
Bridging the Semantic Gap Through Static Code Analysis

Christian Schneider Jonas Pfoh Claudia Eckert
Department of Computer Science
Technische Universität München

Munich, Germany
{schneidc,pfoh,eckertc}@in.tum.de

ABSTRACT
The semantic gap is a challenge inherent in all applications
of virtual machine introspection (VMI). It describes the dis-
connect between the low-level state that the hypervisor has
access to and its semantics within the guest. A common
approach to bridge this gap is to utilize the debugging sym-
bols of an inspected operating system kernel, although it is
well understood that this information does not reflect the
dynamic pointer manipulations that an operating system
kernel performs at runtime.

In this work, we describe an analysis technique for cap-
turing dynamic pointer manipulations and type casts in C
code. Our approach analyzes the unmodified kernel source
code to establish used-as relations between pointer types
and to extract the arithmetic that is performed to transform
a source pointer to a target address. We have implemented
this technique in our VMI tool InSight for Linux to augment
the type information retrieved from the debugging symbols.
With this extended type information, our tool is able to cope
with runtime pointer manipulations performed by the Linux
kernel in a completely automated fashion and greatly eases
the development of new VMI applications.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive Software

General Terms
Security, Forensics

Keywords
Virtualization, Introspection, Digital Forensics, Intrusion
Detection, Security

1. INTRODUCTION
When inspecting a virtual machine (VM) from the van-

tage point of the hypervisor, the entirety of the VM state

Copyright ACM, 2012. This is the author’s version of this work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2012 Eu-
ropean Workshop on System Security (EuroSec’12).

is accessible. However, the hypervisor is missing the needed
semantic information to properly interpret this state. This
inherent lack of semantic information in the hypervisor is
referred to as the semantic gap [4].

A VMI component that bridges the semantic gap by ap-
plying knowledge about the virtual hardware architecture or
the guest operating system (OS) generates a useful “view”
of the VM state that other VMI components can work with.
It is therefore referred to as a view generating component
(VGC) [11]. While building a VGC that uses the debugging
information for a kernel is fairly straight forward, such a
component is limited to finding statically typed objects. As
a consequence, it will fail to handle dynamic pointer manip-
ulations such as pointer arithmetic or type casts in a generic
way. If the source code of the running kernel is available,
which is the case for Linux, such dynamic behavior can be
captured when performing a static code analysis.

In this paper, we describe a novel approach for identifying
dynamic pointer manipulation in full C source code. We call
this method a used-as analysis. In contrast to a points-to
analysis [2, 8], it focuses on type usages instead of pointer
locations. The used-as analysis reveals usages of structure
or union fields and global variables in type contexts that
contradict their declared types. In addition, it allows one to
extract the pointer arithmetic that is performed to transform
a pointer value to a target address.

We have implemented this analysis technique as an ex-
tension to InSight, a versatile VGC for Linux guests [15], to
further improve its accuracy and coverage when reading ker-
nel objects from memory. In applying the used-as analysis
to the kernel sources, InSight establishes extended type rela-
tions and captures pointer arithmetic that the kernel would
perform at runtime. This information augments the kernel
debugging symbols InSight has been using so far and allows
it to build an extended type graph of kernel data structures.
With this extension, InSight is now able to automate the
retrieval of objects referenced by incorrectly typed pointers,
pointers stored as integer types, as well as generic point-
ers such as void*. In addition, InSight performs arithmetic
operations on the pointer value to mimic kernel “pointer
magic”, for example, adding a type dependent offset or ap-
plying a bit mask with logical operations.

In summary, this paper makes the following contributions:
First, we propose the used-as analysis for full C code in Sec-
tion 3, which is essentially a type-centric modification of
Andersen’s points-to analysis. Second, we describe the im-
plementation of the aforementioned analysis as an extension
to our existing tool InSight in Section 4. To give evidence

1 struct list_head { struct list_head *next, *prev; };
2 struct foo { /* ... */ struct list_head list; };
3 struct list_head head_of_foo;

Figure 1: Organizing struct foo in a linked list by
embedding a field of type struct list_head.

for the effectiveness of our methods, we describing some suc-
cessful applications of our extended tool in Section 5. We
complete this paper with an outlook in Section 6, a compar-
ison to similar approaches in Section 7, and our concluding
remarks in Section 8.

2. MOTIVATION
The goal of InSight is to find instances of kernel data

structures in the (guest-)physical memory of an operating
system. That is, it starts from a fixed set of kernel objects at
well-known locations (i. e., global variables within the kernel
space) and follows all pointer fields of these objects to further
objects, and so on. In this way, the kernel objects resemble
a directed graph where the objects represent the nodes and
the pointer fields of all objects represent the edges.

The debugging symbols for the kernel contain informa-
tion about the interconnection of kernel objects in form of
pointer fields of structures to further data structures1. How-
ever, the C language in which OS kernels are mostly written
allows to dynamically change pointer locations and types us-
ing pointer arithmetic and type casts. This is not reflected
in the debugging symbols, rendering this information not
only incomplete but sometimes even misleading. In the fol-
lowing, we give some examples for such “pointer magic” to
illustrate the fundamental problem.

OS kernels organize objects in efficient data structures
such as linked lists or hash tables, for example. A common
implementation of these lists and tables works by defining
generic“node”data structures along with auxiliary functions
and macros to operate on them. These nodes are then em-
bedded as a field of the data structure’s definition to be
organized in a list or table. To retrieve objects stored in
such data structures, the auxiliary functions operate only
on the embedded node but still make the embedding object
available through address manipulations and type casts.

In the Linux kernel, for example, some data structure foo

would embed a field of type struct list_head into its def-
inition to arrange these objects in a doubly linked list.2 An
example of this code is given in Figure 1. This list is then
accessed using the variable head_of_foo and operated on by
the provided auxiliary functions and macros. They only op-
erate on the next and prev pointers of field list which hold
the addresses of field list within the next and previous ob-
jects, respectively. An illustration of this pointer linkage is
shown in Figure 2. To get access to the object that embeds
the list field, another macro is provided that subtracts the
offset of field list from the pointer value and performs a
cast to the requested type struct foo*.

This example involves several instances of dynamic pointer
manipulations. First, the static type information for vari-
able head_of_foo only indicates that the next and prev

1With “structure” we refer to both struct and union types.
2For Windows, the corresponding structure is named
LIST_ENTRY and works exactly in the same way as described
for Linux’s list_head.

struct foo

struct list_head

next
prev

struct foo

struct list_head

next
prev

struct foo

struct list_head

next
prev

struct list_head

next
prev

Figure 2: A doubly linked list utilizing struct

list_head with three elements.

fields point to objects of type list_head, but there is no hint
regarding the embedding foo objects. Second, once we have
access to a foo object and follow the pointers of the embed-
ded list field, we again loose awareness of the embedding
objects of type foo. To make matters worse, many struc-
tures contain fields of type list_head as the heads to lists of
objects with different types, so we cannot simply guess the
correct type based on the embedding type. Third, the offsets
that are subtracted from the next and prev pointer values
are not always consistent. For example, the data structure
task_struct arranges the process descriptors in a tree using
two list_head fields children and sibling. Contradict-
ing the common usage pattern, the pointer children.next

does not point to the embedding field children of the first
child’s process descriptor but rather to field sibling of the
first child. Analogous, children.prev points to the sibling
field of the last child’s process descriptor.

There are several other data structures that work in a sim-
ilar way, such as singly linked lists or hash tables. Further
examples of dynamic pointers include type casts from un-
typed pointers or integer values. In addition, some pointer
or integer types might hold an address together with some
flags or status bits stored in their least significant bits. These
bits are masked out at runtime before the resulting address
is dereferenced.

In order to reliably find all kernel objects in memory, we
must be able to identify and reproduce this dynamic behav-
ior. This can be achieved in two steps: First, a static source
code analysis reveals all occurrences of pointer arithmetic
and type casts. Second, this information is linked to the
types and global variables found in the debugging symbols.

3. STATIC CODE ANALYSIS
In static code analysis, the points-to analysis, according to

Andersen [2], tries to answer the question, “to which set of
locations might a particular variable point to?” This method
considers assignment statements and function invocations to
keep track of the memory locations a pointer variable might
hold. Since the pointers are tied to variables which only exist
within a certain scope (which may also be the whole program
in case of global variables), this type of analysis is rather
data-flow driven and a points-to set is only valid within a
pointer’s scope. A variant of this method [8] has already
been applied to identify kernel objects of the Windows kernel
using an inter-procedural points-to analysis [3].

Recalling the motivation for our work from Section 2, the
goal of our analysis is to identify dynamic pointer manipula-
tions that are performed either for fields of data structures
or for global variables. When we find an object of a certain
type by following a pointer field from another object, that
newly discovered object is not bound to any control-flow
context or scope. For the purpose of our analysis, it resides

in the global scope whether it was originally allocated on
some heap, on some stack, or originated from a static data
segment. So when we access a field of an object of a certain
type, two questions arise: First, is this type’s field used as a
pointer to an object of a type that differs from its declara-
tion? Second, how do we need to transform the value of this
field in order to retrieve the object’s address? It is exactly
these questions that our used-as analysis will answer.

3.1 Used-As vs. Points-To Analysis
The approach of Carbone et al. [3] is based on the assump-

tion that the actual data type stored in a pointer location
is used at least once in some assignment statement within
the inter-procedural control-flow of the pointer variable. As
we have explained before, the objects read from memory do
not have a particular context or scope. As a consequence,
all possible program points using this pointer type must be
considered when such a pointer is encountered. We exploit
this observation as follows.

We use a method similar to a field-sensitive flow-insensi-
tive points-to analysis. The key difference is that our analy-
sis establishes used-as relations between structure or union
fields as well as global variables on the one hand and data
types on the other hand. That is, it identifies all types that a
pointer or an integer type is used as. In addition, it records
all static pointer arithmetic that is applied in such situations
to retrieve the target address from a source pointer. These
related types together with their pointer arithmetic repre-
sent the candidate types that have to be considered when
following the field of an object or reading a global variable
from memory. Such an approach contrasts the conserva-
tive pointer treatment of a static type system, for example,
as performed by a compiler. However, completeness of the
view is crucial during introspection. Consequently we see it
justified to over-approximate and consider all possible inter-
pretations of a pointer at the cost of possible ambiguities.

Our approach has two advantages over an inter-procedural
points-to analysis. First, it only requires an intra- instead of
an inter-procedural analysis, leading to a reduced complex-
ity. This is due to the fact that our analysis needs to find
a type usage only once per type, not once per pointer vari-
able. Second, it detects type usages not only in assignment
statements, but in all other expressions that might change
a pointer’s type, such as type casts or return statements.
Consider the following code fragment:

struct A { /* ... */ };
struct B { void *data; };

struct A *pa = malloc(sizeof(struct A));
void *p = malloc(sizeof(struct B));
((struct B*)p)->data = pa;

Most points-to analyses would fail to detect that the field
data of struct B is in fact used as a pointer to struct A,
because the inline type cast does not change the location
of p, and p does not explicitly point to a struct A object.
In contrast, our used-as analysis correctly recognizes that
the type cast followed by a pointer dereference through the
arrow operator ‘->’ constitutes a runtime type usage.

Another more technical difference is that many points-to
analysis systems transform the source code into simplified
statements or work on some lower-level internal representa-
tion of the code. Our analysis works on full (pre-processed)

C code3 and does not perform any preliminary transforma-
tion steps.

3.2 Step 1: Points-To Analysis
Since our analysis is type centric, the used-as relations are

only relevant for two types of symbols: Global variables of
pointer or integer types and structure fields of these types.
However, such symbols are often assigned to local variables
before the actually interesting type usage occurs. Thus, we
first perform a field-sensitive, intra-procedural, and control-
flow insensitive points-to analysis of the source code.

We initialize the points-to map by examining all assign-
ment expressions and mapping the left-hand side (lvalue4) to
the right-hand side. In addition, we label each such mapping
with the dereference level of the lvalue (i. e., the number of ∗
operators). Let i be the dereference level, x be the lvalue and
e(y) be a legal expression in C that involves variable y, then
we denote such a mapping with the relation x →i {e(y)}.
Consider the following example:

void *g;

void func() {
struct A { void *p; } a, *pa;
void *x, **y;
x = g;
y = &x;
*y = a.p;
pa = (struct A*) x;

}

For this code, the initialization yields x→0 {g}, y →0 {&x},
y →1 {a.p}, pa→0 {(struct A∗)x}.

Next, we derive the transitive closure of the map as fol-
lows. For all structure fields s.f and global variables y that
appear in expressions e(s.f) or e(y) some variable x points
to, e. g., x →i {e1(y)}, we find all mappings of the form
z →j {e2(∗ix)}. Here ∗ix denotes i occurrences of the star
operator to x. For each mapping found, we add the ex-
pression e2(e1(y)) to the expressions being pointed to by z,
resulting in z →j {e2(∗ix), e2(e1(y))}. Note that we require
that y 6= z, in other words, we disallow recursive expres-
sions. For this reason, we also disregard all expressions with
arithmetic assignment operators, such as ‘+=’.

In order to correctly handle indirect assignments of vari-
ables as in ‘x = &y; *y = a.p;’, we proceed as follows. For
mappings x →i {e1(y)} with i > 0, we also look for map-
pings of the form x→j {& e2(z)} with j = i− 1. If the ex-
pression e2(z) yields a valid lvalue, we add e2(z)→0 {e1(y)}
to our map and treat it in the same way as any other points-
to mapping. We repeat these steps for all mappings that
were added in the previous round until no more mappings
are added and the transitive closure is complete. For the
previous code fragment, the resulting map would be:
x→0 {g, a.p}, y →0 {&x}, y →1 {a.p},
pa→0 {(struct A∗)x, (struct A∗)a.p, (struct A∗)g}

3.3 Step 2: Establishing Used-As Relations
To establish the used-as relations, we compare the type

each global variable or structure field is used as to its de-
clared type. For this comparison, we also take the points-to
map into account that has been generated in the previous
step to detect indirect type usages by means of local vari-
ables. A type usage may occur in the context of assignment

3Including many GCC extensions.
4A value that has an address and can be assigned to.

1 struct A { int value; struct A *next; };
2 struct B { void *data; }
3

4 struct A* func1(struct A *a) { return a; }
5

6 struct A* func2() {
7 struct B b;
8 struct A a = { 0, b.data }; // struct initializer
9 struct A *pa = b.data; // pointer initializer

10 pa = b.data; // assignment
11 a = *((struct A*)b.data); // dereference (*)
12 ((struct A*)b.data)->value++; // dereference (->)
13 pa = func1(b.data); // function parameter
14 return b.data; // return statement
15 }

Figure 3: Various usage patterns that establish a
used-as relation between field data of struct B and
struct A*.

statements, initializers, pointer dereferences after type casts,
function parameters, and return statements. An example for
each of these usages is given in Figure 3. For all of the cases
shown in the example, our used-as analysis would come to
the same conclusion: Field data of struct B having type
void* is in fact used as a pointer of type struct A with
no additional pointer arithmetic. This relation is stored in
the type information for structure B and will be considered
whenever the field data of such an object is accessed.

Special care needs to be taken for structures that are em-
bedded into other structures. Consider the example in Fig-
ure 1 once again. The field list in line 2 is defined as an
embedded struct list_head within structure foo. If we
were to propagate the used-as relations of list.next and
list.prev to all other fields of type struct list_head in
all other structures, we would essentially mix up all types
that are arranged in doubly linked lists, leading to imprac-
tically high numbers of candidate types to follow. There-
fore, whenever one structure embeds another, we create a
unique copy of the embedded structure type for the em-
bedding type. We then assign any used-as relations for its
fields to these copies. In the same way we create copies for
structure or union types of global variables. This results in
variable and type context-sensitive used-as relations which
vastly improves the type accuracy for locating kernel objects.

4. IMPLEMENTATION
We have implemented the proposed used-as analysis as

an extension to our existing tool, InSight [15]. For a Linux
kernel, InSight is able to read kernel objects from physical
memory and to follow the fields of structure objects, deref-
erence pointers and access array elements. It exposes these
objects through a convenient JavaScript interface to arbi-
trary VMI applications, such as intrusion detection, forensic
analysis, malware analysis, or kernel debugging.

InSight uses the debugging symbols of the inspected kernel
to locate global variables in the kernel’s address space and
derive the layout of data structures. The extended type in-
formation gathered from the used-as analysis now augments
the static type information, allowing InSight to consider all
possible pointer usages of any field or variable that occurred
anywhere in the kernel’s source code.

4.1 Consolidating Type Information
The foundational knowledge about the types and global

instances of kernel objects InSight uses is contained in the
kernel’s debugging symbols. They completely reflect all ap-
plied compiler directives and linker flags that have influence
on the location and the alignment of types and variables. For
a Linux guest, the debugging symbols can be obtained by
re-compiling the kernel with specific compiler flags for sym-
bol generation, which neither influences the performance nor
the semantics of the resulting kernel image.

The compiler generates the debugging symbols per trans-
lation unit. As a consequence, they contain a high degree of
redundant type information, because any type that is used
in n translation units appears n times in the debugging sym-
bols. This is undesirable for our purpose as the redundant
types require an excess of memory, but more importantly,
they counter our effort of linking the used-as relations to a
particular type. We solve this problem as follows.

When InSight processes the debugging symbols for the
first time, it creates hash values for all data types based on
their name, size, signedness (for integer types), fields (for
structures or unions), and parameters (for function point-
ers). Equivalent types are recognized based on these hashes
and are merged into single instances. For a recent 3.0 Linux
kernel, this reduces the number of unique types to less than
three percent (about 61k) of their original count of over 2.2
million. The consolidated types are then saved in a custom
format to minimize the effort for future use.

4.2 Source Code Level Analysis
The consolidated type information extracted from the de-

bugging symbols builds the initial knowledge basis for In-
Sight. To capture the dynamic pointer treatments of the
kernel, InSight parses the kernel’s source code in a second
step, performs the used-as analysis, and builds an extended
type graph from the collected information to reflect such dy-
namic treatments. Through this combination of debugging
symbols and static code analysis, InSight achieves a high
object coverage and type accuracy.

The Linux kernel comes with a highly sophisticated build
system based on the GNU make utility. Depending on the
kernel configuration and system environment, the build sys-
tem selects proper compiler flags, macro definitions, and in-
clude paths to compile the source files. In order to avoid
having to mimic this complex system, we instead use a small
wrapper script for the GNU C compiler that stores the pre-
processed source files during compilation in a separate direc-
tory. Thus, we re-compile the guest kernel with debugging
flags enabled and our wrapper script set as the compiler.
This assures that the code being compiled exactly corre-
sponds to the code that InSight analyzes later on.

In our experiments, the used-as analysis of over 20 million
lines (584 MB) of pre-processed C code took less than 20
minutes on a standard PC5.

4.3 Disambiguating Candidate Types
InSight uses a simple strategy to apply the used-as type

relations to kernel objects: If a pointer has exactly one can-
didate type, this candidate overrides the type defined in the
debugging symbols. In case the analysis has revealed several
candidate types (typically for less than 0.5% of all types),
the defined type is used as a fail-safe default; it is not over-
ridden. However, the user can always query the available
candidates and choose the one that he sees best fit.

5Intel Core 2 Quad Q9550 (2.83 GHz), 8GB RAM

1 function lsmod() {
2 // request instance of the list’s head
3 var head = new Instance("modules");
4 // iterate over all modules
5 var m = head.next;
6 while (m.MemberAddress("list") != head.Address()) {
7 print(m.name + " " + m.args);
8 m = m.list.next;
9 }

10 }

Figure 4: JavaScript code to print the list of loaded
modules for a Linux guest.

The scripting engine can also be used to try all candi-
date types for a pointer and perform sanity-checks on the
returned objects in an automated fashion. For example, a
“sane”object should be located in the kernel’s address space,
its address should be aligned to a four byte boundary, point-
ers to further objects should follow the same rules, and so
on. By organizing such functionality in script libraries, it
can easily be shared among multiple VMI applications to
reduce the effort for the individual approaches.

5. APPLICATION
InSight strives to interpret the entire kernel memory of a

running guest OS in the same way the guest kernel does.
It is very flexible in that it provides access to the VM state
through a powerful shell interface as well as through a script-
ing engine that allows interaction with kernel objects as
JavaScript objects. This completely decouples the VMI ap-
plication from the view generation process, making InSight
a universal tool for various applications such as intrusion de-
tection and forensic analysis, as well as for kernel debugging.

The scripting engine allows users to write JavaScript code
for interacting with kernel objects and performing complex
tasks. The user may access global variables by requesting
an Instance object of a variable by using its name. If the
resulting object represents a structure, its fields can be ac-
cessed by their name using the “dot” notation just like any
other property of a JavaScript object. Per default, all fields
having pointer types are automatically dereferenced. In ad-
dition, an Instance object provides functions to access the
meta data of the represented kernel object, change its type,
manipulate its address, and inspect the candidate types from
the extended type graph.

Figure 4 shows a simple example script that prints all
loaded kernel modules for a Linux guest. Note that the
Instance object that is retrieved from the global variable
modules in line 3 actually is of the type list_head. This
scenario corresponds to our example in Figure 1 where a
variable of type list_head represents the head of a list.
Through the used-as analysis, InSight has determined that
the next field of this variable in fact points to struct mod-

ule objects when a certain offset is subtracted. The same
is true for the field list of the instances of struct module

that are returned by following m.list.next in line 8. This
illustrates how InSight is effectively able to hide the “pointer
magic” of the doubly linked lists from the user by providing
a very simple and intuitive interface.

InSight allows one to perform various types of analysis
and is deployed in several projects for VMI-based intrusion
detection within our research group. We describe some of
these applications in the following.

5.1 Periodic Analysis
One way of monitoring a system for intrusions is to per-

form an analysis of the guest in regular intervals and report
any suspicious findings. If the interval is chosen to be suffi-
ciently long and the analysis can be performed quickly, this
method typically incurs only a small overhead.

An approach for VMI-based intrusion detection that has
been described by various authors [7, 9, 10] is called lie de-
tection. It works by generating two different views simulta-
neously, one inside of the guest OS and one with the help
of VMI techniques. These views are then compared with
each other and any discrepancy between them is taken as
an indicator for malicious activities. As a proof of concept,
we have implemented a lie detector for running processes
and loaded kernel modules on a live guest and successfully
revealed rootkits that are trying to hide their presence.

In addition, we experimented with new ways of detecting
intrusions on the kernel level. For this purpose we created
a series of sequential memory dumps of the guest while in-
ducing normal and malicious activities. Here InSight was
used to perform off-line analysis of the collected states by
to gathering information about running processes, finding
the location of the code sections of loaded kernel modules
to detecting kernel code patching, and revealing changes to
the system call table, among other things. This approach
showed that InSight is also very much capable of performing
forensic analysis.

5.2 Event-driven Analysis
An alternative method for system analysis monitors and

reacts to system events. In such cases, a VMI-based ap-
proach manipulates the system in such a way that the events
of interest cause a trap to the hypervisor [12]. Before the
hypervisor returns control to the guest, the VGC collects the
required data from the current state of the guest. Depend-
ing on the frequency of such events, it is crucial to avoid
any unnecessary overhead for the analysis to minimize over-
all performance degradation.

We have combined InSight with a VMI-based framework
for system call tracing, called Nitro [13]. Nitro uses InSight
to augment the low-level parameters of system calls it mon-
itors to produce a much richer output compared to plain
system call numbers and pointers. For example, InSight is
able to determine the concrete type of a process’s file handle
in calls to the“read”and“write”system calls and output cor-
responding information, for example, the IP addresses of a
connected socket or the file name of a regular file. Other sys-
tem calls are augmented similarly. This project has shown
that the separation of InSight into a back-end and a front-
end helps to minimize the per-analysis overhead. The pa-
rameter augmentation contributes only to a small degree to
the total overhead of the complete framework.

6. LIMITATIONS AND FUTURE WORK
While the used-as analysis has vastly improved the useful-

ness of InSight, the over-approximation of candidate types
for pointers now possibly leaves the user with a small per-
centage of types having multiple candidates to choose from.
InSight does not yet offer any strategy to disambiguate these
candidates. Our goal for the future is to provide a mecha-
nism that tests all candidates and automatically chooses the
most likely type as follows.

When analyzing the kernel source code, we can not only
extract the pointer type usage but also keep track of the
usage of other (non-pointer) fields of data structures. This
information could then be used to infer invariants for indi-
vidual fields. For example, if an integer field is only set to
values of a specific enumeration type, an invariant for the
structure would be that this particular field must always
hold one of these values. Such invariants would allow to
weight the “soundness” of multiple candidate objects and to
decide for one of them.

7. RELATED WORK
As bridging the semantic gap is a requirement for all VMI

components, this challenge has been addressed in several
specific ways. Many approaches rely on the debugging sym-
bols, manually supplemented with expert knowledge where
this is required (e. g., [7, 6, 14]).

The only other approach we are aware of that applies a
source code level analysis for view generation is the KOP
system developed by Carbone et al. [3]. It follows a similar
approach to InSight and performs a static points-to analysis
of Windows Vista’s source code to identify kernel objects in
memory. KOP works on a simplified representation of the
code to construct an extend type graph and applies heuris-
tics to handle ambiguous or incomplete types. As described
in Section 3.1, the points-to analysis might not always de-
tect all type usages. Another limitation of this system is
that the only supported form of pointer arithmetic is the
addition of a fixed offset. Even though the authors do not
detail the user and programming interface of KOP, we see a
clear benefit in the flexible interfaces that InSight provides.

Another very interesting approach to bridging the seman-
tic gap was introduced by Dolan-Gavitt et al. in the form of
Virtuoso [5]. While InSight automates certain complex tasks
necessary for complete view generation, Virtuoso automates
the generation of an entire VGC by “training” a component
to retrieve the desired state. This is a very interesting ap-
proach as building a VGC is a complex and time consuming
task as we have experienced. However, automating the gen-
eration of a VGC that is capable of generating a view of
the guest kernel that is as complete as the one created by
InSight is well beyond Virtuoso’s scope.

8. CONCLUSION
We have presented an analysis technique to capture dy-

namic pointer manipulations in full C source code. In con-
trast to the rather data-flow oriented points-to analysis, our
analysis is type centric and establishes used-as relations be-
tween global variables, structure fields and pointer types. In
order to support the complete emulation of dynamic pointer
manipulations, our approach also extracts any pointer arith-
metic that is performed to yield the target address from a
pointer value.

The implementation of this kind of analysis in our tool
InSight augments the type information it was already using
before. This extensions now enables InSight to consider all
feasible interpretations of a field or variable, leading to a
vastly improved completeness and accuracy when perform-
ing introspection tasks. Finally, we offered evidence of the
effectiveness of our method by outlining several successful
applications of InSight within our research group.

InSight is available as an open source tool [1] to enable

the fast and intuitive development of new VMI and forensic
applications.

9. REFERENCES
[1] InSight project website.

https://code.google.com/p/insight-vmi/.

[2] L. O. Andersen. Program Analysis and Specialization
for the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, 1994.

[3] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and
X. Jiang. Mapping kernel objects to enable systematic
integrity checking. In Proc. of 16th Conf. on
Computer and Communication Security, CCS ’09,
pages 555–565. ACM, 2009.

[4] P. M. Chen and B. D. Noble. When virtual is better
than real. In Proc. of the 8th Workshop on Hot Topics
in Operating Systems, page 133. IEEE, 2001.

[5] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and
W. Lee. Virtuoso: Narrowing the semantic gap in
virtual machine introspection. In Proc. of the IEEE
Symp. on Security and Privacy, May 2011.

[6] A. Fattori, R. Paleari, L. Martignoni, and M. Monga.
Dynamic and transparent analysis of commodity
production systems. In Proc. of Int. Conf. on
Automated Software Engineering, ASE ’10, pages
417–426, New York, NY, USA, 2010. ACM.

[7] T. Garfinkel and M. Rosenblum. A virtual machine
introspection based architecture for intrusion
detection. In Proc. of NDSS, pages 191–206, 2003.

[8] N. Heintze and O. Tardieu. Ultra-fast aliasing analysis
using CLA: a million lines of C code in a second. In
Proc. of conf. on Programming language design and
implementation, PLDI ’01, pages 254–263. ACM, 2001.

[9] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor
support for identifying covertly executing binaries. In
Proc. of the 17th conf. on Security symp., pages
243–258, Berkeley, CA, USA, 2008. USENIX.

[10] L. Martignoni, A. Fattori, R. Paleari, and
L. Cavallaro. Live and trustworthy forensic analysis of
commodity production systems. In Proc. of 13th Int.
Conf. on Recent Advances in Intrusion Detection,
RAID’10, pages 297–316. Springer, 2010.

[11] J. Pfoh, C. Schneider, and C. Eckert. A formal model
for virtual machine introspection. In Proc. of 2nd
Workshop on VM Sec. ACM, 2009.

[12] J. Pfoh, C. Schneider, and C. Eckert. Exploiting the
x86 architecture to derive virtual machine state
information. In Proc. of the 4th Int. Conf. on
Emerging Security Information, Systems and
Technologies, Venice, Italy, July 2010. IEEE.

[13] J. Pfoh, C. Schneider, and C. Eckert. Nitro:
Hardware-based system call tracing for virtual
machines. In Advances in Information and Computer
Security, LNCS. Springer, Nov. 2011.

[14] J. Rhee and D. Xu. LiveDM: Temporal mapping of
dynamic kernel memory for dynamic kernel malware
analysis and debugging. Technical report, Purdue
University, 2010.

[15] C. Schneider, J. Pfoh, and C. Eckert. A universal
semantic bridge for virtual machine introspection. In
Information Systems Security, volume 7093 of LNCS,
pages 370–373. Springer, 2011.

