flow of the
initial event sequence during a compromise. Although these
approaches may detect infections at the first place, existing
malware on compromised machines will probably not be
detected. Other detection approaches correlate the behavior of
hosts in the monitored network to unveil compromised clients
and C&C servers [11, 14]. These approaches are typically
protocol agnostic, but they are not effective on detecting
a small number of infected machines within a monitored
network, and may lead to a large number of false positive
alerts. Furthermore, bots often change their behavior to be
more effective and avoid detection, e.g., by emulating the
behavior of benign programs. Also, most bots try to stay
hidden and accomplish their tasks in a stealthy way, leaving
the user unaware of an infection. These facts pose significant
challenges to existing detection systems.

Nowadays, C&C channels and common types of malware,
such as adware, trojans, and backdoors leverage HTTP pro-
tocol due to its large popularity [18, 19]. Consequently, the
malicious traffic can blend with benign traffic and remain
undetected. Existing signature-based detection systems cannot
accurately distinguish between malicious and benign clients, as
their resulting HTTP traffic may look alike. The main reason
for this weakness is that the generic signature language used by
these systems lacks higher-level information specific for HTTP,
which could be used to identify the network traffic produced by
HTTP-based malware. Additionally, existing behavioral-based
detection systems may not be able to identify the set of infected
hosts, as their network behavior can be adapted to the usual
behavior of benign hosts when accessing the web.

To address the above issues, we propose BOTHOUND: a
framework for network-level detection of malware that lever-
age the HTTP protocol as the main channel to communicate
with the C&C server or to perpetrate nefarious activities. In
contrast to previous works, BOTHOUND focuses on the HTTP
requests used by both malware and benign web clients. The
basic insight is the fact that two implementations of the HTTP
protocol will slightly differ: empirical analysis results indicate
that HTTP-relavent behavior differs due to the ambiguousness
of the protocol and the respective quality of the implemen-
tation. To achieve accurate malware detection at the HTTP
level, we define two new models: header chains and HTTP



templates, which can identify such implementation differences
on the communication messages sent by malware and benign
clients. Header chains analyze the sequence of HTTP headers
sent in a request to detect a suspicious header order, while
HTTP templates represent a generalized form of the HTTP
headers name-value pairs generated by malware requests.

BOTHOUND can accurately classify the HTTP communica-
tions captured in a monitored network as benign or malicious,
by comparing them against models of benign and malicious
traffic. In particular, our framework automatically generates
header chains for both benign and malicious HTTP requests,
and HTTP templates for malicious requests sent by malware.
Note that a captured HTTP request may match both benign and
malicious header chains. Then, the HTTP templates matching
define the classification. While header chains can classify
rapidly the benign traffic, HTTP templates provide increased
accuracy for the detection of malicious traffic, resulting in
both high detection speed and accuracy. In case that no header
chains or no HTTP templates match with a captured request,
BOTHOUND will classify this request as suspicious. These
suspicious requests are reported for further investigation. In
general, BOTHOUND is less resource intensive, and thus faster,
compared to existing Intrusion Detection Systems (IDS) that
need to apply heavy pattern matching to all HTTP requests.

To demonstrate the practical feasibility of our approach,
we present the design, prototype implementation, and exper-
imental evaluation of BOTHOUND using real-world malware
samples and a broad range of benign HTTP clients. We also
deploy BOTHOUND in an operational network that counts tens
of thousands different machines and generates several million
HTTP requests on a daily basis and report our findings. Our
results show that BOTHOUND detects practically all the HTTP
requests sent by malware (99.97%) with a very low percentage
of classification errors for the benign traffic (0.04%). In
real-world deployment, BOTHOUND detected several malware
instances from known malware families. Also, we demonstrate
that our system is able to detect advanced persistent threats
(APTs) such as Duqu or Miniduke used in targeted attacks.

In summary, we make the following main contributions:

• We propose a new approach to distinguish the network
traffic generated by HTTP-based bots and malware
from benign HTTP traffic. In contrast to previous
detection techniques, our approach focuses on the
different implementations of the HTTP protocol.

• We introduce two models that describe malicious
and benign HTTP requests: header chains and HTTP
templates. These models focus on particular character-
istics, such as HTTP headers’ sequence and structure,
which reveal concrete discrepancies between benign
and malicious requests.

• To assess the feasibility of our approach, we imple-
mented and evaluated BOTHOUND. Our experimental
results demonstrate that BOTHOUND is able to cor-
rectly identify the network traffic generated by HTTP-
based malware in a real-world scenario with very low
classification errors and high performance.

II. DETECTION APPROACH

A. Threat Model

In this work we want to detect HTTP-based malware at
the network level. The detection system captures and ana-
lyzes HTTP traffic of a monitored network, aiming to detect
HTTP connections originated by malware, and associate these
connections with the respective malware-infected hosts. As
HTTP-based malware we consider all the malware instances
that use HTTP as C&C channel to communicate with their
botmasters, as well as all the malware instances that perform
their malicious activities over HTTP.

B. HTTP-level Detection

Our approach identifies groups of malware that interact
with the web using common HTTP protocol implementations.
Thus, we first learn the specific aspects of this particular im-
plementation, and then use these insights to detect the presence
of compromised machines in a monitored network. To achieve
this goal, we analyze the sequence of the HTTP headers within
each request and generate unique models (header chains) for
every malware family. Since malware instances often attempt
to disguise themselves as legitimate clients, we also construct
distinctive templates that focus on specific patterns of the
HTTP header values (HTTP templates). In the rest of this
section, we describe the two strategies in detail.

C. Header Chains

To achieve reliable communication between a client and a
server, both hosts need to “speak” the same protocol, (i.e.,
HTTP in our case). Note that the implementation of this
protocol is not subject to strict rules, but a certain amount
of freedom is granted and should be tolerated by both par-
ties. Apart from the Request-Line, which includes the HTTP
method, the identifier of the resource, and the protocol version,
all the other headers can be omitted or provided in any
sequence. As a matter of fact, legitimate and widely used web
clients implement the HTTP protocol in slightly different ways.
We expect that malicious requests will also slightly deviate
from each other and from legitimate requests, as the malware
authors have custom implementations of the HTTP protocol.
This enables us to spot the small differences in the header
order or in the individual headers, which results in a robust
way to detect suspicious HTTP requests at the network level.

For this distinction, we model each client-specific imple-
mentation of the HTTP protocol. Thus, we need a set of HTTP
requests generated by a web client when it performs a series of
different tasks. Interestingly, the same client contains or omits
HTTP headers depending on the assignment it accomplishes.
For example, the header order can change after a user has
performed a login at a website or new headers are added in
case a web application sets a cookie. As a result, we need to
model different header orders for a given web browser.

To represent the headers’ order of an HTTP request, we
define a header chain as a vector

−→
H = (h1, h2, ..., hn) with

header names as elements. For each HTTP request of a known
client C, we create and store a pair (

−→
H,C) of the request’s

header chain
−→
H and the client’s name C. To identify the

unknown client that is responsible for an observed request,



we form its chain U−→
H

and compare all our labeled header
chains

−→
H with the unlabeled chain U−→

H
. If we find that a chain

−→
H is equal to the observed chain U−→

H
, we assume that the

corresponding client C generated the new request.

It is possible that either no header chain matches or header
chains from more than one clients match at the same time.
Thus, we use header chains only as a first step of detection. If
there is no match with a header chain, the request is classified
as suspicious. If the request matches only with header chains
of benign clients, it is classified as benign. Else, it is classified
as possibly malicious and forwarded to the next phase.

D. HTTP Templates

In some cases, header chains may not be able to distinguish
between two different clients, because they may produce iden-
tical vectors. This may happen if a malware sample attempts
to use or spoof a legitimate web browser to send malicious re-
quests, in exactly the same sequence as the legitimate browser.
In this case, the header chains produced by malware and this
browser will be identical.

To overcome this obstacle, we examine the name-value
pairs of the HTTP headers (i.e., the whole requests) to detect
similarities with malicious requests. During our experiments
we found that the value of the User-Agent request header
field can be used to identify some of these attempts. This
field contains information about the user agent generating the
request, and often contains subtle differences that enable us
to detect suspicious requests. This header and the respective
client’s header chain can identify all the legitimate web clients.
On the other hand, our experimental results show that malware
that try to impersonate a legitimate web client usually change
only the content of the User-Agent header, but they rarely
change the headers’ sequences. Thus, BOTHOUND is able to
detect these malware instances. For example, we analyzed the
binary of the Skynet malware (a Tor-powered trojan) and found
that it contains 57 different hard-coded User-Agent header
values, while the headers sequences always remain the same.

However, there are malware samples that produce requests
where the User-Agent field corresponds to legitimate clients,
and thus the header chains are insufficient. To address these
issues, we introduce HTTP templates, in which we perform
a full protocol parsing and clustering of the headers found in
malicious requests. More precisely, we examine all the requests
matching header chains of malicious traffic, or both malicious
and benign, by extracting their HTTP templates and comparing
them with the HTTP templates of malicious requests.

The template extraction mechanism works as follows.
Initially, we distinguish between the headers’ names and their
values, and extract the latter for further analysis. Next, we
analyze the extracted values and categorize them into bigger
groups: IP addresses, port numbers, version numbers, and
Base-64 encoding. Additionally, specific filetypes such as exe,
bin, jpg, etc., are identified and generalized into clusters. For
the remaining values we generate regular expression patterns.
These regular expressions (we refer to them as tokens) can be
(i) alphanumeric characters, (ii) hexadecimal digits, (iii) nu-
merical digits, (iv) punctuation characters, or (v) whitespace
characters. Finally, the generated tokens are combined with
their header names to produce a new template.

When a possibly malicious request requires a deeper
analysis, its template UT is extracted and compared with
the existing malicious HTTP templates T to determine if
there is a match. Initially, we consider only a partial match
between the request’s template UT and a template T . Given
that many malware may dynamically change or generate the
URL requested [3] a partial similarity is justified. Thus, we
exclude the Host and Request-Line header values from the
template comparison, as these values compose the URL.

If we find a partial match with at least one existing
template T , we investigate the previously dismissed values.
We use URL signatures to measure the similarity between
two URLs using heuristics such as the length of the URL
and the number of parameters it contains. In particular, we
compare the observed URL RU with each URL RT contained
in the partially matched templates and we measure: (i) the
normalized Levenshtein distance between the first parts of
the URLs that include path and page name, (ii) the Jaccard
distance between the sets of parameter names, and (iii) the
normalized Levenshtein distance between strings obtained by
concatenating the parameter values. When the overall weighted
average distance between the observed URL RU and at least
one of the URLs RT from the partially matched HTTP
templates of malicious requests is less than a specific threshold
(see Section IV-C), the request is classified as malicious.

The HTTP templates are complementary to the header
chains, and they do not replace them. While header chains
offer a quick solution to filter benign traffic and focus only
on possibly malicious requests, the templates increase the
detection accuracy and raise alarms when it comes to real
threats. For this reason, we use header chains as a pre-filtering
stage for speed: when there is no match with malware’s header
chains, there will be no match with HTTP templates as well, so
there is no need to continue with the computationally expensive
template processing. Thus, the combination of header chains
and HTTP templates create a fast and accurate detection model.

III. SYSTEM DESIGN

In this section, we describe the implementation of our
approach. Our prototype implementation, called BOTHOUND
and operates in two phases: a training phase where it learns
the deviations in the implementation of the HTTP protocol by
different web clients and malware and uses these details to
automatically generate models, and a detection phase where
it examines whether the captured HTTP traffic matches with
the models of benign or malicious traffic. The core of the
BOTHOUND architecture consists of three main components:
(i) HTTP Pool, (ii) Learner, and (iii) Decision Maker. The
HTTP Pool and Learner operate during the training phase,
while the Decision Maker runs during the detection phase.

A. HTTP Pool

The HTTP Pool is a collection of Virtual Machines,
each of which runs a different HTTP client. Clients are
legitimate web browsers, crawlers, web libraries, and HTTP-
based malware. We support four different operating systems
(Windows, Mac OS X, Linux, and FreeBSD), and we use 21
distinct legitimate clients.The web clients are used with both
vanilla and customized configurations: we have installed the



top ten most popular client extensions for the web browsers
to also record differences based on such additions to a stock
configuration. Furthermore, we capture traffic from mobile
devices running iOS, Android, Symbian, and Windows 8 to
also cover legitimate traffic generated by such mobile devices.
To generate realistic HTTP traffic, each client visits the top
1, 000 most popular web sites based on alexa.com with a crawl
depth of one. Additionally, to collect further benign data, we
use a variety of software that leverage HTTP (web radio music
player, HTTP-based video streaming, web stores like iTunes,
Linux update processes, programs that update through HTTP,
etc.). Finally, we use traffic generated from native operating
system libraries, such as WinHTTP, WinInet, UrlMon, and
libcurl.

Our dataset contains distinct malware samples as well.
These malicious samples are collected in the wild through
various malware collection and analysis platforms (such as
Anubis [4], CWSandbox [31], and Cuckoo Sandbox [8]).
All these binaries have been checked with virustotal.com to
verify that they are indeed malicious. Previous studies have
shown that malware, and especially botnets, switch controllers
or download updates frequently (e.g., every two or three
days [11]). In some cases, this timeframe is even smaller.
Hence, all samples are repeatedly executed in our controlled
environment to capture a diverse set of traffic traces.

To protect the outside world from malicious behaviors
performed by malware binaries executed at the HTTP Pool,
we use a firewall between the HTTP Pool and the Internet
that restricts their malicious network traffic. We need to allow
the network communication between malware and their C&C
server (i.e., to receive updates and commands), but we want to
limit their actual malicious activities. Thus, although the VMs
have full network access, we throttle their bandwidth and block
malicious connections through restrict firewall rules.

Although current botnet C&C communications tend to be
unencrypted [16], some bots use HTTPS as their communi-
cation protocol to evade existing detection mechanisms. This
problem can be solved by introducing an SSL Man-in-the-
Middle (MiTM) proxy between the HTTP Pool and the actual
network [5]. Nevertheless, such an approach is outside the
scope of this paper.

B. Learner

The network traffic generated at HTTP Pool is forwarded
and analyzed at Learner. Additionally, any other network traces
captured by other sources can be fed into and analyzed by this
component as well. Learner initially filters the irrelevant traffic
to improve its efficiency, and extracts only the HTTP requests
omitting any other types of traffic. Next, it analyzes all the
HTTP requests and creates a header chain for each one. As
we mentioned earlier, each client can contain more than one
header chains. Moreover, for each chain it is possible that the
Learner will correlate a set of different clients. In addition,
Learner is responsible for the creation of the HTTP templates
when the traffic is originated from malware samples. To create
an HTTP template, the header names are extracted from the
HTTP request and the HTTP header values are processed to
create specific clusters or regular expression pattern lists. The
names and pattern lists are combined to form a template for
an HTTP request of a malware sample.

Learner stores each HTTP template together with the name
of the responsible malware instance using a hashtable with
linked lists to resolve collisions. As we keep track of the traffic
generated by each malware instance, we are able to find the
name of the malware that is responsible for each template.
Due to the partial matching that is performed on templates, we
apply a hash function only to the part of the template where
an exact match is required. We use this hash value to insert
and lookup templates in the hashtable very fast, and we store
at each node the template together with malware names. As
we have a part of the template, we may have more than one
templates and malware names stored at a single node.

C. Decision Maker

The Decision Maker inspects the network traffic at real
time and decides whether an HTTP connection is originated by
malware or by legitimate web client. To this end, it extracts the
HTTP requests, and for each request it creates the respective
header chain. This chain is then compared with the entire
header chains, generated at the training phase by the Learner.
Instead of actually comparing the chain with every one of
these header chains, it computes its hash value and performs a
single lookup operation on the header chains hashtable, which
reduces the searching time. If there is a match, the lookup
will return a node with the set of clients that have a chain
matching. In case of no match, the request is immediately
classified as suspicious. Otherwise, if it matches only header
chains of benign web clients, the request is classified as benign.
Finally, if it matches only with header chains of malware, or
with both benign and malicious clients, the request is labeled
as possibly malicious and it is further inspected.

Regarding the HTTP requests that match with header
chains from malware instances, we classify them as possibly
malicious requests and we rely on the HTTP templates for the
final decision. The classification works as follows. First, the
Decision Maker computes the HTTP template of the request.
Then, this template is compared with the HTTP templates
produced during the training phase by malware-generated
requests to obtain a partial match. As noted above, we compute
the hash value only on the part of the template that an exact
match is required (i.e., excluding the headers that should not
completely match) to perform an efficient comparison for
the partial match. A successful partial match increases the
accuracy of the detection approach. In case we find at least one
template with a partial match, we apply the URL signatures and
attempt a full template match. The Request-Line and the Host
values of the new request are compared against the respective
values of the templates that were partially matched.

In case the Decision Maker finds a match with at least
one template, the inspected request is classified as malicious.
If there is no match, then it is classified as suspicious and
further investigation with other tools is suggested. There is one
case that a request will be classified as benign at the HTTP
templates matching stage: if (i) the request matches with both
benign and malicious clients, (ii) it does not match with any
template, and (iii) the User-Agent header value accords with
a legitimate client that is correlated with the request’s chain.
The last requirement ensures that the client reported at the
User-Agent is the same with a client that corresponds with the
request’s chain, i.e., there is no mimicry attack.
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Figure 1. Number of the generated header chains for different versions of
Firefox as a function of number of the visited URLs.

IV. EVALUATION

In this section we evaluate the effectiveness of BOTHOUND.
First, we describe the ground truth we used during our experi-
ments and then evaluate the accuracy of BOTHOUND both with
artificially created data and with real-world network traffic.

A. Establishing the Ground Truth

We created two datasets of HTTP traffic for which the
ground truth has been validated, resulting in a malicious and
a benign dataset. Initially, we executed at the HTTP Pool 813
malware samples, which belong to 24 malware families (e.g.,
Sality, ZeuS, Pushdo, SpyEye, etc.). From this process we
collected more than 40, 000 HTTP requests, which form the
malicious dataset. For the benign dataset, we used popular
web clients and crawled the top 1, 000 domains according
to alexa.com with a crawl depth equal to one. This process
generated more than 7, 000, 000 HTTP requests.

B. Model Generation in Various Web Clients

We noticed small variations in the header chains generated
for different versions of the same client. To find the optimal
number of URLs we should visit with a new client version to
get all its possible header chains, we visited the top 10, 000
web sites listed by alexa.com with different versions of the
Firefox web browser. Figure 1 shows the number of extracted
header chains for 12 different versions of Firefox as a function
of the number of visited URLs. We see that after a certain
amount of URLs (less than 900) the number of generated
header chains does not increase anymore. We observed similar
results for the other web clients. Consequently, we conclude
that after visiting the top 1, 000 URLs, all the possible header
chains of a web client will have been generated.

Table I depicts examples of the number of header chains
and HTTP templates generated by BOTHOUND for different
web clients. We observe that BOTHOUND generates 527 header
chains in total for all Firefox versions, while for each single
version it produced approximately 120 chains. This implies
that although a significant number of chains are identical
among the different versions, different chains also exist. Addi-
tionally, we see that the number of header chains for malicious
clients is significantly smaller compared to legitimate clients,
presumably because their protocol implementation is not as
complex as of benign clients. Moreover, we observe that the
number of generated templates is slightly higher than the
number of the header chains for a given malware family.

Table I. EXAMPLES FOR THE NUMBER OF HEADER CHAINS AND HTTP
TEMPLATES GENERATED FOR LEGITIMATE AND MALICIOUS WEB CLIENTS.

Web client # Header Chains # HTTP Templates

B
en

ig
n

Mozilla Firefox 527 7
Google Chrome 249 7
Internet Explorer 470 7
Opera 171 7
Safari 143 7

M
al

ic
io

us

Jorik 21 30
Sality 4 14
Sofilblock 13 17
ZeroAccess 10 40
ZeuS 17 26

Table II. DETECTION RESULTS FOR BENIGN AND MALICIOUS
DATASETS AS A FUNCTION OF DIFFERENT THRESHOLD VALUES.

Threshold False Positives False Negatives

8 0.04% 0.06%
9 0.04% 0.05%
10 0.04% 0.03%
11 0.05% 0.03%
12 0.07% 0.03%

C. Detection Accuracy

To evaluate the detection accuracy of BOTHOUND, we used
a ten–fold cross validation for both benign and malicious
datasets. Initially, we divided all the HTTP requests gener-
ated by each single benign web client into ten folds. Each
disjoint fold contained approximately 700, 000 HTTP requests
generated by all the benign clients. Regarding the malicious
dataset, we first divided the malware instances belonging to a
single malware family evenly into each fold. This way, each
fold contained malware instances from all the 24 malware
families. Then, we assigned the requests of each instance into
the corresponding fold. As a result, each fold included around
4, 000 requests generated by malware instances. Finally, for
both datasets we used 9 of these folds as training input for
BOTHOUND, and we used the remaining fold to evaluate the
classification accuracy. We repeated the above procedure ten
times, each time with a different fold as evaluation input.

In our first experiment, we varied the threshold used by
BOTHOUND for a full template matching to find its optimal
value that minimizes both false positives and negatives. As
false positives we consider the HTTP requests in the benign
dataset that are classified as malicious or suspicious. Similarly,
the false negative rate is the percentage of HTTP requests
in the malicious dataset that are not classified as malicious.
Table II shows the false positives and false negatives rates
as a function of the threshold. We see that the optimal value
for the threshold is 10. While smaller values increase the false
negatives, larger values lead to a higher number of false alarms.
Moreover, we see that BOTHOUND with this threshold is able
to detect 99.97% of the HTTP requests generated by malware
with a very good accuracy, i.e., with a false positive rate of
just 0.04%. Consequently, the rest of the experiments were
performed using this threshold value.

To assess the classification accuracy of the three different
algorithms used by BOTHOUND, we applied them separately to
the datasets and we measured their classification errors. First,
we evaluated the URL signatures, then the header chains as a
single detection approach, and finally the complete BOTHOUND



Table III. CLASSIFICATION RESULTS OF DIFFERENT APPROACHES.

URL signatures Header Chains BOTHOUND

False Positives 6.53% 0.49% 0.04%
False Negatives 0.04% 0.03% 0.03%

approach, which combines header chains, HTTP templates,
and URL signatures. Table III shows the classification results
of each approach. We see that BOTHOUND achieves signifi-
cantly more accurate classification results compared to URL
signatures approach, which exhibits a 6.53% false positive
rate. Even BOTHOUND only with header chains outperforms
URL signatures with a false positive rate of just 0.49%. We
also observe that when HTTP templates are used in conjunc-
tion with header chains to improve detection, the percentage
of false positives drops to 0.04%. In summary, BOTHOUND
demonstrates high accuracy in the detection of malware and
improves the state-of-the-art URL signature approaches.

D. Popular Malware Families

In this experiment we explore BOTHOUND capability to
detect malicious traffic with and without prior knowledge of
a malware family. To this end, we trained BOTHOUND with
the whole benign dataset and with a portion of the malicious
dataset that contains traffic only by six malware families. Then,
we evaluated our approach by generating traffic from more
malware families: from the six families that were included in
our training datasets, and from five more families for which
BOTHOUND was not trained. The results revealed that all the
requests coming from malware families that were included in
the training phase were correctly classified as malicious. On
the other hand, the requests coming from the remaining fami-
lies were classified as suspicious, i.e., BOTHOUND was able to
successfully identify their respective requests as not originating
from legitimate HTTP clients. We observed the same results
for the other malware families as well. Hence, BOTHOUND is
capable to accurately identify the traffic generated by malware
families for which one or more samples are contained in the
training datasets. Regarding the unknown malware instances,
depending on BOTHOUND’s configuration, it can also trigger
alerts when the traffic is recognized as suspicious.

E. Real-World Deployment

To explore how BOTHOUND performs in a real-world
scenario, we evaluated it using network traffic captured at
the gateway of an operational network that counts tens of
thousands different machines and generates millions of HTTP
requests on daily basis. We trained BOTHOUND with the benign
and malicious datasets we described in Section IV-A, and
we used as test traffic three different datasets captured at
this network during three different time periods. All the IP
addresses in these datasets are stripped, but we can find the
domain name of each web server from the Host header field of
the respective HTTP request. Note that in some cases, malware
may send an HTTP request to a different destination than the
one displayed in the Host field, in order to evade detection.
Since the actual IP addresses in our datasets are stripped, we
validated the domains found in the Host field of HTTP requests
classified as malicious against 30 known blacklists.

Table IV. CLASSIFICATION RESULTS OF BOTHOUND FOR THREE
REAL-WORLD TRAFFIC DATASETS.

1st dataset 2nd dataset 3rd dataset

Benign 96.82% 99.31% 99.23%
Malicious 0.32% 0.22% 0.25%
Suspicious 2.86% 0.47% 0.52%

We evaluated BOTHOUND with the three datasets as fol-
lows. Initially, BOTHOUND inspected the 1st dataset. After
retrieving the classification results, we investigated the suspi-
cious traffic looking for groups of similar header chains. Once
we found clusters of header chains, we added the missing web
clients in HTTP Pool. Then, we evaluated the two remain-
ing datasets against the data-enriched BOTHOUND. Table IV
presents the classification results for the three separate datasets.
Regarding the malicious traffic, we see very close results
in all datasets: the malicious HTTP connections detected by
BOTHOUND range from 0.22% to 0.32% among the different
datasets. We see a higher percentage of suspicious requests
in the 1st dataset (2.86%), which is reduced in the next two
datasets to 0.47% and 0.52%, respectively, due to the addition
of the benign clients found in 1st dataset into the training set.

Obtaining ground truth for real-world data is difficult;
especially when it contains tens of millions HTTP requests.
To overcome this obstacle, we analyzed the requests classified
by BOTHOUND as malicious and suspicious. To identify the
domain name of the web server of each request, we examined
the request’s Host field. BOTHOUND classified 718 of the
domains in our datasets as malicious. To analyze the extracted
domains from malicious requests, we validated them against
30 blacklists. The blacklists classified 536 of these domains as
malicious (74.7%). After one week we repeated the experiment
and the blacklists classified 59 additional domains as malicious
(82.9%). Then, we manually analyzed the 123 remaining
domains. The 29 of them contained IP addresses in the Host
field. When we tried to access them, all these IP addresses were
unreachable. All the remaining 94 domains could be found in
the alexa.com 100, 000 most visited web sites.

After reconstructing the full URL path, we noticed that in
17 of these domains the requested URLs did not exist. The traf-
fic destined to the remaining 77 domains appeared legitimate
with a first look. Interestingly, however, the header chains of
the requests destined to these domains did not match with the
header chains of the web client found in the respective User-
Agent field; but they matched with header chains of existing
malware families. A possible explanation of this finding is that
many malware instances put a popular legitimate domain in the
Host field, and send benign HTTP requests as noise traffic in
order to confuse detection systems. Indeed, we found some
malware instances in our dataset that used popular domain
names in the Host field of the requests, while the requests
were actually destined to different sites. We do not consider
the classification of such noise requests generated by malware
as false positives, because they can be used to identify malware
and compromised machines, which send noise requests with
the HTTP implementation that matches the header chains and
HTTP templates of known malware. Thus, not only the noise
is not useful for the malware, but also it turns out that it may
help BOTHOUND to detect traffic generated by malware and
pinpoint compromised machines.



Next, we examined the HTTP requests that were classified
as suspicious. After a deeper insight on the data, we found that
a large number of crawlers, which compose the 63.8% of the
suspicious requests, were actively attempting to mimic the be-
havior of legitimate web browsers. Although they had changed
their User-Agent headers using strings from real browsers,
they had not changed their HTTP headers sequences. Thus,
the header chains identified this discrepancy. The remaining
36.2% of the suspicious HTTP requests were originated either
by malware that sent legitimate requests to blend malicious
with benign traffic, or by versions of legitimate browsers we
had not included in our training dataset.

F. Advanced Persistent Threats

In our next set of experiments, we tested BOTHOUND’s
detection capabilities when it inspects the traffic generated by
advanced malware samples used in targeted attacks (e.g., Duqu
and Miniduke). We did not expect BOTHOUND to classify the
attack traffic of this evaluation dataset as malicious, because
we had not previously trained it with the respective malware
samples. However, it classified the HTTP requests generated by
these samples as suspicious, because they did not match with
any of the header chains of a legitimate web client. Thus,
BOTHOUND provides a clear indication of malicious traffic
even for such unknown threats, while the large majority of
the benign traffic can be identified.

Then, we trained BOTHOUND with the HTTP requests
of these malware samples to generate new header chains
and HTTP templates. As expected, BOTHOUND with the new
models was able to successfully detect the traffic produced
by these malware. To examine whether BOTHOUND produces
false positives with the new models, we evaluated it with the
real-world traffic datasets we used in Section IV-E. We already
knew that the requests from these malware were not contained
in these datasets. Indeed, when BOTHOUND was trained with
the new malware samples, it did not report any malicious
requests by them in the real-world datasets.

V. DISCUSSION

A. Cloaking

A commonly used evasion attempt is performed when a
malware injects noise into its traffic. This noise can be benign
HTTP requests to cloak the real C&C communication channel,
or malicious requests to benign domains to confuse a signature
generation system. In Section IV-E we found that noise traffic
generated by malware may actually help BOTHOUND to detect
the malware-infected machines. However, when BOTHOUND
uses such requests as a training dataset, it risks to also classify
benign requests and domains as malicious or suspicious, result-
ing in classification errors. Indeed, in our experimental evalu-
ation we observed that some malware try to blend malicious
with benign traffic. These mislabeled data were responsible
for a fraction of the suspicious requests we mentioned in
Section IV-E. In case a malware uses its own implementation
of the HTTP protocol, and it does not perfectly correspond
with a legitimate client, the malware can be detected by
BOTHOUND even if it produces noise. However, if the malware
uses a perfect implementation of a web browser’s HTTP
usage and sends noise over it, then we need more advanced
behavioral-based algorithms for more accurate detection.

Unfortunately, the assurance that a dataset contains only
benign or only malicious samples is an open problem to
community, and most of the times requires manual efforts to
correctly label the training data. BOTHOUND can address this
issue by introducing a pre-filtering mechanism in malware-
generated traffic during the training phase, by filtering out the
traffic that is not actually related to malicious activities [18].

B. Randomness

Attackers may also try to evade detection by having no con-
stant patterns in their HTTP requests. For example, each new
request could look completely, or partially, different from the
previous requests. Such an attack could bypass our detection
mechanisms, a limitation we share with other signature-based
detection approaches. However, all the possible combinations
follow a deterministic model. Thus, we believe that if we
execute the malware samples in HTTP Pool for a long period,
all the possible combinations will be revealed at the end.

VI. RELATED WORK

Network-level intrusion detection systems utilize signatures
to detect malicious traffic [24, 27]. A common practice is to
generate signatures for detecting malware that use network
protocols for their activities [28]. To encounter polymorphic
malware, disjoint signatures are generated to find substrings
that are unique even in polymorphic payloads [21, 23]. Such
detection systems may not be able to accurately distinguish the
traffic of benign clients from the traffic of malware that mimic
the behavior of these clients, as these systems do not specialize
in the implementation details of HTTP. In contrast, BOTHOUND
utilizes the header sequence and HTTP request structure to
give more insights into the HTTP protocol implementation
differences and thus, the false positive ratio remains low.

On the other hand, several botnet detection systems focus
on network flow analysis [9, 14] or require deep packet in-
spection [15] to detect compromised machines within a local
network. Other detection approaches aim to identify common
spatio-temporal behaviors of bots when performing malicious
activities [11, 14]. Such approaches are less effective when
malware generates only a small fraction of the overall traffic
and hides its malicious activities and C&C communication
in benign-looking traffic (e.g., HTTP requests). In contrast,
BOTHOUND aims to detect slight differences in the HTTP
protocol when implemented by malware and benign clients.

Perdisci et al. [25] propose a system that focuses on
the network-level behavior of HTTP-based malware to find
similarities and generate signatures for malware clusters.
BOTHOUND improves the accuracy of URL signatures pro-
posed in this work by working on the HTTP request headers,
instead of the complete HTTP content, which reduces the
amount of data that need to be processed and results in in-
creased processing throughput compared to content processing.

Template approaches have been applied in spam mitigation
and such methods are closely related to our work. Botnet
Judo [26] generates SMTP templates by monitoring spamming
botnets in a controlled environment, and uses these templates
to perform real-time spam filtering at the network-level. Sim-
ilarly, we apply a generalized template-based detection to the
HTTP protocol, using templates to model malicious requests.



Additionally, BOTHOUND leverages header chains as a first
step to reduce the amount of requests that need to be analyzed
with templates, increasing significantly the detection speed.

Stringhini et al. [30] introduce a spam detection system
based on the insight that email clients and spamming bots
implement the SMTP protocol in different ways. Their system
automatically learns the different SMTP dialects of benign
clients and bots, and uses them for identification. We apply a
similar approach for HTTP-based malware detection, aiming
to identify small but clear differences in the HTTP protocol
implementation between benign clients and malware.

VII. CONCLUSIONS

In this paper we presented BOTHOUND, a network-level
detection framework that focuses on HTTP-based malware and
detects malicious HTTP traffic. The key idea of BOTHOUND is
to identify slight deviations between different HTTP protocol
implementations. BOTHOUND automatically generates models,
which can accurately classify benign and malicious HTTP con-
nections. We deployed BOTHOUND in an operational network
verifying that it is able to detect a large variety of real-world
malware, including advanced persistent threats used in targeted
attacks, with very low false positive rate. We also found that
BOTHOUND was able to early detect malicious domains before
various popular blacklists publish them. Finally, we demon-
strated the improved accuracy of our approach by comparing it
with existing state-of-the-art approaches like URL signatures.
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