
Detecting Node Compromise in Hybrid Wireless
Sensor Networks Using Attestation Techniques

Christoph Krauß, Frederic Stumpf�, and Claudia Eckert

Department of Computer Science
Darmstadt University of Technology

Darmstadt, Germany
{krauss,stumpf,eckert}@sec.informatik.tu-darmstadt.de

Abstract. Node compromise is a serious threat in wireless sensor net-
works. Particular in networks which are organized in clusters, nodes act-
ing as cluster heads for many cluster nodes are a valuable target for
an adversary. We present two efficient hardware-based attestation proto-
cols for detecting compromised cluster heads. Cluster heads are equipped
with a Trusted Platform Module and possess much more resources than
the majority of cluster nodes which are very constrained in their capabil-
ities. A cluster node can verify the trustworthiness of a cluster head using
the Trusted Platform Module as a trust anchor and therefore validate
whether the system integrity of a cluster head has not been tampered
with. The first protocol provides a broadcast attestation, i.e., allowing
a cluster head to attest its system integrity to multiple cluster nodes
simultaneously, while the second protocol is able to carry out a direct
attestation between a single cluster node (or the sink) and one cluster
head. In contrast to timing-based software approaches,the attestation
can be performed even if nodes are multiple hops away from each other.

Keywords: Sensor Network, Security, Trusted Computing, Attestation.

1 Introduction

Wireless sensor networks (WSNs) [1] provide a technological basis for many
different security-critical applications, such as military surveillance, critical in-
frastructure protection and surveillance. WSNs can be deployed in unattended
and even hostile environments for monitoring the physical world. The monitored
environment is covered by hundreds or even thousands of sensor nodes with em-
bedded sensing, computation, and wireless communication capabilities. If sensor
nodes are not specially protected, an adversary can easily compromise them, re-
cover information (e.g. keying material) stored on the nodes, and subvert them
to act as authorized nodes in the network to perform insider attacks.

One approach to detect compromised nodes is based on attestation tech-
niques, where sensor nodes must prove that their system has not been modified
� The author is supported by the German Research Foundation (DFG) under grant

EC 163/4-1, project TrustCaps.

F. Stajano et al. (Eds.): ESAS 2007, LNCS 4572, pp. 203–217, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

204 C. Krauß, F. Stumpf, and C. Eckert

by an adversary. Attestation techniques that have already been proposed for
WSNs [2,3,4] are software-based and rely on relatively accurate time measure-
ment. These techniques are unsuitable for attestation along multiple hops and
when static interferences delay message transmissions, which prevents an exact
time measurement. One promising approach for overcoming the shortcomings
of software-based attestation is using the Trusted Platform Module (TPM) as
specified by the Trusted Computing Group (TCG) [5] as the trust anchor for
attestation protocols. The trust anchor is responsible for providing assurance of
delivered attestation values. The TPM provides such a hardware-based trust an-
chor. It also offers certain cryptographic functions which provide the foundation
for attesting the configuration of the local platform to a remote platform. Due
to the large scale and desired low-cost of WSNs, it is not feasible to integrate a
TPM into each individual node. Fortunately, many WSNs are organized in clus-
ters where a minority of nodes perform some special functions. These nodes may
act as cluster heads (CH), performing special duties, such as data aggregation
or key management for a number of cluster nodes (CN).

Since CHs are a valuable target for an adversary, it might be reasonable to
equip them with a TPM in scenarios where a high level of security is desired.
CNs and the sink should be able to verify whether a CH is still trustworthy,
even if it is multiple hops away. Since CNs are very limited in their resources,
attestation protocols must be very lightweight, i.e., requiring only few, small
messages and cheap operations (such as symmetric encryption).

In this paper, we propose two efficient TPM-based attestation protocols for
hybrid WSNs organized in clusters. Networks consist of low-cost CNs and more
expensive TPM-equipped CHs. The first protocol allows a number of CNs to si-
multaneously validate the trustworthiness of a CH in regular intervals, while the
second protocol enables an individual CN (or the sink) to verify the trustwor-
thiness of a CH at any time. Both protocols do not require expensive public key
cryptography on the CNs and the exchanged messages are very short. Due to the
unreliable, multihop communication, we can only prove the trustworthiness of
the CHs, but not untrustworthiness. In addition, these protocols are not limited
to cluster-based scenarios. For example the attestation protocols can be used in
WSNs where many (mobile) TPM-equipped sinks exist, which are deployed in
insecure locations. The network operator can verify if the data received from
these sinks is still trustworthy.

2 Background on TCG-Mechanisms

The core of the TCG specifications [5] is the TPM, which is basically a smartcard,
that serves as a trust anchor for trust establishment. The TPM offers protected
storage for cryptographic keys and hardware enhanced calculation engines for
random number generation, key-calculation and hash computation. Although
the TPM chip was not specified as necessarily being tamper-resistant, many
hardware vendors offer security mechanisms for preventing tampering and the
unauthorized extraction of protected keys, such as active security sensors.

Detecting Node Compromise in Hybrid WSNs 205

The TPM can generate and store cryptographic keys, both symmetric and
asymmetric, and perform asymmetric cryptographic operations. The asymmetric
keys can either be marked as migratable or non-migratable, which is specified
when the key is generated. Non-migratable keys are always protected by the
TPM and must not leave its protected storage.

The TPM also offers so-called Platform Configuration Registers (PCRs), which
are used to store platform-dependant configuration values. These registers are ini-
tialized on power up and are used to store software integrity values. Software com-
ponents (BIOS, bootloader, operating system, applications) are measured by the
TPM before execution and the corresponding hash-value is then written to a spe-
cific PCR by extending the previous value:

Extend(PCRN , value) = SHA1(PCRN ||value) (1)

SHA1 refers to the cryptographic hash function used by the TPM and ||
denotes a concatenation. The trust anchor for a so-called trust-chain is the Core
Root of Trust Measurement (CRTM), which resides in the BIOS and is first
executed when a platform is powered up. The CRTM then measures itself and
the BIOS, and hands over control to the next software component in the trust-
chain. For every measured component an event is created and stored in the Stored
Measurement Log (SML). The PCR values can then be used together with the
SML to attest the platform’s state to a remote entity. To assure that these
values are authentic, they are signed with a non-migratable key, the Attestation
Identity Key (AIK). The remote platform can verify the signature and compare
these values with reference values to see if the system integrity is trustworthy.

The TPM also offers a concept called sealing, which allows a data block to
be bound to a specific platform configuration. A sealed message is created by
selecting a range of platform configuration registers, a non-migratable key, and
the data block which should be sealed. The TPM is then able to decrypt and
transfer the sealed data block, only if its current platform configuration matches
the platform configuration from when the sealing was executed. Sealing provides
the assurance that protected messages are only recoverable when the platform
is in a known system state.

3 Attestation Techniques

In this section we compare different attestation techniques and evaluate their
applicability for WSNs.

3.1 TPM-Based Attestation

Existing attestation protocols [6,7] are based on the TPM’s ability to report the
system configuration to a remote party. These approaches are mainly developed
for non-resource constrained computer systems and requires each communication
partner to perform public key cryptography. The complete system configuration,

206 C. Krauß, F. Stumpf, and C. Eckert

as denoted in the PCRs of the attesting entity, must be transmitted to the ver-
ifying entity. The verifying entity evaluates the trustworthiness of the attested
entity by comparing the received SML and PCR values with given reference
values. Since the verifying entity receives the current platform configuration di-
rectly, we refer to this as explicit attestation. However, in hybrid WSNs most
sensor nodes do not possess enough resources to perform public key cryptogra-
phy and the transmission of large messages increases the energy consumption
significantly. This causes explicit attestation to be inapplicable in WSNs.

To perform an attestation in WSNs, computation intensive operations must be
transferred to nodes which posses sufficient computational power, and resource
constrained sensor nodes need only to perform minimal verification computa-
tions. The sealing concept of the TPM enables an attestation without directly
transferring the platform configuration (PCR values and SML). We refer to this
as implicit attestation. This approach minimizes the amount of transmitted data
and does not require public key cryptography on resource constrained nodes.
Sealing provides the functionality to bind data to a certain platform configu-
ration. The TPM releases, i.e., decrypts, this data only if the current platform
configuration is valid. The disadvantage of this approach is that software updates
change the values inside the PCRs. Since this results in inaccessible sealed data,
this approach is not very applicable in non-resource constrained computer sys-
tems, where software configurations change very often through legitimate system
updates. Fortunately, the software configuration of sensor nodes may not change
during the whole lifetime of a WSN. Therefore, the attested entity is only able
to decrypt a sealed data structure if the current platform configuration matches
its initial platform configuration. Our protocols smartly exploit this property to
enable a lightweight attestation of the trustworthiness of the attested entity.

3.2 Software-Based Attestation

The main disadvantage of TPM-based attestation is that the platform
configuration only reflects the initial load-time configuration. Therefore, mem-
ory modifications during the runtime can not be detected, e.g., buffer-overflows.
To overcome this shortcoming, attestation software may measure the memory
and report the values to a remote party. In this case, the attestation software
forms the trust anchor which must be protected against tampering. In [2,3,4],
approaches based on measuring the execution time of an optimal attestation
routine is introduced. The routine cannot be optimized further, i.e., the execu-
tion time cannot be made faster, which prevents an adversary from injecting
malicious code without detection. However, the success of this approach relies
critically on the optimality of the attestation routine and on minimal time fluc-
tuations of the expected responses. Particularly in WSNs with multihop veri-
fication and external influences, time intervals for responses can vary. In these
cases the attestation would fail, even though a sensor node is in a trustworthy
system state.

Detecting Node Compromise in Hybrid WSNs 207

In scenarios where attestation along multiple hops is required or external inter-
ferences prevent an exact time measurement, timing-based software attestation
techniques are not applicable.

4 Setting and Notation

In this section we explain the setting and formulate the assumptions which are
of concern for the protocols we propose.

4.1 Setting

We are considering a hybrid WSN, which is deployed in an unattended, hostile
environment. The network consists of low-cost nodes and more expensive TPM-
equipped nodes. TPM-equipped nodes act as cluster heads (CHs) for a number
of low-cost cluster nodes (CNs), performing operations such as data aggregation,
key management and so on.

We assume an adversary who tries to compromise a CH to access stored in-
formation, e.g., keying material, and misuse the node to perform insider attacks,
e.g., injecting false reports to cause false alarms. Therefore, the adversary can
try to read out data or re-program the node to behave according to the purposes
of the adversary. Furthermore, due to wireless communication, the adversary can
eavesdrop on all traffic, inject packets, or replay old packets.

CNs are very limited in their storage, computational, communication, and en-
ergy resources. However, they have enough space to store a few bytes of keying
information and are able to perform some basic operations, such as comput-
ing hash functions, symmetric encryption, etc., but they are not able to perform
public key cryptography. These nodes might be comparable to the Berkeley Mica
Motes [8]. CHs are assumed to possess much more computing power, memory
capacity, and energy resources, e.g., comparable to the resources of the Stargate
platform [9]. The TPM, integrated in the CHs, is used to protect keys and other
security related data. We do not require any modification of the TPM, such
as adding support for symmetric encryption with external data. Since present
TPMs only support internal symmetric encryption, some data must be stored
temporarily in the Random Access Memory (RAM) of a CH for further pro-
cessing. We assume that access to this temporarily stored data is not possible.
As soon as future TPMs support symmetric encryption with external data this
assumption can be revoked. To subvert a CH, an adversary must re-program
and reboot the node to either modify the system so that access to the RAM
is possible or to access the security related data directly. After a reboot with a
modified system, the platform configuration is changed and the access to sealed
data is no longer possible. Thus, this data is neither accessible directly to the ad-
versary nor loaded into the RAM. To achieve the binding of cryptographic keys
to a specific platform configuration, which subsequently prevents rebooting in a
compromised system configuration, we assume that we have a reduced measure-
ment architecture, such as IBM’s IMA [10], that extends the trust chain specified

208 C. Krauß, F. Stumpf, and C. Eckert

by the TCG up to the firmware and therefore includes integrity measurement of
the kernel and operating system of the CH.

Sensor nodes (CHs and CNs) can be deployed randomly, e.g., via aerial scat-
tering. That means the immediate neighboring nodes of any sensor node are not
known in advance. The sensed data is sent via multihop communication to the
sink. The sink is assumed not to be constrained in its resources and cannot be
compromised. It possesses all keying material shared with the sensor nodes.

4.2 Notation

CHs are denoted as CHi, i = 1, . . . , a and the CNs are denoted as CNj , j =
1, . . . , b, where b � a.

E(m, e) denotes the encryption of data m using an encryption function E and
encryption key e. Encrypted data m using the key e is denoted with {m}e. The
decryption of {m}e using a decryption function D and the decryption key d is
denoted with D({m}e, d).

Applying a cryptographic hash function h on data m is denoted with h(m). A
one-way hash chain [11] stored on CHi is denoted with CCHi = cCHi

0 , . . . , cCHi
n .

The hash chain is a sequence of hash values of some fixed length l generated by a
hash function h : {0, 1}l → {0, 1}l by applying the hash function h successively
on a seed value cCHi

0 so that cCHi
v+1 = h(cCHi

v), with v = 0, 1, . . . , n − 1.
A specific state of a CHi is referred to as platform configuration PCHi :=

(PCR0, . . . ,PCRp) and is stored in the appropriate PCRs of the TPM. Data m
can be cryptographically bound to a certain platform configuration PCHi by us-
ing the TPM Seal command. Using the TPM Unseal command, the TPM releases,
i.e., decrypts m only if the platform configuration has not been modified. This
concept allows an implicit attestation to be performed without a direct validation
of the PCRs by a CN. Since we are abstracting the TPM Seal and TPM Unseal
commands, we denote our commands with Seal and Unseal. Given an non-
migratable asymmetric key pair (eCHi , dCHi) we denote the sealing of data m
for the platform configuration PCHi with {m}eCHi

PCHi
= Seal(PCHi , eCHi , m). To

unseal data m it is necessary that the current platform configuration P ′
CHi

is
equal to PCHi : m = Unseal(P ′

CHi
= PCHi , dCHi , {m}eCHi

PCHi
).

5 Attestation Protocols

In this section we describe our two proposed protocols which enable a CN to
verify the platform configuration of a CH. These protocols represent some basic
primitives which can be used in conjunction or in more complex protocols. Our
proposed protocols enable only CNs to verify the platform configuration of CHs.
To verify the trustworthiness of received data from CNs, a CH has to perform
additional mechanisms like redundancy checks or voting schemes.

We have adapted the sealing technique provided by the TPM to realize the
implicit attestation (see Section 2). In the initialization phase the platform con-
figuration of a CH is trustworthy. Data needed to perform a successful attestation

Detecting Node Compromise in Hybrid WSNs 209

is sealed in this phase to this platform configuration. Access to this sealed data
is only possible if the CH is in the initial specified platform configuration. Com-
promising a CH results in a different platform configuration where access to this
data is not possible. Thus, a successful attestation is no longer possible.

The first proposed protocol enables a broadcast attestation, where a CH
broadcasts its platform configuration to its CNs in periodic intervals. This en-
ables CNs to verify the platform configuration of the CH simultaneously. The
second protocol enables a single CN (or the sink), to either individually verify
the platform configuration of a CH using a challenge response protocol or to
send data to a CH and receive a confirmation that the data has been received
correctly and that the CH is trustworthy.

5.1 Periodic Broadcast Attestation Protocol (PBAP)

In some scenarios, many CNs perform measurements in parallel and in regular
intervals. For example, a couple of CNs monitor the temperature in a specific
region of the WSN. The measurement is performed every 10 minutes to see the
change over time. Therefore, the CNs report their measurement nearly in parallel
in specific time intervals to their CH. If each CN performs an individual attesta-
tion of the CH, this results in an avoidable overhead. It might be desirable that
all CNs are able to nearly simultaneously verify if their CH is still trustworthy
using an efficient mechanism.

The PBAP adapts the idea of μTESLA [12] to use one-way hash chains for
authentication and extends it to enable attestation in hybrid WSNs. The sealing
function of the TPM is used to bind a one-way hash chain to the platform
configuration of a CH. A CH releases the values of the hash chain in periodic
intervals, which can be verified by its CNs. The proof of trustworthiness of a CH
is only possible while its platform configuration has not been modified.

The protocol is divided into two phases. In the initialization phase the CHs
and the CNs are preconfigured before deployment. In the attestation phase, CHs
periodically broadcasts an attestation message. This phase normally lasts for the
whole lifetime of the CHs.

Initialization. Before CHi is deployed, it is preconfiguredwith a non-migratable
public key pair (eCHi , dCHi) and a hash chain CCHi . The seed value cCHi

0 of
the hash chain is generated on CHi using the TPM’s physical random number
generator and used by the CPU to perform the additional computations. CHi

is assumed to possess only one valid platform configuration, denoted as PCHi .
After CHi is powered up, a measurement about each component (BIOS, boot-
loader, operating system, applications) is performed, and the related values are
stored in the corresponding PCR registers. Each value of the hash chain CCHi

is sealed to this platform configuration PCHi : {cCHi
0 }eCHi

PCHi
, . . . , {cCHi

n }eCHi

PCHi
=

Seal(PCHi , eCHi , c
CHi
0), . . . , Seal(PCHi , eCHi , c

CHi
n).

Each CNj which interacts with CHi is configured with the last value cCHi
n of

the hash chain CCHi . Since the number of CHs is very small compared to the
number of CHs, the CNs could be preprogrammed with the values of all CHs.

210 C. Krauß, F. Stumpf, and C. Eckert

After deployment, the CNs can only keep the values for its CH and another
certain number of CHs in their vicinity to save memory.

Attestation. CHi and the associated CNs (denoted as CN∗) are loosely time
synchronized. The time is divided into intervals Iλ, λ = 1, . . . , n. At the begin-
ning of each interval, CHi sends a broadcast attestation message to the CNs.
The attestation messages consist of the values of the hash chain released in re-
versed order of the generation and the identifier Iλ of the current interval. If the
platform configuration of CHi has not been modified, it can unseal the values of
the hash chain CCHi . In the first interval I1, CHi unseals the hash value cCHi

n−1

and transmits it together with the interval identifier. In the second interval cCHi
n−2

is unsealed and transmitted and so on. CN∗ check if the interval I1 stated within
the message matches their local interval counter I ′1 within a certain error range.
If they match, CN∗ verify whether h(cCHi

n−1) = cCHi
n . If the equation holds, CHi

is considered trustworthy and the value cCHi
n is overwritten with the value cCHi

n−1 .
In the next interval CHi releases cCHi

n−2 and so on, which are similarly checked.
The protocol is shown in Figure 1 and repeated from λ = 1 to n.

Interval Node(s) Message Action
Iλ CHi Unseal(PCHi , dCHi , {cCHi

n−λ}eCHi
PCHi

) = cCHi
n−λ

Iλ CHi → CN∗ : cCHi
n−λ, Iλ

Iλ CN∗ Iλ
?= I ′

λ

Iλ CN∗ if h(cCHi
n−λ) ?= cCHi

n−λ+1, state of CHi is valid

Iλ CN∗ overwrite cn−λ+1 with cn−λ

.

Fig. 1. Periodic Broadcast Attestation Protocol

Due to unreliable communication, a CN could miss some messages. Thus,
CNs should not immediately declare a CH as being untrustworthy but wait for a
certain threshold of time. If a CN receives messages again, it can resynchronize
by applying the hashfunction multiple times.

5.2 Individual Attestation Protocol (IAP)

Using the IAP, a CN (or the sink) can individually verify the platform configura-
tion of a CH. Alternatively a CN can send data to a CH and receive a confirma-
tion that the data has been received correctly and that the CH is trustworthy.
A CN needs only to perform symmetric operations and two short messages need
to be exchanged. The messages are very small, because no long public key prim-
itives, e.g., keys, signatures need to be transmitted. Since transmitting messages
is the most cost intensive factor in WSNs [13], this is of particular interest, es-
pecially if the sink wants to verify the platform configuration of a CH. In this
case, messages are transferred along several hops.

Detecting Node Compromise in Hybrid WSNs 211

The protocol we propose is again divided in initialization phase and attestation
phase. The initialization phase is performed only once after deployment of the
sensor nodes while the attestation phase can be performed every time a CN (or
the sink) wants to verify the platform configuration of a CH.

Initialization. Each CNj establishes a shared, symmetric key KCNj,CHi with
its CHi. Therefore, existing (non TPM-based) techniques, e.g., [14], might be
used. However, we recommend using the key establishment protocol presented
in [15], as it also assumes a hybrid WSN with TPM-equipped CHs and resource
constraint CNs. This approach has the advantage that key generation within a
TPM is inherently more secure than key generation on off-the-shelf embedded
WSN platforms. As in [14], we assume that this short period of time to establish
pairwise keys is secure and nodes cannot be compromised. The keys KCNj,CHi

are sealed on CHi to its valid platform configuration PCHi . Thus, CHi can access
these keys only if it is in its valid state.

To enable the sink to perform the attestation with CHi, a shared symmetric
key KSink,CHi is preconfigured on CHi before deployment and sealed likewise.

Attestation. Figure 2 shows how CNj can verify the platform configuration
of CHi. First, CNj sends a challenge to CHi. The challenge consists of an
encrypted block containing a Nonce and the identifier IDCNj of CNj , and ad-
ditionally IDCNj in cleartext. KCNj,CHi is used for encryption. After receiving
the challenge, CHi unseals KCNj,CHi related to IDCNj . This is only possible
if the platform configuration PCHi is valid. Using this key, CHi decrypts the
encrypted block and verifies if the decrypted identifier is equal to the identifier
received in cleartext. If they match, CHi knows that this message originates from
CNj , encrypts the Nonce’ using KCNj,CHi , and sends it back.1 Otherwise, CHi

aborts. CHi then deletes KCNj,CHi from the RAM. CNj decrypts the received
response message and checks if the decrypted Nonce” matches the Nonce it has
sent in the first step. If they match, CHi is declared trustworthy and CNj can
send data to CHi. This data is encrypted using KCNj,CHi . The attestation of
CHi by the sink is performed analog, using the key KSink,CHi .

Alternatively, data can be transmitted directly within the challenge. This might
be preferable in scenarios where an immediate receipt of data is important or
where CNs send data very infrequently to a CH. Therefore, the protocol is mod-
ified in steps 1 and 2b. Figure 3 shows the modifications. In step 1’ CNj sends
the data to CHi within the encrypted block. CHi can only decrypt this message
in step 2b’ if its platform configuration is valid and access the data. All other
steps remain the same as shown in figure 2. Thus, if CNj receives the message
in step 2e and the checks in steps 3a and 3b succeed, CNj can be assured that
CHi has successfully received the data and is still trustworthy.

1 However, the trustworthiness of CNj cannot be assumed, because the node could be
potentially compromised and the key is not protected by a TPM.

212 C. Krauß, F. Stumpf, and C. Eckert

1. CNj → CHi : IDCNj , {Nonce , IDCNj }KCNj ,CHi

2a. CHi Unseal(PCHi , dCHi , {KCNj ,CHi}
eCHi
PCHi

) = KCNj ,CHi

2b. CHi D({Nonce , IDCNj }KCNj,CHi
, KCNj ,CHi) = (ID′

CNj
,Nonce ′)

2c. CHi check ID′
CNj

?= IDCNj

2d. CHi E({Nonce ′, IDCHi}, KCNj ,CHi) = {Nonce′, IDCHi}KCNj,CHi

2e. CHi → CNj : IDCHi , {Nonce′, IDCHi}KCNj,CHi

2f. CHi delete KCNj ,CHi from RAM

3a. CNj D({Nonce′, IDCHi}KCNj ,CHi
, KCNj ,CHi) = (Nonce ′′, ID′

CHi
)

3b. CNj if Nonce ′′ ?= Nonce, state of CHi is valid

Fig. 2. Individual Attestation Protocol

1’. CNj → CHi :IDCNj , {Nonce , IDCNj , data}KCNj,CHi

2b’.CHi D({Nonce , IDCNj, data}KCNj,CHi
, KCNj ,CHi)=(ID′

CNj
,Nonce ′, data)

Fig. 3. Modified Individual Attestation Protocol

6 Analysis

In this section, we first discuss the security of the two proposed attestation
protocols. Then we evaluate their performance.

6.1 Security Discussion

The goal of both protocols is that CNs can prove the trustworthiness of CHs. If
an adversary compromises a CH, he cannot successfully deceive the CNs or the
sink to perform insider attacks. We distinguish between two types of possible
attacks: (1) attacking a CH directly, and (2) en-route attacks if the communi-
cation involves multiple hops. Due to the unreliable multihop communication,
we can only prove the trustworthiness of CHs. But untrustworthiness could not
be proven since either communication errors can result in modified attestation
messages or malicious en-route nodes can modify forwarded messages to defame
a CH. Therefore, a valid attestation makes no statement about the trustworthi-
ness of a used route. In addition, an invalid attestation could be caused either
by a compromised CH or by a compromised en-route CN.

Security of the PBAP. To compromise a CH and forge a trustworthy plat-
form configuration, an adversary needs access to the hash chain. Therefore, he
has to either perform the unseal command under a compromised platform con-
figuration, or try to access the key used to seal the hash chain with physical
attacks. As described in Section 2 the TPM is basically a smartcard and offers
high security mechanisms for preventing unauthorized extraction of protected

Detecting Node Compromise in Hybrid WSNs 213

keys. This makes it extremely difficult for an adversary to retrieve the necessary
keys to decrypt the sealed hash chain. Additionally, access to the sealed hash
chain is only possible if the platform configuration has not been modified. This
prevents the unauthorized extraction of the values of the hash chain in a com-
promised system environment. Even if an adversary could access the RAM of a
sensor node, he can not retrieve other hash values, because for each attestation
only the actual hash value is unsealed and loaded into the RAM.

However, our approach can not handle runtime attacks caused by buffer over-
flows, since we report the platform configuration measured in the initialization
phase, i.e., when the software is first executed. Such attacks would result in a
(malicious) modified system configuration, but the platform configuration stored
in the PCRs is still the valid configuration.

If the attestation is performed between nodes which are multiple hops away, an
adversary might also try to perform a man-in-the middle attack by compromis-
ing an en-route CN. The adversary can try to spoof, alter or replay attestation
messages, or perform a selective forwarding attack [16]. Spoofing is not possible,
because PBAP is not an authentication protocol. It gives an assertion about the
trustworthiness of the specific CH and not which node has relayed the message.
Altering attestation messages is possible and results in an unsuccessful attesta-
tion. To cope with that, a CN should possess an additional mechanism which
enables the CN to reach its CH using a different communication path or change
to a different CH. The CN can then use an alternative path and perform the
IAP with the CH to make a clear statement, whether the route, or the node has
been compromised. If the CH is compromised, a CN could, for example, switch
to another CH where the communication paths and the new CH may not have
been compromised. Replay attacks or an attack where an adversary first blocks
the forwarding of legitimate hash values to collect them, then compromises a
CH and finally releases these hash values are not possible, because hash values
are only valid for a specific interval, which is validated by each CN. Since the
PBAP is performed in cleartext an adversary can distinguish between attesta-
tion and data messages and therefore perform a selective forwarding attack by
forwarding attestation messages, but blocking data messages. Such attacks are
a general problem in WSNs and show that the PBAP is not resistant against all
attacks in a multihop scenario with malicious en-route CNs.

Security of the IAP. The security of the IAP relies on the sealing of the
symmetric keys to the valid platform configuration analogue to the sealing of
the hash chain described above. Thus, an adversary compromising a CH cannot
access the necessary keys to perform a successful attestation.

If the attestation messages are forwarded along multiple hops, an adversary
can try to perform a man-in-the-middle attack. Since the IAP includes an au-
thentication protocol, spoofing is not possible. A CH detects the modification of
the first attestation message (see Figure 2) by an en-route adversary, since the
included identifier does not match the identifier sent in cleartext. If the adver-
sary alters the response sent to a CN, the latter cannot distinguish if either the
attestation has failed or if the message has been altered by the adversary. Replay

214 C. Krauß, F. Stumpf, and C. Eckert

attacks are not possible, because a new Nonce is used in each message. Since
attestation messages and data messages have the same form (identifier plus en-
crypted data block), an adversary cannot distinguish between them to perform
a sophisticated selective forwarding attack. If the modified IAP is used, where
data is sent in the first step, an adversary might be able to distinguish between
this message and the response message (step 2e) because of the different lengths
of the messages. To cope with that, the message sent in step 2e could be padded
to the same length.

Thus, if an attestation fails, a CN should first try to perform a new attesta-
tion of the same CH using another communication path, if possible. If this is
not possible or the attestation fails again, either the CH or a node on the com-
munication path is compromised. The CN should then select a new CH, since
messages sent to the old one might be susceptible to attacks.

Furthermore, in contrast to WSNs where CHs are not equipped with a TPM,
a single compromise of a CH does not result in the compromise of all shared
keys stored on this node. Even using the TPM in only a few sensor nodes results
in a higher resiliency to node compromise.

6.2 Performance Analysis

Efficiency is crucial for security protocols for WSNs because of the scarce re-
sources. Protocols should not introduce a high storage overhead and should
not significantly increase energy consumption. Since we assume that CHs pos-
sess sufficient ressources, we perform our analysis only for the CNs. First, we
analyse the additional storage requirements. Next, we estimate the additional
energy consumption by evaluating the computational and communication
overhead.

Storage Requirements. For the PBAP, a CN must store one hash value and
the identifier for the corresponding CH. Depending on the network configuration,
it might also store hash values (and identifiers) for other CHs in its vicinity. Let
LN , and LH denote the length of a node identifier and a hash value respectively.
Let the number of CHs for which a CN stores values be v. Thus, the storage
requirements SRPBAP for a CN are:

SRPBAP = v ∗ (LN + LH) (2)

For example, suppose a CN stores values for 5 CHs. The length of each hash
value is 64 bits and the length of a node identifier is 10 bits. This results in a
total of 46.25 bytes.

For the IAP, a CN must store one symmetric key for each CH with which
it wants to perform an attestation. Let this number be denoted by w and the
length of a key denoted by LK . Thus, the storage requirements SRIAP for a CN
are:

SRIAP = w ∗ LK (3)

Detecting Node Compromise in Hybrid WSNs 215

For example, suppose a CN stores keys for 5 CHs. The length of each key is
64 bits. This results in a total of 40 bytes.

The Berkeley Mica2 Mote [8] offers 4KB of SRAM. Therefore, the storage
requirements are suitable for current sensor nodes, even if both protocols are
used in conjunction.

Energy Consumption. The PBAP requires a CN to receive one attestation
message and to perform one hash computation at each time interval. An attes-
tation message consists of a hash value and an identifier of the interval, e.g.,
a counter. Although computing hash values only marginally increases energy
consumption [12], we consider the computational overhead, since a hash compu-
tation is performed in each time interval.

We use e1 = e1s +e1r to denote the energy consumed in sending and receiving
one byte, and e2 to denote the energy for one hash computation. In addition
to the notation used above, let LT denote the length needed for the interval
identifier. The total number of intervals in the whole lifetime of the network is
denoted with t. This results in an additional energy consumption:

EPBAP = t ∗ ((LT + LH) ∗ e1r + e2) (4)

For example, suppose the lifetime of the network is one year and broadcast
messages are sent every 10 minutes. Therefore, a 16 bit counter is sufficient
for numbering each interval. We use the results presented in [13] to quantify
e1s = 16.25 μJ for sending, e1r = 12.5 μJ for receiving, and e1 = 28.75 μJ
for sending and receiving one byte using Berkeley Mica2 Motes. The energy
consumed for performing one hash computation using RC5 [17] block cipher is
e2 = 15 μJ . This results in a total energy consumption of 7358.4 mJ . The Mica2
Motes are powered with two 1.5 V AA batteries in series connection. We assume
a total capacity of 2750 mAh using standard AA batteries which results in 29700
J . Thus, the ratio of energy consumed in one year by the PBAP is about 0.025%
of the total available energy which is neglibly small.

The IAP requires a CN to generate and send a challenge2, and the verification
of the response (see Figure 2, steps 1, 2e, 3a and 3b). The challenge requires one
Nonce generation, one encryption and one transmission, while the response ver-
ification requires the receipt of one message, one decryption and one comparison
of two values. As in [12], the Nonce is generated using a Message Authentication
Code (MAC) as pseudo-random number generator with a generator key Krand

CNj
.

The energy consumed therefor using RC5 for MAC generation is e2 = 15 μJ .
The encryption cost using RC5 are also 15 μJ . We neglect the energy cost for the
comparison of two values since they are negligibly small. Thus, the additional
energy consumption is:

EIAP = 3 ∗ e2 + e1s ∗ (2 ∗ LN + LH) + e1r ∗ LH (5)

2 We do not consider the case where data is sent within the challenge, because we
estimate only the additional overhead introduced by our protocol.

216 C. Krauß, F. Stumpf, and C. Eckert

Assuming the values from above, this results in a total energy consumption
on a CN for one individual attestation of about 315 μJ which is 1.06 ∗ 10−4 %
of the total available energy.

7 Related Work

In the context of attestation in WSNs, a number of software-based approaches
have been presented [2,3,4] which rely on optimal program code and exact time
measurements. These approaches enable software-based attestation by introduc-
ing an optimal program verification process that verifies the memory of a sensor
node by calculating hash values of randomly selected memory regions. However,
these approaches are not applicable in multihop WSNs, since they require, on
the one hand, an authenticated communication channel between the verifier and
the attestor, and on the other hand, rely on minimal time fluctuations (compare
Section 3). In [18] a similar approach is presented which relies on code obfus-
cation techniques and time measurement. Proposed hardware-based approaches
[10,6] are based on public-key cryptography and require extensive computational
power, as well as the transmission of large messages, making these approaches
not usable in WSNs. In [15] the advantages of using a TPM in hybrid WSNs are
first identified. A framework for key establishment, distribution, and manage-
ment is presented. The approach shows that a TPM can dramatically improve
the security of WSNs. However, attestation techniques offered by the TPM are
not considered.

8 Conclusions and Future Work

In this paper we argue that timing-based software attestation techniques are not
applicable in multihop WSNs. We therefore introduce another approach which
exploits the property of a hardware-based trust anchor to enable attestation
in multihop WSNs. In this context, we present two attestation protocols for
hybrid WSNs, where the network consists of resource constrained CNs and CHs
with more resources equipped with a TPM chip that acts as a trust anchor.
Both protocols allow CNs to verify whether the platform configuration of a CH
is trustworthy or not, even if they are multiple hops away. The PBAP runs
in fixed time intervals, allowing multiple nodes to verify the trustworthiness
simultaneously, while the IAP enables a direct attestation. We shown that both
the overhead for storage and the energy consumption are negligible.

We are currently working on the implementation of our proposed architecture
using both hardware TPM and a TPM emulator. Furthermore, we are inves-
tigating how a CN should react if a multihop attestation, either based on a
compromised node on the route or a compromised CH fails. To achieve this,
an efficient algorithm must be developed that either selects a new route to the
existing CH or chooses a new CH. Another part of our future work will be the
choice of optimal parameters for CHs and CNs, taking the cost benefit aspects
into account.

Detecting Node Compromise in Hybrid WSNs 217

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor
networks. IEEE Comm. Mag. 40(8), 102–114 (2002)

2. Seshadri, A., Perrig, A., Doorn, L.v., Khosla, P.: SWATT: SoftWare-based ATTes-
tation for Embedded Devices. In: IEEE Symp. on Sec. and Priv., IEEE Computer
Society Press, Los Alamitos (2004)

3. Seshadri, A., Luk, M., Shi, E., Perrig, A., Doorn, L.v., Khosla, P.: Pioneer: verifying
code integrity and enforcing untampered code execution on legacy systems. In:
SOSP ’05: Proceedings of the twentieth ACM symposium on Operating systems
principles, Brighton, United Kingdom, pp. 1–16. ACM Press, New York (2005)

4. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: SCUBA: Secure Code
UpdateByAttestation in SensorNetworks. In:WiSe ’06:Proceedings of the 5thACM
workshop on Wireless security, Los Angeles, California, ACMPress, NewYork (2006)

5. Group, T.C.: Trusted Platform Module (TPM) specifications, Technical report
(2006) https://www.trustedcomputinggroup.org/specs/TPM

6. Stumpf, F., Tafreschi, O., Röder, P., Eckert, C.: A Robust Integrity Reporting Pro-
tocol for Remote Attestation. In: WATC’06. Proceedings of the Second Workshop
on Advances in Trusted Computing (2006)

7. Shi, E., Perrig, A., Van Doorn, L.: BIND: A Fine-Grained Attestation Service for
Secure Distributed Systems. In: SP ’05. Proceedings of the 2005 IEEE Symposium
on Security and Privacy, pp. 154–168. IEEE Computer Society Press, Los Alamitos
(2005)

8. Crossbow Technology: Mica2 datasheet http://www.xbow.com/Products/
Product pdf files/Wireless pdf/MICA2 Datasheet.pdf

9. Crossbow Technology: Stargate datasheet http://www.xbow.com/Products/
Product pdf files/Wireless pdf/Stargate Datasheet.pdf

10. Sailer, R., Zhang, X., Jaeger, T., Doorn, L.v.: Design and Implementation of a
TCG-based Integrity Measurement Architecture. In: 13th USENIX Security Sym-
posium, IBM T. J. Watson Research Center (August 2004)

11. Lamport, L.: Password authentication with insecure communication. Commun.
ACM 24(11), 770–772 (1981)

12. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: SPINS: security pro-
tocols for sensor networks. Wirel. Netw. 8(5), 521–534 (2002)

13. Ye, F., Luo, H., Lu, S., Zhang, L.: Statistical en-route filtering of injected false data
in sensor networks. In: Proceedings IEEE INFOCOM., IEEE Computer Society
Press, Los Alamitos (2004)

14. Zhu, S., Setia, S., Jajodia, S.: LEAP: efficient security mechanisms for large-scale
distributed sensor networks. In: CCS ’03. Proceedings of the 10th ACM conference
on Computer and communications security, ACM Press, New York (2003)

15. Ganeriwal, S., Ravi, S., Raghunathan, A.: Trusted platform based key establish-
ment and management for sensor networks (Under review)

16. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and
countermeasures. In: Proceedings of the First IEEE International Workshop on
Sensor Network Protocols and Applications, pp. 113–127. IEEE Computer Society
Press, Los Alamitos (2003)

17. Rivest, R.L.: The RC5 Encryption Algorithm. In: Proceedings of the 1994 Leuven
Workshop on Fast Software Encryption, pp. 86–96. Springer, Heidelberg (1995)

18. Shaneck, M., Mahadevan, K., Kher, V., Kim, Y.: Remote software-based attesta-
tion for wireless sensors. In: Molva, R., Tsudik, G., Westhoff, D. (eds.) ESAS 2005.
LNCS, vol. 3813, Springer, Heidelberg (2005)

https://www.trustedcomputinggroup.org/specs/TPM
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/Stargate_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/Stargate_Datasheet.pdf

	Introduction
	Background on TCG-Mechanisms
	Attestation Techniques
	TPM-Based Attestation
	Software-Based Attestation

	Setting and Notation
	Setting
	Notation

	Attestation Protocols
	Periodic Broadcast Attestation Protocol (PBAP)
	Individual Attestation Protocol (IAP)

	Analysis
	Security Discussion
	Performance Analysis

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

