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Abstract— Real-valued negative selection (RVNS)
is an immune-inspired technique for anomaly detec-
tion problems. It has been claimed that this technique
is a competitive approach, comparable to statistical
anomaly detection approaches such as one-class Sup-
port Vector Machine. Moreover, it has been claimed
that the complementary approach to RVNS, termed
real-valued positive selection, is not a realistic solu-
tion. We investigate these claims and show that these
claims can not be sufficiently supported.

I. INTRODUCTION

An early (and popular) immune-inspired algorithm for
anomaly detection is negative selection. During negative
selection in the natural immune system, self-reactive T-
Lymphocytes, which carry antibodies on their surface,
are eliminated by a controlled death. As a result, only
self-tolerant T-Lymphocytes survive the negative selec-
tion process and are then released into the blood stream.
Roughly speaking, the negative selection is a process
in which self-tolerant lymphocytes are generated, thus
allowing the immune system to discriminate self proteins
from foreign proteins (termed non-self).

In an artificial immune system (AIS), principles and
processes of the natural immune system are abstracted
and are applied for solving information processing prob-
lems, such as anomaly detection problems. More specif-
ically, in real-valued negative selection (RVNS), T-
Lymphocytes are abstracted by means of hyperspheres.
In the training phase, the hyperspheres (also called detec-
tors) are (randomly) distributed in an unitary hypercube
H = [0,1]™ of dimension n, such that each self element
— also represented as a hypersphere — is not covered
by any detector. In the testing phase an element p € H
is classified as a self element, if p is not covered by any
detector and otherwise as an anomaly (non-self element).
In the field of machine learning, this type of hypersphere
detection is known as instance-based learning, i.e. it is a
threshold nearest neighbor classifier.

Instead of covering H completely with detectors, Ebner
et al. [1] and subsequently Stibor et al. [2], [3] discussed
a different hypersphere detection form. More specifically,
no T-Lymphocyte detectors exist at all. Instead, only
the given self elements are abstracted by hyperspheres
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and therefore no training phase is required because H
is not (randomly) filled with detectors. In the testing
phase, p is classified as a self element if p is covered by
a hypersphere and otherwise as an anomalous element.
This type of hypersphere detection is likewise a simple
instance-based learning method and is termed real-valued
positive selection (RVPS) [2].

Both methods are evidently straightforward instance
based learning techniques which utilize a geometric dis-
tance function to decide whether p is a self element or a
non-self element. Stibor et al. [2], [4] have demonstrated
that RVPS achieves similar or even better classification
results to RVNS for low and high-dimensional anomaly
detection problems. Whereas, Ji and Dasgupta [5], [6],
[7] argue that it is only RVNS that is a promising and
competitive to statistical anomaly detection methods
approach. As a result, some confusion exists in the AIS
community, with the prevalent conjecture that RVNS
and RVPS are straightforward methods, which are not
competitive to well established statistical techniques.

In this paper we discuss, compare and benchmark
RVNS, RVPS and one-class Support Vector Machine
(SVM). The paper is organized as follows: In section II
the anomaly detection problem is outlined to contex-
tualize the work. In section ITII, RVNS and RVPS are
explained. For a comparative study, the classification
principle of the one-class SVM is explained in section I'V.
In section V the learning capability of RVPS is explored
in detail. Experiments and results on a high-dimensional
digit recognition problem are shown and discussed in
section VI.

II. ANOMALY DETECTION

Anomaly detection, also referred to as one-class learn-
ing is an in-balanced two-class pattern classification
problem. In (supervised) pattern classification, the goal is
to find a functional mapping between input data x € R™
to a class label Y so that ¥ = f(x). The mapping
function is the pattern classification algorithm which is
trained (or learned) with a given number of labeled data
called training data. The aim is to find the mapping
function which gives the smallest possible error in the
mapping, i.e. the minimum number of examples where
Y is the wrong label, especially for test data not seen by
the algorithm during the learning phase. In the simplest
case there are only two different classes Cy,C; and the
task is to find a suitable function f with parameters
p such that f, : R™ — {Co,C1}, will correctly classify



unseen samples. More specifically p is determined by
using training data pairs generated i.i.d.! according to
an unknown probability distribution

P(x,y) == (x1,y1), .-, (x5,) ER" XY, Y €{Co,C1}

and f is (usually) chosen a-priori (called model selec-
tion). When the training data consists only of exam-
ples from a single class (x,y € Cp) or a single class
and a strongly under-represented second anomalous class
(x,y € {Co,C1}) and the test data contains examples
from two or more classes, the classification task is called
anomaly detection. Examples of anomaly detection are
machine fault recognition or medical diagnosis, where
only training data containing normal behavior is avail-
able, as it is difficult or impossible to obtain data from
abnormal behavior. In a probabilistic sense, anomaly
detection is equivalent to deciding whether an unknown
test sample is produced by the underlying probability dis-
tribution that corresponds to the training set of normal
examples. Such approaches are based on the assumption
that anomalous data are not generated by the source of
normal data (see Fig. 1).

I1I. REAL-VALUED NEGATIVE AND POSITIVE
SELECTION

The RVNS algorithm operates on a unitary hypercube
H = [0,1)" of dimension n. A detector d = (cq,7ns)
has a center cg € H and a non-self recognition radius
Tns € R. Furthermore, every self element? s = (cg,7s)
has a center and a self radius r,. The self-radius allows
generalization, i.e. classification beyond the training set.
An unlabeled element e € H is classified as non-self, if
it lies within d and otherwise as self. An element e lies
within a detector d = (cq, Tys), if the Euclidean distance
dist(cq,€) = |jcqg — €|l2 < Tns. Generating detectors in
the RVNS algorithm (called V-detector) work as follows:
o Input: self elements s with radius 75, ¢ € [0,1]
and maximum number of detectors Dmax. Output:
detector set D.

o While covered proportion ¢y of H with detector set
D is not reached and |D| < Dmax, do

— Sample randomly a candidate detector point
cq € H.
— If ¢4 is not covered by any s and by any already
found detectors in D, then resize radius to
Tns = dist(cq,cs) — rs where cg is the center
of the closest self element.
— If r,s > rs then put d = (cq,7ns) into detector
set D.
Having generated the detector set D (training phase),
classification of unlabeled elements is performed as de-
scribed above.
Instead of “filling” H with detectors with different
radii until a coverage of proportion c¢q is reached, one

lIndependently drawn and identically distributed.
2Points sampled from the “normal” class.
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(a) A “typical” anomaly detection problem with two given
classes (Cop = circles and C; = triangles). The number of
anomalous examples is strongly under-represented (20 ex-
amples with class label C1) compared with 200 examples of
normal data (class label Cp).
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(b) The underlying probability distribution of class Cp is
depicted as a density plot. One can see that the anomalous
data is not generated by the probability distribution of class
Co.

Fig. 1. Anomaly detection problem.

can simply consider each self element as a detector
d = (cg,7s). That means no training is required, and
classification is performed in an identical manner, except
that an unlabeled e is classified as self if it lies within d
and otherwise as non-self. Both straightforward concepts
— RVNS and RVPS — are illustrated in figure 2.

IV. ONE-CLASS SUPPORT VECTOR MACHINE FOR
ANOMALY DETECTION

The Support Vector Machine (SVM) [8], [9] has its
foundation in mathematics (computational geometry, op-
timization and statistics) and is based on the transduc-
tion principle [10]. Classical statistical approaches (such
as maximum likelihood estimation or density estima-
tion techniques) are based on induction and deduction
principle, i.e. first estimating the learning parameters at
all (infinite) points of the domain (induction) and then
predicting the values at points of interest (deduction).
This inference paradigm can be described as a two step
movement, namely: from general to particular (deduc-



(a) RVNS principle in a 2-dimensional
space. The non-self space which is cov-
ered by the detectors is pictured as the
shaded area. The self elements are pic-
tured as light grey circles with a black
center.

(b) RVPS is simply the RVNS concept,
but without filling the 2-dimensional
space with detectors. Instead the self
elements, i.e. the light grey circles are
used as detectors.

Fig. 2. Visual comparison of Real-Valued Negative Selection
(RVNS) and Real-Valued Positive Selection (RVPS).

tion) and back from particular to general (induction).
Loosely speaking, one has to first solve a difficult in-
termediate problem, to then solve a relatively simple
problem. As a consequence, this two-step movement is
an ill-posed problem and suffers under the curse of di-
mensionality, because one does not have enough learning
information to estimate the learning parameters at all
(infinite) points of the domain [10]. In the transduction
principle, which is implemented by SVM, one estimates
the learning parameters at a given finite number of
points of interests, and therefore, has enough learning
information to overcome these problems. This type of
inference is called transductive inference (moving from
particular to particular) and is additionally anchored in
a robust statistical learning framework.

Based on the computational geometry properties and
SVM optimization steps, Scholkopf et al. [11] proposed a
one-class SVM, by considering the origin® as the only

3Instead of assuming that the origin acts as a prior where normal
data is not concentrated, Campbell and Bennett [12] extended
Scholkopf’s et al. problem formulation in terms of finding a surface
(a level set f(x) = 0) in input space X which wraps around
the normal data. To be more precise, this can be formulated as
f(x) = Zﬁ:l a;k(x,%x;) + b and corresponds in F to a hyperplane
which is pulled onto the mapped datapoints with the restriction
that the margin always remains positive or zero.

Fig. 3. One-class SVM separates in high-dimensional feature space
F, the points from the origin (circled point) with a maximum
distance, and allows v - [ many “outliers” which lie between the
origin and the hyperplane, i.e. the —1 side. As a result, most of
the points will lie on the +1 side of the hyperplane and the outliers
on the —1 side. The hyperplane is parametrized by normal vector
w, offset p and has a distance of p/||w|| to the origin. Each outlier
on the —1 side, has a distance of & /||w|| to the hyperplane.

member of the —1 class. To be more precise, given
training examples

(Xlayl)a (X27y2)5 RS (leyl) € R™ x {+1}

the input data is mapped via ®(-) into a (infinite) high-
dimensional feature space F. In F a fraction v of “out-
liers” are allowed, which lie between the origin and the
hyperplane, where the hyperplane has maximum distance
to the origin (see Fig. 3). More specifically, the normal
vector of the hyperplane is determined by solving the
primal quadratic optimization problem

miniénize swl2+ 5> &—»p (1)
w.€,p
subject to (W, ®(x;)) > p—§;,& >0,i=1,...,1. (2)

Reformulating (1) and (2) to a dual optimization problem
in terms of a kernel function k(- -), one obtains
maximize

1
wim 3 i g1 @i0k(xi, %) (3)
subject to 0 < oy < %,i =1,...,l and Zizlaizl.(él)

By solving the dual optimization problem, one obtains
the decision function

l
f0) = sen | Y aik(x,xi) —p (5)
i=1

which will be positive in region where most of training
data is concentrated* and negative elsewhere. The value
of p can be recovered by exploiting the fact, that for «;

4A common way to define anomalies is to assume that anomalies
are not concentrated [13], [14] and hence the problem is to construct
closed class boundaries of concentrated normal data.



with 0 < a;; < 1/(vl) the corresponding example x; is a
support vector which satisfies

p=(w-0(x;)) = Zajk(xj,xi)- (6)

A. Discussion on one-class SVM

SVMs are anchored in a statistical learning frame-
work [15] and therefore enable a thorough understanding
of the generalization capability of the learning algorithm.
In contrast, biological inspired approaches such as RVNS
or (in the early days) neural networks closely mimic
processes of the immune system or the brain. However
as mentioned by Vapnik [10], techniques and algorithms
which are based on solid mathematical backgrounds are
(vastly) superior to techniques and algorithms which
copy too naively biological processes:

“Of course it is very interesting to know how hu-

mans can learn. However, this is not necessarily

the best way for creating an artificial learning

machine. It has been noted that the study of birds

flying was not very useful for constructing the

airplane.”
The main attractiveness and superiority of one-class
SVM — when comparing to RVNS and RVPS — is the
capability to deal with high-dimensional classification
problems without suffering the curse of dimensionality,
foundations in statistical learning theory, and feasible al-
gorithmic complexity. Solving optimization problems (3)
and (4), i.e. finding the optimal separating hyperplane
with maximal margin is directly linked to minimizing the
generalization error. For the one-class SVM Scholkopf et
al. [11] proved a boundary of the generalization error, i.e.
the expected misclassification error for unseen data. More
specifically, they showed that new samples generated
according to a probability distribution P will lie pre-
dominately in the +1 region under the assumption that
training examples are generated by P. Such important
results are missing for RVNS (and RVPS).

B. Discussion on RVNS and one-class SVM

RVNS is a straightforward anomaly detection tech-
nique when comparing to one-class SVM. Important
theoretical results for RVNS (and RVPS) as provided
by Scholkopf et al. [11] for the one-class SVM and
for the SVM in general by Vapnik [15] are currently
missing. Instead, authors dealing with RVNS compared
the performance of negative selection algorithm version
1 to negative selection algorithm version n, rather than
looking for theoretical results. Furthermore, the result on
the runtime complexity of RVNS as shown in [16] is incor-
rect, because they do not consider any “randomness” in
their algorithmic investigation (see [3] for more details).

Moreover there seems to exist some confusion regard-
ing the precise estimation of the covered non-self space in
RVNS. In [17] authors proposed a Monte Carlo integra-
tion to estimate the covered non-self space [17] and subse-
quently proposed a “naive” integration technique [18], [16]

(a) The 1-NN algo-
rithm assigns e to
class label +1, be-
cause di > da, i.e.
ey is the closest
neighbor.

(b) The threshold
1-NN algorithm
assigns e to class
label —1, because
the threshold
radius r < da.

(¢) The threshold
radius r > dg and
therefore e is assign
to class label +1.

Fig. 4. Illustrations of class assignments of 1-NN and threshold
1-NN algorithm (aka RVPS).

which is imprecise. For the sake of completeness, we have
to mention that a variant of the Monte Carlo integration
was rediscovered again [19)].

C. Comments on RVPS

We would like to emphasize in this section some mis-
understanding on RVPS. Stibor et al. [2] proposed the
straightforward RVPS for a comparative study to RVNS
and not as a state of the art classification technique which
is comparable to sound and robust methods from the
field of (statistical) machine learning. It is interesting
to note, that the authors who proposed RVNS never
compared the method to RVPS [18], [16], [20], [19], [6],
[5]. Moreover we would like to clarify here that using
hyperspheres as classifier shapes is not a new concept.
This method is known as a “hypersphere classifier” and
was proposed more than 40 years ago [21], [22]. An-
other hypersphere learning approach — with dynamically
growing, shrinking and pruning hyperspheres — is pro-
posed by Batchelor [23] and subsequently as a special
case of a neural network known as Restricted Coulomb
Energy classifier [24].

V. RVPS 1s A THRESHOLD NEAREST NEIGHBOR
CLASSIFIER

The nearest neighbor (NN) decision rule classifies sam-
ples based on the geometrical closeness to the training
examples. Given an unlabeled element e € R%, d € N, the
1-NN algorithm search for the closest training example
e. and assigns e the same class label as e, (see Fig.4(a)).

It is easily comprehensible that RVPS is a threshold
1-NN classifier for a two-class classification problem. A
threshold 1-NN classifier differs from a 1-NN classifier
in terms of a (threshold) radius. Instead of searching
only for the closest training example, the threshold 1-NN
classifier searches for the closest normal class training
example e, and includes a threshold radius r. If the
distance between sample e and example e, is smaller
than r, e gets the same class label as e., otherwise it
gets the opposite class label (see Figs. 4(b) and 4(c)).
It is clear that r regulates the overfitting/underfitting
behavior of the threshold 1-NN algorithm, comparable



to parameter k in the k-NN algorithm®. A “large” r
(k, respectively) encloses more surrounding elements and
reduces the effect of noise, whereas a “small” r results in
the opposite effect.

It is interesting to note that RVPS can be straightfor-
wardly modified® in a non-parametric density estimation
technique, namely in a Parzen window estimator. This is
demonstrated in the following section.

A. From RVPS to Parzen Window

Non-parametric density estimation is a method to
estimate an unknown probability density p(-). Given N
examples x1,Xs, ..., Xy drawn independently from p(-),
the aim is to find an estimator p(-) which approximates
p(+). Parzen window (also called kernel estimator) is

defined as

N 1 N X — X;
0 = ok () ©
and is one feasible approach to estimate p(-). The window
width h controls the smoothness, i.e. the influence of the
surrounding points x;, whereas the kernel function K(-)
determines the shape. A kernel function must satisfy the
condition

/O; K(x) dx = 1. (8)

The Epanechnikov kernel function (9) is optimal in terms

of minimizing the mean integrated square error”.

1 -1
Ko = { 52 42 (=) o)

where By = %2 /T(d/2+1) is the volume of an unit hy-
persphere in dimension d. Loosely speaking, one fixed h
and checks of how many samples fall in the hypersphere.

It should be stressed that the crucial parameter in
Parzen window is not the choice of the kernel function
but rather the window width h. The choice of h implies
a trade-off between the bias and the variance. This fact
also holds for SVM. Ji and Dasgupta [6] misinterpreted
mathematical properties of SVM and naively conclude
that the biggest disadvantage of SVM is the proper
choice of the kernel function. The choice of the kernel is
indeed an important parameter, overfitting/underfitting
effects are however controlled by the kernel parameters
and the slack variables. Moreover, manifold kernels e.g.
for structured data like strings, trees, etc. enable the
capturing of the proper learning domain.

RVPS and any non-parametric density estimation
techniques indeed are suffering under high runtime com-
plexities to classify test samples. Both methods have no

if ||Ix|| <1
otherwise

5The k-NN algorithm search for the k closest neighbors. The
value of k is (usually) an odd number.

6This is not a surprise, because the k-NN approach can be applied
as a density estimator.

"The mean integrated square error E [{p(x) — p(x)}?dz is mea-
surement for quantifying the discrepancy of the density estimator
p(+) from the true density p(-).

training phase, however classification of test samples is
computationally expensive, because one has to iterate
through all® training examples to classify a test sample.

B. (Self) Element Reduction in RVPS with k-Means

In this section we demonstrate how the k-means clus-
tering technique can be applied as a data reduction
technique. More specifically, we demonstrate that Ji’s
and Dasgupta’s argument that RVPS is not a realistic
solution when the number of self samples is larger than
the number of detectors, can not be supported.

Clustering is an unsupervised classification method,
i.e. unlabelled data is partitioned into subsets (clusters),
according to a similarity measure. That means, “simi-
lar” data is grouped into the same cluster. In k-means
the grouping is performed as follows: Given input set
{pP1,pP2,---,PN} ER"™.

o Choose number of cluster £ and initialize® randomly

the cluster centers mp, mo, ..., my.

o Assign each unlabeled point p; to the nearest cluster

center.

o Recompute the new cluster centers.

o Repeat these steps until m; converge.

Usually k is chosen very small compared to N. In our
case, k determines the data reduction ratio, i.e. 0 <
k/N <1.

VI. EXPERIMENTS

Handwritten digit recognition is a challenging prob-
lem in the field of machine learning due to the high-
dimensional nature of the problem. In our experiments
we benchmarked RVNS, RVPS and one-class SVM on the
MNIST database [25]. The MNIST database contains of
handwritten digits (see Fig. 5) which are size-normalized
and centered in a 28 x 28 fixed-size image, the problem
domain is hence of dimensionality 784.

0 1234 56 7% 819
o423y 5 6%

Fig. 5. Handwritten digits (0,1,...,9) from the MNIST
database [25]. Each digit is size-normalized and centered in a 28 x 28
fixed-size image. The MNIST database contains noiseless digits
(upper row) and also noisy digits (lower row).

The database consists of 60000 training examples and
10000 testing samples which are partitioned in digit sets
0 to 9 (see table I).

Due to the high runtime complexity of RVPS, it was

not feasible to perform the experiments on the complete

training and testing set in reasonable amount of time'C.

8For RVPS in the worst-case.

90r sample randomly k centers from the input set.

10The experiments are performed on an Intel Xeon 3.2 GHz Dual-
CPU machine with 4 GB RAM and 750 GB hard-disk.



Number of examples in each digit set 0 to 9 of training set

0 1 2 3 4 5 6 7 8 9
5923 6742 5958 6131 5842 5421 5918 6265 5851 5949

Number of samples in each digit set 0 to 9 of testing set
0 1 2 3 4 5 6 7 8 9
980 1135 1032 1010 982 892 958 1028 974 1009

TABLE 1
NUMBER OF DIGITS IN TRAINING AND TESTING SET.

We reduced the training set by means of the k-means
clustering method to 10% of the original set size. More-
over to evaluate the reduction quality of k-means, the
original training set is reduced into a second training
set by randomly sampling (without replacement) 10% of
the original size. As a result, both reduced training sets
contain of 6000 examples. The testing set is also reduced
to the size of 10% of the original testing set by randomly
sampling (without replacement) from the testing set. To
obtain comparable results, each set is normalized with
min-max normalization to [0, 1]7%4.

Each classifier is trained with examples from only one
digit set and then validated on the whole testing set,
i.e. testing digit sets 0 to 9. This training and validation
is performed separately for each digit training set. The
classification results of RVPS and one-class SVM are
shown in tables II, IIT and IV. For the RVNS, it was
not possible to obtain any results. This is discussed in
the subsequent section in detail.

A. Failed RVNS Ezxperiments

For the sake of comparability we used the RVNS
implementation (termed V-detector) provided by Ji [26].
The RVNS experiments are performed with different
parameter combinations of ¢y = {0.8,0.9,0.99} and
rs = {0.1,0.5,1,2.5,5,7.5}. Moreover Ji proposed two
(similar) versions of RVNS: the variable-sized detectors
version [16] and the boundary-aware version [20] — the
experiments are performed with both RVNS versions. For
the sake of correctness, the detector coverage is estimated
with the hypothesis testing approach proposed in [19],
rather than with the “naive” and imprecise integration
technique [18], [16].

To summarize the experimental results, it was not
feasible to obtain any classification results because the
V-detector algorithm does not terminate. More precisely,
it is infeasible to cover the high-dimensional hypercube
[0,1]78* with a proper!! set of hyperspheres when apply-
ing the V-detector algorithm. In the worst case no proper
set of hyperspheres exist at all, or, one has to sample the
space an exponential number of times to find the proper

11 A reasonable number of hyperspheres with large space cover-
age.

set of hyperspheres. As explained in [4], the volume
in high-dimensional hypercubes is concentrated in large
corners, which themselves become very long “spikes”.
In hyperspheres however, the volume is concentrated
at the surface, rather than inside. As a consequence,
one cannot efficiently “fill“ high-dimensional hypercubes
with a proper set of hyperspheres without covering the
distributed self elements — for more details see [4].

To be sure that the RVNS experiments are not biased
by the memory consumptive and (slow) Java imple-
mentation [26], the training and testing set for RVNS
is reduced to a toy-problem size. The toy-training set
contains only 60 examples of digit 9 and the toy-testing
set, 51 samples of all digits — both toy sets are randomly
sampled (without replacement) from the original sets.
For these toy sets, it is also not feasible to obtain any
classification results.

These results clearly revealed that RVINS is not a real-
istic approach for real-world anomaly detection problems.

B. RVPS and one-class SVM Classification Results

The RVPS classification results show higher detection
rates and lower false alarm rates than the one-class SVM
classification rates (see tables ILIIT and IV). Moreover,
one can see that the k-means reduced training set induces
a lower false alarm rate, but also a slightly lower detec-
tion rate. This is not a surprise because the training set,
which is reduced by k-means contains less noise than the
original training set.

Although the training and testing set is reduced to 10%
of the original size, RVPS has still a runtime complexity
which is high for such real-world classification problems.
One RVPS classification run (one digit only and one
radius value) consumed ca. 2 hours of computation on
the 3.2 GHz SMP machine. Whereas a complete one-
class SVM classifcation run, i.e. the classification of all
digits and for all parameter values of v, consumed less
than 5 minutes of CPU computation.

One possible approach to reduce further the computa-
tional complexity of RVPS is the usage of efficient algo-
rithms to determine the nearest neighbor elements. Such
algorithms approximate efficiently the nearest neighbors,
rather than to determine the exact nearest neighbors
(see [27] for more details).

VII. CONCLUSION

We discussed, compared and benchmarked RVNS,
RVPS and one-class SVM. RVPS was identified as a
threshold 1-NN classifier which can be modified straight-
forwardly in Parzen Window estimator. However, RVPS
suffers under a high runtime complexity and therefore has
limited applicability, for real-world classification prob-
lems, i.e. classification problems with a large number of
training examples.

One feasible approach to overcome this limitation is
the reduction of the training examples e.g. with randomly
sampling a subset of the original training set or with



reduction techniques as k-means clustering. The one-
class SVM is not affected by such a high runtime com-
plexity problem as the final decision function depends
only on the support vectors, rather than on all train-
ing examples. Moreover, the one-class SVM is capable
of dealing with high-dimensional classification problems
without suffering under the the curse of dimensionality.
In contrast, the RNVS is limited on low-dimensional
classification problems. It was therefore not a great
surprise that RVNS failed on the high-dimensional digit
recognition experiment because previous theoretical in-
vestigations showed that RVNS suffer under the curse of
dimensionality, whereas RVPS and one-class SVM do not
present such a problem. Hence, arguments stated by Ji
and Dasgupta, with regard to RVPS and one-class SVM
and the superiority of RNVS are neither justifiable nor
supportable.

We conclude this paper with the insight formulated by
Vladimir Vapnik [10] “Nothing is more practical than a
good theory”.
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v 0 1 2 3 4 5 6 7 8 9 mean stdev
0.01 0.7739 0.8202 0.2556 0.3769 0.7940 0.2502 0.8865 0.5879 0.5596 0.7034 0.6008 0.2360
0.0215 0.0272 0.0431 0.0204 0.0108 0.0322 0.0495 0.0280 0.0574 0.0582 0.0348 0.0163
0.9514 0.9719 0.3597 0.4833 0.8281 0.3186 0.9143 0.7323 0.5618 0.7948 0.6916 0.2440
0.0752 0.0818 0.0862 0.0612 0.0217 0.0645 0.0792 0.0654 0.0919 0.0679 0.0695 0.0195
0.9735 0.9887 0.4819 0.6330 0.8546 0.4013 0.9466 0.8241 0.6484 0.8405 0.7592 0.2073
0.1290 0.1363 0.1465 0.0816 0.0760 0.0967 0.0990 0.1214 0.0919 0.1262 0.1104 0.0244
0.9878 0.9943 0.5599 0.7206 0.8766 0.4641 0.9677 0.8812 0.6856 0.8639 0.8001 0.1848
0.1612 0.1818 0.2155 0.1122 0.1413 0.1075 0.1188 0.1869 0.1149 0.1650 0.1505 0.0373

TABLE II
ONE-CLASS SVM CLASSIFICATION RESULTS FOR TRAINING AND TESTING SET WHICH IS RANDOMLY SAMPLED FROM THE ORIGINAL SETS. THE
REDUCED SETS HAVE A SIZE OF 10% OF THE ORGINAL SETS. THE RBF KERNEL IS USED WITH PARAMETER v = {0.01,0.05,0.1,0.15}. THE
UPPER ROW SHOWS FOR EACH v-VALUE THE DETECTION RATE, THE LOWER ROW THE FALSE ALARM RATE. THE LAST COLUMN SHOWS THE

0.05

0.1

0.15

MEAN AND STANDARD DEVIATION VALUE OF THE DETECTION RATE AND FALSE ALARM RATE OVER ALL DIGITS.

r 0 1 2 3 4 5 6 7 8 9 mean stdev
6.2 0.9944 0.9426 0.9264 0.9013 0.7962 0.9272 0.9132 0.7939 0.8378 0.7881 0.8821 0.0726
' 0.1720 0.0090 0.4310 0.1836 0.0978 0.2043 0.1089 0.0373 0.2643 0.0485 0.1556  0.1262
6.3 0.9922 0.9359 0.9015 0.8858 0.7797 0.8985 0.9010 0.7749 0.8258 0.7759 0.8671 0.0746
) 0.1612 0.0090 0.4224 0.1530 0.0760 0.1935 0.0891 0.0373 0.2068 0.0388 0.1387 0.1212
6.4 0.9900 0.9292 0.8846 0.8558 0.7610 0.8809 0.8954 0.7648 0.8148 0.7458 0.8522 0.0798
) 0.1505 0.0090 0.3793 0.1326 0.0434 0.1505 0.0693 0.0373 0.1839 0.0388 0.1194 0.1093
6.5 0.9867 0.9101 0.8585 0.8337 0.7345 0.8621 0.8820 0.7480 0.8017 0.7179 0.8335 0.0847
' 0.1075 0.0090 0.2931 0.1326 0.0434 0.1290 0.0594 0.0373 0.1724 0.0291 0.1012 0.086
6.6 0.9801 0.9078 0.8416 0.8037 0.7191 0.8379 0.8687 0.7245 0.7754 0.6989 0.8157 0.0897
) 0.0860 0.0090 0.2241 0.1326 0.0434 0.1182 0.0495 0.0373 0.1494 0.0291 0.0878 0.0674
6.7 0.9713 0.8921 0.8144 0.7760 0.7004 0.7949 0.8487 0.7077 0.7458 0.6767 0.7928  0.0925
' 0.0645 0.0090 0.1982 0.0918 0.0434 0.0860 0.0495 0.0373 0.1494 0.0291 0.0758 0.0584
6.8 0.9547 0.8764 0.7907 0.7339 0.6850 0.7618 0.8387 0.6920 0.7185 0.6610 0.7712 0.0941
) 0.0537 0.0090 0.1551 0.0918 0.0 0.0537 0.0297 0.0280 0.1149 0.0291 0.0565 0.0495
TABLE III
RVPS CLASSIFICATION RESULTS FOR DIFFERENT HYPERSPHERE RADII 7 = {6.2,6.3,...,6.8}. THE TRAINING AND TESTING SET IS
RANDOMLY SAMPLED FROM THE ORIGINAL SETS AND HAVE A SIZE OF 10% OF THE ORGINAL SETS.
r 0 1 2 3 4 5 6 7 8 9 mean stdev
6.2 0.9481 0.9067 0.7714 0.7006 0.6883 0.7475 0.8576 0.7133 0.6834 0.6499 0.7666  0.1027
' 0.0107 0.0090 0.0775 0.0510 0.0108 0.0107 0.0198 0.0186 0.0574 0.0097 0.0275 0.0249
6.3 0.9283 0.8943 0.7500 0.6651 0.6696 0.7188 0.8320 0.7054 0.6374 0.6231 0.7424 0.1075
) 0.0107 0.0090 0.0603 0.0510 0.0108 0.0107 0.0198 0.0093 0.0459 0.0097 0.0237 0.0203
6.4 0.9040 0.8786 0.7115 0.6363 0.6552 0.6802 0.8175 0.6875 0.6144 0.6020 0.7187  0.1092
' 0.0 0.0090 0.0517 0.0408 0.0108 0.0107 0.0198 0.0093 0.0459 0.0 0.0198  0.0191
6.5 0.8787 0.8651 0.6911 0.6008 0.6321 0.6515 0.7997 0.6696 0.5717 0.5808 0.6941 0.1141
) 0.0 0.0090 0.0344 0.0306 0.0108 0.0107 0.0198 0.0093 0.0344 0.0 0.0159 0.0131
6.6 0.8434 0.8494 0.6640 0.5620 0.6134 0.6130 0.7697 0.6550 0.5421 0.5562 0.6668  0.1153
) 0.0 0.0090 0.0258 0.0204 0.0108 0.0107 0.0099 0.0 0.0344 0.0 0.0121  0.0116
6.7 0.8092 0.8348 0.6300 0.5388 0.5903 0.5678  0.7497 0.6382 0.5049 0.5317 0.6395 0.1186
' 0.0 0.0090 0.0172 0.0204 0.0 0.0107 0.0 0.0 0.0344 0.0 0.0091 0.0117
6.7 0.7706 0.8089 0.5938 0.5033 0.5704 0.5292 0.7208 0.6103 0.4654 0.5117 0.6084 0.1192
) 0.0 0.0090 0.0172 0.0204 0.0 0.0107 0.0 0.0 0.0344 0.0 0.0091 0.0117
TABLE IV
RVPS CLASSIFICATION RESULTS FOR DIFFERENT HYPERSPHERE RADII 7 = {6.2,6.3,...,6.8}. THE TRAINING IS REDUCED BY MEANS OF

k-MEANS CLUSTERING TO A SIZE OF 10% OF THE ORGINAL TRAINING SET. THE TESTING SET IS RANDOMLY SAMPLED FROM THE ORIGINAL
TESTING SET AND HAS A SIZE OF 10% OF THE ORIGINAL TESTING SET.



