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Abstract. As new code-based defense technologies emerge, attackers
move to data-only malware, which is capable of infecting a system with-
out introducing any new code. To manipulate the control �ow without
code, data-only malware inserts a control data structure into the system,
for example in the form of a ROP chain, which enables it to combine ex-
isting instructions into a new malicious program. Current systems try to
hinder data-only malware by detecting the point in time when the mal-
ware starts executing. However, it has been shown that these approaches
are not only performance consuming, but can also be subverted.
In this work, we introduce a new approach, Code Pointer Examination
(CPE), which aims to detect data-only malware by identifying and clas-
sifying code pointers. Instead of targeting control �ow changes, our ap-
proach targets the control structure of data-only malware, which mainly
consists of pointers to the instruction sequences that the malware reuses.
Since the control structure is comparable to the code region of traditional
malware, this results in an e�ective detection approach that is di�cult
to evade. We implemented a prototype for recent Linux kernels that is
capable of identifying and classifying all code pointers within the ker-
nel. As our experiments show, our prototype is able to detect data-only
malware in an e�cient manner (less than 1% overhead).
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1 Introduction

Malware is without doubt one of the biggest IT security threats of our time. This
is especially true for kernel-level malware, which runs at the highest privilege
level and is thus able to attack and modify any part of the system, including the
operating system (OS) itself. However, even kernel-level malware has a weak-
ness that is well-suited for its detection: in order to execute, the malware has to
load its malicious instructions onto the victim's system and thereby e�ectively
change its codebase. This makes current kernel-level malware vulnerable to code
integrity-based defense mechanisms, which prevent or detect malicious changes
to the code regions of the system. It is not surprising that validating the integrity
of the system's code regions became a key approach to counteract malware. In
the meantime, commodity OSs employ a multitude of mechanisms that protect



the system's codebase (e.g. W⊕X, secure boot, etc.) and researchers presented
sophisticated Code Integrity Validation (CIV) frameworks that are capable of re-
liably and e�ciently detecting malicious changes to the code regions of userspace
programs [20] as well as modern OS kernels [17].

As code integrity mechanisms become more and more widespread, attackers
are forced to �nd new ways to infect and control a system. A likely next step
in malware evolution is thereby data-only malware, which solely uses instruc-
tions that already existed before its presence to perform its malicious compu-
tations [14]. To accomplish this, data-only malware employs code reuse tech-
niques such as return-oriented programming (ROP) or jump-oriented program-
ming (JOP) to combine existing instructions into new malicious programs. This
approach enables the malware form to evade all existing code-based defense ap-
proaches and to persistently infect a system without changing its codebase [30].
Despite this capability and the substantial risk associated with it, there only
exist a handful of countermeasures against data-only malware so far, and those
can often be easily circumvented [6,9,13,24].

In this paper, we explore a new approach to the detection of data-only mal-
ware. The key idea behind this approach is to detect data-only malware based
on �malicious� pointers to code regions. For simplicity we refer to them as code
pointers. Similar to traditional malware, data-only malware has to control which
reused instruction sequence should be executed when. To achieve this, data-only
malware makes use of a control structure that contains pointers to the instruc-
tions that should be (re)used. This control structure can essentially be seen as
the �code region� of the data-only program that the malware introduces. By
identifying malicious code pointers in memory, we in essence aim to apply the
idea of code integrity checking to the �eld of data-only malware by detecting
malicious control data within the system. For this purpose, we introduce the
concept of Code Pointer Examination (CPE).

The idea behind CPE is to identify and examine each possible code pointer
in memory in order to classify it as benign or malicious. This is essentially a
two-step process: In the �rst step, we iterate through the entire memory of
the monitored machine with a byte by byte granularity in order to identify all
code pointers. In the second step, we classify the identi�ed code pointers based
on heuristics. As our experiments showed, this approach results in an e�ective
and high-performance (less than 1% overhead) detection mechanism that can
detect data-only malware and is well-suited for live monitoring as well as forensic
investigations.

Since the OS is the integral part of the security model that is nowadays used
on most systems, we focus our work primarily on the Linux kernel. We chose this
OS, since it is open and well documented, which makes it easier to understand
and reproduce our work. However, the concepts and ideas that we present are
equally applicable to userspace applications and other OSs such as Windows.



In summary we make the following contributions:

� We present CPE, a novel approach to identify and classify code pointers in
64-bit systems.

� We highlight data structures that are used for control �ow decisions in mod-
ern Linux kernels and thus must be considered for control �ow validation.

� We provide a prototype implementation and show that it is both e�ective
and e�cient in detecting control structures of data-only malware.

2 Background

In this section we discuss foundations required for the rest of the paper.
Protection Mechanisms. Intel provides two new protection mechanisms to

make it signi�cantly harder for an attacker to introduce malicious code or data
into the kernel. The �rst protection mechanism is Supervisor Mode Execution
Protection (SMEP). SMEP ensures that only code that is marked as executable
and supervisor is executed in kernel mode. In particular, if the CPU is trying to
fetch an instruction from a page that is marked as a user page while operating
with a Current Privilege Level (CPL) that is equal to zero, SMEP will generate
a protection fault. SMEP is usually used together with the No-eXecute (NX)
bit, which marks a page as not executable.

The second protection mechanism is Supervisor Mode Access Prevention
(SMAP). This feature can basically be seen as SMEP for data; it raises a fault if
data that is marked as user in the page tables is accessed within the kernel. With
both of these features enabled, the kernel is thus unable to access any userspace
memory. In combination, this signi�cantly reduces the amount of memory that
is usable as gadget space for an attacker.

Runtime Code Validation. A key idea that our work builds upon is run-
time code validation. While code-based defense mechanisms such as W⊕X and
secure boot ensure the integrity of code at load time, runtime code validation
guarantees that all code regions of a system are coherent and valid at any point in
time during its execution [17]. For this purpose, the code of the protected system
is constantly monitored and the legitimacy of all observed changes is veri�ed. As
a result, any modi�cation or extension of the existing codebase can be detected
and prevented. To illustrate this, we brie�y describe the runtime code validation
framework presented by Kittel et al. [17], which serves as a foundation for this
work.

Kittel et al. created a runtime code validation framework that is capable of
reliably validating the integrity of all kernel code pages at runtime. To isolate the
monitoring component from the protected system, the proposed system makes
use of virtualization. Once monitoring begins, the validation framework �rst
iterates through the page tables of the system to obtain a list of all executable
supervisor pages. Since the page tables are the basis for the address translation
conducted by the underlying hardware, this approach e�ectively enables the
framework to reliably determine which memory regions are marked as executable
and could thus contain instructions.



In the next step, the monitor obtains the list of loaded kernel modules from
the monitored system using virtual machine introspection (VMI). Based on this
information the framework simulates the loading process of each of the modules
as well as the kernel image to obtain a trusted and known-to-be-good state of
the code regions that can later on be compared to the current state of the code
regions. To accomplish this, the framework requires access to a trusted store
that contains all modules as well as the kernel binary that are executing in
the monitored system. This trusted store is implemented by storing all trusted
binary �les within the hypervisor.

Once the loading process has been simulated, the trusted code pages con-
tain all load time changes that the kernel applies. However, modern kernels may
also patch code regions at runtime in order to increase compatibility and per-
formance. As a result, the trusted code pages may at this point still di�er from
the code pages that are currently used by the monitored system. To identify
whether runtime changes have been applied, each of the trusted code pages is
compared byte by byte with its counterpart in the protected system. If a di�er-
ence is observed, the framework attempts to validate the changes by determining
whether the change was conducted by one of runtime patching mechanisms that
the kernel uses. The individual validation steps thereby heavily depend on the
hardware con�guration of the monitored system as well as the runtime patch-
ing mechanisms that it uses. The interested reader can �nd an overview of the
individual runtime patching mechanisms employed by the Linux kernel in [17].

Data-only Malware. Runtime code validation frameworks e�ectively hin-
der an attacker from introducing malicious instructions into a system as this
new code will be detected and prevented from execution. To be able to control a
system under such circumstances, attackers must thus resort to malware forms
that leave the codebase of the attacked system untouched. The only malware
form that is currently known to be capable of such a feat is data-only malware,
which alters the control �ow of the infected system based on specially crafted
data structures [14,30].

In particular, data-only malware reuses the instructions that already existed
on the target system before the malware arrived to perform its malicious oper-
ations. This is achieved by applying code reuse techniques, commonly used in
the �eld of binary exploitation, to the problem of malware creation. Well-known
examples of such techniques are ROP [27], JOP [3] and ret2libc [4].

To control the execution of the system, code reuse techniques leverage a
control data structure that consists of pointers to existing instruction sequences.
In general one cannot reuse arbitrary instruction sequences; instead, each of the
reused sequences must ful�ll a particular property. For example, in the case of
ROP, each reused instruction sequence must end with a return instruction. The
property of the return instruction is thereby that it will load the address which
currently resides on top of the stack into the instruction pointer. This enables
us to control the execution of the system as follows: our �rst reused instruction
sequence will point the stack pointer to our control data structure in memory.
Since the control structure now resides on the stack, the execution of the return



instruction at the end of each reused sequence will obtain the address of the next
sequence from the control structure and initiate its execution. Consequently, the
return instruction provides the �transition� between the individual sequences
whose addresses are contained within the control structure.

While code reuse exploits usually only make use of a very small control
data structure that simply allocates a writable and executable memory region
which is then used to execute traditional shellcode, control data structures of
data-only malware are in general quite large. The reason for this is that data-
only malware solely relies on code reuse to function. Each functionality that
the malware provides must be implemented by code reuse. The result are huge
chains that contain hundreds of reused instruction sequences [30]. However, due
to the increasing proliferation of code integrity mechanisms, attackers will likely
transition to this type of malware to attack modern OS kernels.

3 Attacker Model & Assumptions

In this work we assume that the monitored system is protected by a virtualization-
based runtime code integrity validation framework. In addition, we assume that
an attacker has gained full access to the monitored system, which she wants to
leverage to install kernel malware. While the attacker can, in principle, mod-
ify any part of the system, the code validation framework will detect some of
the changes that the attacker may conduct. Most importantly, it will detect
any changes to executable kernel code and will in addition enforce SMEP and
SMAP from the hypervisor-level. As a result, the attacker is forced to use data-
only malware to infect the kernel. In this process, the control structure that is
used by the attacker must reside within kernel's memory space since SMAP is in
place. We also assume that the kernel's identity mapping which maps the entire
physical memory into kernel space is marked as usermode in the page tables.
A similar approach was previously proposed by Kemerlis et al. [15], in which
pages that are used by userspace applications are temporarily unmapped from
the identity mapping. Finally, we assume that the data-only malware introduced
into the system by the attacker is persistent, i. e. will permanently reside within
the memory of the target system, as otherwise it could not be triggered by an
external event. Notice that this is usually the case for malware as Petroni and
Hicks [22] showed.

4 Related Work

There is a plethora of work that is concerned with verifying the integrity of
software. The existing research can thereby be roughly divided into two parts.
The �rst branch of research focuses on the integrity of the system's code re-
gions. This led to the development of various frameworks that are capable of
validating the integrity of the codebase of applications as well as the kernel code
sections [12,17,20]. This work builds upon said research by assuming that the



code of the monitored system cannot be modi�ed by an attacker due to fact that
it is protected by such a framework.

The second branch of research, which our work belongs to, focuses on the
integrity of the kernel's data and especially the kernel's control data. A pop-
ular approach in this regard is Control Flow Integrity (CFI) validation, which
aims to dynamically validate the target of each branch instruction [1,16]. This
is accomplished by tracing and monitoring every indirect branch and the cur-
rent stack pointer of the inspected machine, implementing a shadow stack, or
using the performance counters of the monitored system to trace unpredicted
branches [7,21,33,34]. Unfortunately, however, current approaches not only su�er
from a signi�cant performance overhead, but also rely on invalid assumptions,
which makes them vulnerable to evasion attacks [6,9,13,26].

Instead of ensuring control �ow integrity for the entire kernel, there also
have been approaches that solely focus on the discovery of hooks, which are
often used by rootkits and other malware forms to intercept events within the
system [31,32]. During this process, existing approaches rely on the assumption
that only persistent control data can be abused for hooking. As in the case of CFI,
this assumption is invalid and can be used to circumvent existing mechanisms by
targeting transient control data instead [30]. Thus, neither hook-based detection
nor CFI mechanisms are currently capable of countering data-only malware.

In addition, there has been work aiming to reconstruct the kernel data struc-
tures and their interconnection on the hypervisor level in order to provide data
integrity checking [5,19,11,25]. The basic idea hereby is to parse the entire ker-
nel code to be able to reconstruct the dependencies of di�erent data structures
(points-to analysis) and to construct a map of kernel data structures. However,
current approaches are so far unable to reconstruct the entire graph of kernel
data structures, which allows data-only malware to evade detection by leveraging
techniques such as DKSM [2].

An alternative approach, similar to the one proposed in this work, aims to
scan for pointers to executable code in 32-bit userspace memory [23,28]. Unfor-
tunately, this approach has a high number of false positives on 32-bit systems.
Therefore, each detected code pointer is further analyzed using speculative code
execution.

Finally, Szekeres et al. [29] introduced the concept of Code-Pointer Integrity
(CPI), the requirement to enforce the integrity of code pointers in memory. An
implementation of CPI that is based on memory splitting was then proposed by
Kuznetsov et al. [18]. In their work they introduce a compile time instrumenta-
tion approach that protects control �ow relevant pointers. The basic idea thereby
is to separate control �ow relevant pointers into a separated space in memory
and to limit access to that area. Thus they split process memory into a safe
region and a regular region, where the safe region is secured by the kernel and
can only be accessed via memory operations that are autogenerated and proven
at compile time [18]. However, Evans et al. [10] showed that restricting access to
pointers in memory is not enough, since this separation can still be broken with
the help of side channel attacks.



5 Approach

In this work we aim to detect the control data structure of persistent data-only
malware. In the process, we want to achieve three main goals:

Isolation. Since the main goal of our framework is to detect rather than to
prevent kernel data-only malware infections, it is crucial that the detection
framework is strongly isolated from the monitored target system. This is
why we will leverage virtualization as a building block for our framework.

Performance. The overhead incurred by our detection framework on the mon-
itored system should be as small as possible. Since we use virtualization as
a foundation for our framework, it is thereby of particular importance that
we keep the number of Virtual Machine (VM) exists as small as possible as
they will heavily impact the performance of the overall approach.

Forensic. Due to the ever increasing number of malware attacks, the investiga-
tion of incidents becomes more and more important in order to understand
the approach of an successful attacker and to avoid future breaches. This is
why another crucial goal of our framework is to support forensic investiga-
tions in addition to live monitoring. In this regard, its particular important
that an human investigator can easily assess and analyze the situation once
an anomaly is detected by our framework.

The key idea behind our approach is to detect persistent data-only malware
based on its control structure. As described in Section 2, the control structure
is the most important component of data-only malware that essentially de�nes
which reused instruction sequence should be executed when. Due to this property
it is comparable to the code section of traditional malware, which makes it highly
suitable as a basis for a detection mechanism.

To detect the control structure in memory, we use a three-step process. In the
�rst step, we start by checking the integrity of important control �ow related
kernel objects. This is done for multiple reasons. First, we can use additional
contextual information about these kernel objects, and second, these objects
contain a lot of code pointers by design. By validating these objects at the
beginning, we can increase the performance of our approach, as the code pointer
within these known objects do not need to be validated in the following steps.
We refer to this step as Kernel Object Validation.

In the second step, we identify all code pointers within the kernel's memory
space. Based on this information, in the third step we classify the identi�ed code
pointers into benign and malicious code pointers applying multiple heuristics.
The combination of these latter two steps is the Pointer Examination phase.
Figure 1 provides an overview of this process. In the following, we describe these
steps in more detail. For the sake of simplicity, we thereby focus on the Intel
x64_64 bit architecture and the Linux OS. However, most of what we present
is equally applicable to other OSs such as Windows. While this section provides
an overview of our approach, we defer a discussion of the implementation details
to Section 6.



Fig. 1. Pointer classi�cation within the proposed framework.

5.1 Control Flow Related Data Structures

We �rst describe control �ow relevant kernel objects that we check using special
semantic knowledge in the �rst step of our process.

Kernel Dispatcher Tables and Control Flow Registers. The most
traditional control �ow related data structures are the system call table and the
interrupt descriptor tables. As control �ow related data structures have already
seen a lot of attention, we only mention this type of data structures here for
sake of completeness. Our system checks every entry within these tables and
ensures that it points to the correct function. This can be done by comparing
the entire object to the corresponding version inside a trusted reference binary.
In this step, we also validate the values of all control �ow relevant registers such
the model-speci�c registers (MSRs) and the Debug registers.

Tracepoints. Tracepoints are another type of data structure that is control
�ow relevant. An administrator can use the tracepoints feature to insert arbitrary
hooks into the kernel's control �ow that are executed whenever a certain point
in the kernel's control �ow is hit and the corresponding tracepoint is enabled.
The addresses of the callback functions are stored in a list and are sequentially
called by the kernel once the tracepoint is triggered. Tracepoints impose a big
problem for control �ow integrity validation as arbitrary function addresses can
be inserted into all tracepoint locations at runtime. To counter this threat, we
ensure that every hook that is installed with this mechanism calls a valid function
within the Linux kernel.

Control Structures For Kernel Runtime Patching. To manage di�er-
ent runtime-patching mechanisms, the kernel maintains a variety of data struc-
tures. These data structures in turn contain pointers to kernel code, as they need
to store the locations where kernel code should be patched at runtime. In our
approach we check the integrity of the related data structures.

Kernel Stacks. Another examined type of data structure is the kernel stack
of each thread in the system. We separate each kernel stack into three parts: At
the very beginning of the stack, the active part of the stack is located. This part
is empty if the corresponding process is currently executing in userspace. Next



to the active part of the stack, old obsolete stack content is residing. On the very
top of the stack, after all usable space, resides a structure called thread_info.
It contains the thread's management information, for instance a task_struct

pointer and the address limit of the stack.
While it is possible to validate the active part of the stack and its manage-

ment structure, an attacker could use the old, currently unused stack space to
hide persistent data-only malware. Therefore, this space is �lled with zeros by
our framework when used in live monitoring mode. Otherwise the unused stack
regions are displayed to the forensic analyst for diagnosis and veri�cation.

5.2 Pointer Identi�cation

After we have validated control �ow relevant data structures, we identify all other
code pointers in memory in the second step. To identify code pointers, �rst of
all we need to obtain a list of all executable memory regions within kernel space.
For this purpose, we make use of the page tables used by the hardware. We also
generate a list of all readable pages that do not contain code, as these pages
contain the kernel's data. Note that using this approach we are also able to
support Address Space Layout Randomization (ASLR).

Equipped with a list of all kernel code and data pages, we identify all kernel
code pointers by iterating through each data page byte by byte and interpreting
each 64-bit value as a potential pointer. If the potential pointer points to a code
region (i.e., the 64-bit value represents an address lying within one of the code
pages), we consider it to be a code pointer. While it seems that this very simple
approach might produce many false positives, we like to stress that we did not
observe any false positives during our experiments with various 64-bit Linux
kernels. In our opinion the primary reason for this is that the 64-bit address
space is much larger than the former 32-bit address space and makes it thus
much more unlikely that non pointer values looking like pointers appear within
memory.

5.3 Pointer Classi�cation

After we have found a pointer, we classify it based on its destination address in
order to decide whether it is malicious or benign. In a legitimate kernel there are
multiple targets which a pointer is allowed to point to. In the following, we list
those valid targets and describe how we are able to determine to which category
the pointer belongs to.

Function Pointers. One important type of kernel code pointers are function
pointers, which are frequently used within the kernel. To determine whether a
code pointer is a function pointer, we make use of symbol information that is
extracted from a trusted reference binary of the monitored kernel. Amongst
these symbols are all functions that the kernel provides. We leverage the symbol
list to verify whether a code pointer points to a function or not. In the former
case, we consider the pointer to be benign. Otherwise, we continue with the
classi�cation process in order to determine whether the code pointer belongs



to one of the other categories discussed below. Note that this implies that our
approach might still be vulnerable to data-only malware that solely makes use
of return-to-function (ret2libc).

Return Addresses. Another important type of code pointers are return
addresses. In contrast to a function pointer, which must point to the beginning
of a function, a return address can point to any instruction within a function
that is preceded by a call instruction. To identify whether a code pointer is a
return address, we leverage multiple heuristics. Note that most of the return
addresses are located on a stack which is already checked during the Kernel
Object Validation phase.

Pointers Related to Runtime Patching. A third type of pointer desti-
nations are addresses that are stored by the kernel and point to a location where
dynamic code patching is performed. While most of these pointers are contained
within special objects that are checked in the Kernel Object Validation step as
previously described, there are still some exceptions that must be considered
separately.

Unknown Pointer Destinations. Any code pointer pointing into exe-
cutable code which can not be classi�ed into one of the above categories is
considered to be malicious.

As we intend to identify kernel level data-only malware with our approach
and we assume that the malware is persistently stored in memory, we propose
to execute CPE in regular intervals.

6 Implementation

After describing the general idea of our approach, we cover the details of our
implementation in this section. The code pointer examination framework pre-
sented in this work is based on our kernel code integrity framework [17]. This
framework provides multiple advantages for our implementation:

First, it keeps track of all kernel and module code sections and ensures their
integrity during runtime. In addition, it keeps track of all functions and symbols
that are available inside the monitored kernel, as it already resembles the Linux
loading process. This ensures that the information about the monitored kernel
is binding by its nature, that is, it re�ects the actual state of the monitored
system. In our implementation we can use this database as a ground truth to
classify kernel code pointers.

Secondly, the underlying framework keeps track of all dynamic runtime code
patching that is conducted by the Linux kernel. We use this information to
identify and validate data structures that are related to kernel runtime patching.

Third, our approach is usable for multiple hypervisors, while most of the fea-
tures can also be used to analyze memory dumps in a forensic scenario. Currently
tests have been conducted with both KVM as well as XEN.



6.1 Kernel Object Validation

Before we scan the kernel's memory for pointers, we check the integrity of impor-
tant kernel data structures. This allows to minimize the parts of kernel data that
may contain arbitrary function pointers or other pointers into executable kernel
code. The validation of those structures leverages semantic information about
the kernel that was generated by the underlying code validation framework or
manually collected while analyzing the kernel. In the following, we only list a
couple of examples to illustrate the requirement of this step.

First, we validate various dispatcher tables and the kernel's read-only data
segments. These locations usually contain a lot of kernel code pointers, whereas
the target of each pointer is well de�ned. The validation is performed by com-
paring these objects to the trusted reference versions of the binaries that are
loaded by the underlying validation framework.

Next, we validate kernel data structures used for runtime patching. These are
for example: Jump Labels (__start___jump_table), SMP Locks (__smp_locks),
Mcount Locations (__start_mcount_loc), and Ftrace Events (__start_ftrace_events).
To validate these structures we semantically compare them to the data extracted
from trusted reference binaries by the underlying framework. In addition to these
runtime patching control data structures, there also exist data structures in the
kernel that are used to actually conduct the runtime patch. For clari�cation, we
discuss one example for legitimate kernel code pointers related to self-patching:
the kernel variables bp_int3_handler and bp_int3_addr.

To understand why these pointers are required, we explain how runtime
patching takes place in the Linux kernel. If the kernel patches a multibyte instruc-
tion in the kernel, it can not simply change the code in question. The kernel's
code would be in an inconsistent state for a short period of time, which might
lead to a kernel crash. Thus, the kernel implements a special synchronization
method. It �rst replaces the �rst byte of the change with an int3 instruction.
As a result, every CPU trying to execute this instruction will be trapped. Then
the rest of the space is �lled with the new content. As a last step, the kernel
replaces the �rst byte and noti�es all waiting CPUs. During this process the
address containing the int3 instruction is saved in the variable bp_int3_addr.

This enables the int3 interrupt handler upon invocation to determine whether
the interrupt originates from the patched memory location or not. While the
interrupt handler will simply process the interrupt normally in the latter case, it
will in the former case invoke a speci�c handler whose address is stored within
the variable bp_int3_handler. In the case of a patched jump label, for example,
the handler variable will point to the instruction directly after the patched byte
sequence, which e�ectively turns the sequence into a NOP sequence during the
patching process. Since both of the bp_int3 variables are not reset after patching
is complete, they always point to the last patched location and the last handler
respectively. To solve this issue, our framework checks whether the current value
of the bp_int3_addr points to a self patching location and if the handler address
matches the type of patching conducted.



Finally, we iterate through all pages that contain a stack. Each process run-
ning in a system owns its own kernel stack that is used once the application
issues a system call. To gather the addresses of all stacks from the monitored
host, we iterate through the list of running threads (init_task.tasks) and ex-
tract their corresponding stacks. In case the process is not currently executing
within the kernel, the current stack pointer is also saved within that structure.
Ideally the process is currently not executing in kernel space in which case its
stack must be empty. Otherwise we must validate the contents of the stack.

In order to validate a stack we use the following approach: For each return
address found on the stack, we save the addresses of two functions. First, we save
the address of the function that the return address is pointing to (retFunc).
In addition, we also extract the address of the target, of the call instruction
preceding the return address (callAddr). This is possible, since in most cases, the
destination of the call is directly encoded in the instruction, or a memory address
is referenced in the instruction that can in turn be read from the introspected
guest system's memory.

This information is then used to validate the next return address that is found
on the stack. In particular, the callAddr of the next frame needs to match the
retFunc of the previous stack frame, as the previous function must have called
the function, that the return address is pointing to.

Since it is not possible to extract all call targets using the method described
above, we use an additional mechanism to extract all possible targets of indirect
calls: we monitor the execution of the test systems in a secure environment
and activate the processor's Last Branch Register (LBR) mechanism in order
to extract the call and the target address of every indirect branch instruction
executed by the system's CPU. Using this mechanism we generated a whitelist
of targets for each call for which the target address is generated during runtime.
This list is then also used by our stack validation component. With this we
were, in our experiments, able to validate most of the kernel stacks within our
test system. While this mechanism is not perfect yet, it certainly reduces the
attack surface further.

The entire problem arises because the stack is currently not designed to
be veri�able even under normal circumstances. However, the kernel developers
currently discuss an enhancement to the code that would make stack validation
more reliable, which could, once implemented, be used to improve our current
approach and would allow removal of the whitelist.1

6.2 Code Pointer Examination

After we have checked important data structures, we scan through the rest of
kernel data memory to �nd pointers to executable kernel code. This is achieved
using the following steps: We �rst extract the memory regions of executable
kernel code sections in the monitored virtual machine using the page tables
structure. As a second step, we extract the data pages of the monitored guest

1 https://lkml.org/lkml/2015/5/18/545
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system. For this purpose, we obtain all pages that are marked as supervisor and
not executable in the page tables. These pages contain the data memory of the
kernel and therefore all pointers that are accessible from within the Linux kernel.
Note that the information we use for our analysis is binding, since it is derived
from either the hardware or the trusted kernel reference binaries.

Having obtained the code and data pages, we iterate through the extracted
pages in a byte by byte manner. We interpret each eight byte value (indepen-
dently of its alignment) as a pointer and check whether it points into one of the
memory locations that was identi�ed as containing kernel code. If we found a
pointer that points to executable kernel memory we �rst check if its destination
is contained in the list of valid functions.

In case the pointer does not point to a valid function, we check if the pointer is
a return address. There are currently multiple approaches used in our framework
to identify a return address. First and foremost, a return address must point to an
instruction within a function that is preceded by call instruction. Consequently,
our initial check consists of validating whether the instruction it points to is
actually contained within the function.

For this purpose, we disassemble the function the pointer allegedly points to
from the beginning and verify that the value of the pointer points to a disassem-
bled instruction and not somewhere in between instructions. In such a case, we
additionally ensure a call instruction resides before the instruction the pointer
points to. If any of these conditions fail, we consider the code pointer not to be
a valid return address and continue to the next category.

Most of the return addresses used within the kernel are stored within one
of the kernel stacks. However, there exist a few functions within the kernel that
save the return address of the current function to be able to identify the current
caller of that function. This was �rst introduced as a debug feature to print
the address of the calling function to the user in case of an error. However, in
the meantime this feature is also used for other purposes such as timers. For
example, the struct hrtimer contains a pointer start_site that points to the
instruction after the call instruction that started the timer.

With such a feature in place and used by the kernel it is hard to di�erenti-
ate between legitimate return addresses and specially crafted control structures
for code reuse techniques. To limit this problem we created a whitelist of all
calls to functions that contain the problematic instruction and only allow return
addresses in the kernel's data segment if they point to one of the functions in
question.

If the pointer does not point to a valid function or a return address, the
pointer is considered as malicious and a human investigator is noti�ed. At this
point the system also enriches the error message with the name of the function
or symbol the pointer is pointing into.



7 Evaluation

In this section, we evaluate our approach using the prototype implementation
described in Section 6. In order to determine whether our framework is able to
achieve the goals set in Section 5, we �rst determine its performance charac-
teristics, before we evaluate its e�ectiveness against data-only malware in both
live monitoring as well as forensic applications. We follow this with an in-depth
discussion of the security aspects of our system.

7.1 Experiments

Our host system consisted of an AMD Phenom II X4 945 CPU with 13 GB of
RAM running Linux kernel version 3.16 (Debian Jessie). As guest systems we
used two di�erent VMs running Linux 3.8 as well as Linux 3.16. Each VM had
access to two virtual CPUs and 1 GB of RAM. In these experiments, we used
XEN as the underlying hypervisor.

Performance and False Positives. First of all, we evaluated the per-
formance of our system as well as its susceptibility to false positives. For this
purpose, we used the Phoronix-Test-Suite to run a set of Benchmarks on our
system. In detail, we ran the pts/kernel test suite. We conducted these bench-
mark three times on each test kernel. During the �rst set of tests, we disabled
all external monitoring to obtain a baseline of the normal system performance.
In the second test set, we enabled the code validation component to be able to
di�erentiate between the overhead of our framework and the code validation sys-
tem. Finally, we enabled both the code validation component as well as our new
pointer validation module in order to identify the additional overhead that our
system incurs. During the tests, the integrity validation component was executed
in a loop, if enabled, to stress the guest system as much as possible. The results
of the benchmarks of each set of experiments as well as the overall performance
degradation are shown in Table 1 for Linux 3.8 and in Table 2 for Linux 3.16.

While evaluating the Linux 3.8 kernel, the kernel contained 80 code pages
and 426 data pages. One complete Code Integrity Validation was completed in
255.8 ms, while in the experiment with Code Integrity Validation and Pointer
Examination enabled, one iteration took 567.58 ms (that is 341.78 ms for CPE).
The Linux 3.16 kernel that was used during our evaluation contained 408 code
pages and 986 data pages. The Code Integrity Validation alone took 639.8 ms
per iteration, while the combined CIV and Pointer Examination took 962.0 ms
per iteration (that is 322.2 ms for CPE). Note that these values are mean values.
This shows that it takes less than 1 ms on average to check the integrity of one
page.

As one can see the performance overhead that our framework incurs is very
small. In fact, the use of the underlying Code Validation Component incurs
a larger overhead than our CPE framework. The performance impact of our
system is for the most benchmarks well under one percent. The main reason for
this is that our framework, in contrast to many other VMI-based approaches,
uses passive monitoring of the guest system whenever applicable. As a result,



Test (Unit) w/o CIV (%) CIV & CPE (%)

FS-Mark (Files/s) 32.57 30.10 (8.21%) 31.73 (2.65%)

Dbench (MB/s) 69.84 66.53 (4.98%) 71.54 (−2.38%)

Timed MAFFT Alignment (s) 20.63 20.70 (0.34%) 20.63 (0.00%)

Gcrypt Library (ms) 2857 2853 (−0.14%) 2837 (−0.70%)

John The Ripper (Real C/S) 1689 1689 (0.00%) 1688 (0.06%)

H.264 Video Encoding (FPS) 35.38 35.23 (0.43%) 35.31 (0.20%)

GraphicsMagick 1 (Iter/min) 95 95 (0.00%) 95 (0.00%)

GraphicsMagick 2 (Iter/min) 58 58 (0.00%) 58 (0.00%)

Himeno Benchmark (MFLOPS) 593.59 585.73 (1.34%) 586.24 (1.25%)

7-Zip Compression (MIPS) 4715 4702 (0.28%) 4706 (0.19%)

C-Ray - Total Time (s) 130.96 131.00 (0.03%) 130.99 (0.02%)

Parallel BZIP2 Compression (s) 36.35 36.58 (0.63%) 36.47 (0.33%)

Smallpt (s) 445 445 (0.00%) 446 (0.22%)

LZMA Compression (s) 234.50 236.39 (0.81%) 236.12 (0.69%)

dcraw (s) 124.24 124.38 (0.11%) 124.35 (0.09%)

LAME MP3 Encoding (s) 25.20 25.19 (−0.04%) 25.19 (−0.04%)

Ffmpeg (s) 27.00 27.02 (0.07%) 26.82 (−0.67%)

GnuPG (s) 15.34 14.98 (−2.35%) 14.94 (−2.61%)

Open FMM Nero2D (s) 1137.17 1148.95 (1.04%) 1144.94 (0.68%)

OpenSSL (Signs/s) 173.70 173.73 (−0.02%) 173.80 (−0.06%)

PostgreSQL pgbench (Trans/s) 115.11 114.69 (0.37%) 115.21 (−0.09%)

Apache Benchmark (Requests/s) 10585.45 10481.21 (0.99%) 10506.23 (0.75%)

Table 1. Results of the Phoronix Test Suite for Linux 3.8.

Test (Unit) w/o CIV (%) CIV & CPE (%)

FS-Mark (Files/s) 30.90 31.37 (−1.50%) 31.67 (−2.43%)

Dbench (MB/s) 61.42 60.76 (1.09%) 61.04 (0.62%)

Timed MAFFT Alignment (s) 20.74 20.79 (0.24%) 20.75 (0.05%)

Gcrypt Library (ms) 3747.00 3740 (−0.19%) 3733 (−0.37%)

John The Ripper (Real C/S) 1693.00 1693 (0.00%) 1692 (0.06%)

H.264 Video Encoding (FPS) 34.60 34.32 (0.82%) 34.35 (0.73%)

Himeno Benchmark (MFLOPS) 598.71 582.78 (2.73%) 585.78 (2.21%)

7-Zip Compression (MIPS) 4850.00 4805 (0.94%) 4730 (2.54%)

C-Ray - Total Time (s) 89.80 89.81 (0.01%) 89.80 (0.00%)

Parallel BZIP2 Compression (s) 31.25 31.41 (0.51%) 31.37 (0.38%)

Smallpt (s) 407.00 407 (0.00%) 407 (0.00%)

LZMA Compression (s) 236.62 241.49 (2.06%) 242.17 (2.35%)

dcraw (s) 117.54 117.47 (−0.06%) 117.29 (−0.21%)

LAME MP3 Encoding (s) 23.39 23.41 (0.09%) 23.40 (0.04%)

GnuPG (s) 13.72 13.65 (−0.51%) 13.98 (1.90%)

OpenSSL (Signs/s) 173.63 173.37 (0.15%) 173.57 (0.03%)

Apache Benchmark (Requests/s) 9504.78 9156.01 (3.81%) 9383.66 (1.29%)

Table 2. Results of the Phoronix Test Suite for Linux 3.16.

the guest system can execute through most of the validation process without
being interrupted by the hypervisor, which drastically reduces the performance
overhead of the monitoring. Only for the FSMark benchmark a performance
degradation of about 2.65 percent is noticed on Linux 3.8. This degradation
can not be seen in the results of the benchmark on Linux 3.16. While using



the guest system with monitoring enabled, we did not observe any noticeable
overhead from within the guest system. This clearly shows that our framework
can achieve the performance goal set in Section 5 and is, from a performance
point of view, well suited for real world applications. Sometimes the results
even showed that the tests were better with our pointer examination framework
enabled than without our framework. We argue that this may be due to the fact
that the performance impact of our system is much smaller than the impact of
other standard software within the tested Debian system that also in�uenced
the result.

At the same time we did not observe any false positives during our exper-
iments. That is, when enabled, our system could classify all of the pointers it
encountered during the validation process using the heuristics we described in
Section 5. However, note that we can, due to the design of our system, not rule
out false positives entirely. We perform a more detailed discussion about the
possibility of encountering false positives in Section 7.2.

Malware Detection. Having evaluated the performance of our system and
touched upon its susceptibility to false positives, we continued to evaluate the
e�ectiveness of our framework against data-only malware. For this purpose,
we infected our test VMs with the persistent data-only rootkit presented by
Vogl et al. [30]. We chose this rootkit, since it is, to the best of our knowledge,
the only persistent data-only malware available to date.

While our framework did not detect any malicious code pointers during the
performance experiments, our system immediately identi�ed the various mali-
cious control structures used by the rootkit. In particular, our system identi�ed
the modi�ed sysenter MSR and the modi�ed system call table entries for the
read and the getdents system call during the prevalidation step and thus classi-
�ed the system as malicious. As these hooks are also found by other systems, we
then removed these obvious manipulations manually and once more validated
the system state. While the prevalidation step yielded no results in this case,
the pointer validation found all of the malicious code pointers in memory. This
proves that our framework can be very e�ective against data-only malware even
if the malware avoids the manipulation of key data structures such as the system
call table.

Finally, to evaluate the usefulness of our framework in forensic applications,
we conducted an experiment where we randomly installed the rootkit on the
test VMs while we periodically took snapshots of the guest systems. Our system
detected all of the infected snapshots reliably.

7.2 Discussion

In this section, we provide a detailed discussion of the security of our system.
False Positives. Although we did not encounter false positives throughout

our experiments, we cannot rule out false positives entirely, since our system
relies on heuristics to identify code pointers. However, we like to stress that we
consider the likelihood of encountering false positives in our system to be quite
small on a 64-bit architecture. To encounter a false positive with our system, we



essentially would need to �nd a value in kernel space that contains the address
of a kernel code section even though it is not a pointer. Since the virtual address
space on a 64-bit system has a size of 1.8∗1019 bytes and the kernel code section
typically only has a size of 15megabytes at maximum, the chance of encountering
such a rare case, if all values in memory were uniformly distributed would be
merely 8.5 ∗ 10−11%. And that is only the case if the kernel is not optimized as
the kernel code section even becomes smaller in this case. However, we admit
that this is only the case if the kernel is mapped to a random location within
the address space and not directly to the beginning or the end of the address
space. In other words, we consider a 64-bit address space to be su�ciently large
that the chance of arbitrary data looking like a pointer by chance are small
at best. Consequently, we assume that false positives are not a big issue in
most scenarios. In case of false positives, one could further analyze the detected
pointers using speculative code execution as proposed by Polychronakis [23].
Note that an attacker could also introduce benign data into the system that
will be identi�ed as code pointers by our system. We argue that this kind of
tampering with our system should still be identi�ed as malicious.

ret2libc. When searching for malicious pointers in memory, we currently do
not penalize pointers that point to function entry points. As a consequence, our
system is at the moment unable to detect data-only malware that solely makes
use of entire kernel functions to perform its malicious computations. While this
is certainly a weakness of our approach, it is important to note that this is
a very common limitation that almost all existing defense mechanisms against
code reuse attacks face [8,26]. In fact, to the best of our knowledge, the detection
of ret2libc attacks still remains an open research problem.

In addition, while ret2libc is a powerful technique that is very di�cult to
detect, we argue that it is actually quite di�cult to design pure data-only mal-
ware that solely relies on entire functions to run on a 64-bit architecture. The
main reason for this is that in contrast to 32-bit systems, function arguments in
Linux and Windows are no longer passed on the stack on a 64-bit architecture,
but are provided in registers instead. As a consequence, to create 64-bit ret2libc
data-only malware, an attacker must actually have access to �loader� functions
that allow her to load arbitrary function arguments into the registers that the
calling conventions dictate. Otherwise, without access to loader functions, the
attacker is unable to pass arguments to any of the functions she wants to invoke,
which signi�cantly restricts her capability to perform attacks.

It goes without saying that such loader functions are probably rare if they
exist at all. A possible approach to further reduce the attack surface could thus
be to analyze the kernel code for such loader functions. If they should exist, one
can then monitor the identi�ed functions during execution to detect their use in
ret2libc attacks. We plan to investigate this idea in more depth in future work.

Return Addresses. If an attacker requires gadgets in addition to entire
functions to execute her persistent data-only malware (e.g. to load function
arguments into registers), she can only use a gadget that is directly following
a call instruction. The only location that she can place the required control



structure to without being detected is the kernel stack of a process. Should
a code pointer that points inside a function appear anywhere else within the
kernel memory, it will be classi�ed and identi�ed as malicious by our system. In
addition, due to the fact that our system enforces SMAP from the hypervisor,
the control structure cannot be placed in userspace if it should be executable
from kernelspace. This only leaves a kernel stack for kernel data-only malware.
But even here the attacker faces various constraints. First of all, she can only
make use of gadgets that appear legitimately in the code and that are preceded
by a call instruction, since all other pointers into a function would be classi�ed
as malicious. Secondly, as the kernel stack where the control structure resides
may also be used by the process it belongs to, the attacker must ensure that
her persistent control structure is not overwritten by accident. While this is not
necessarily an issue for data-only exploits, this is crucial in the case of persistent
data-only malware as the persistent control structure of the malware must never
be changed uncontrollably. Otherwise, if the control structure would be modi�ed
in an unforeseen way, it is very likely that the malware will fail to execute
the next time it is invoked. This is comparable to changing the code region of
traditional malware. This is also why our system zeroes all data that belongs
to a memory page that is part of the kernel stack, but currently resides at a
lower address than the stack pointer points to as a �nal defense layer. Since
this data should be unused in a legitimate scenario, zeroing it will not a�ect the
normal system behavior. However, in the case of persistent data-only malware,
this approach may destroy the persistent control structure of the malware, which
will thwart any future execution. This will be case if the malware is currently
executing while our system performs the validation. Since an attacker cannot
predict when validations occur as our system resides on the hypervisor-level,
this makes it di�cult for her to stay unnoticed in the long run.

As a further enhancement one could set the kernel stacks of processes that
are currently not executing to not readable within the page tables. This could for
example be done during the process switch. As a result, the attacker would only
be able to use her control structure when the process on whose kernel stack the
structure resides is currently executing. This raises the bar if the attacker wants
to hook the execution of all processes instead of just one, which is generally the
case.

Taking all this into account we argue that while our system cannot eliminate
persistent data-only malware entirely, it signi�cantly reduces the attack surface.
In future work, we plan to further enhance our detection by developing novel
techniques to validate the legitimacy of a kernel stack that are also applicable
in forensic scenarios. In addition we plan to investigate the applicability of our
approach to userspace applications or an Android environment.

8 Conclusion

In this paper, we have proposed Code Pointer Examination, an approach that
aims to detect data-only malware by identifying and classifying pointers to ex-



ecutable memory. To prove the validity and practicability of our approach, we
employed it to examine all pointers to executable kernel memory in recent Linux
kernels. In the process, we discussed important control �ow relevant data struc-
tures and mechanisms within the Linux kernel and highlighted the problems that
must be solved to be able to validate kernel control data reliably. Our experi-
ments show that the prototype, which we implemented based on the discussed
ideas, is e�ective in detecting data-only malware, while only incurring a very
small performance overhead (less than 1% in most of the benchmarks). In com-
bination, with code integrity validation, we thus provide the �rst comprehensive
approach to kernel integrity validation. While our framework still exhibits a
small attack surface, we argue that it considerably raises the bar for attackers
and thus provides a new pillar in the defense against data-only malware.
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