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Abstract—Today’s vehicle has become a very complex good,
offering performance and reliability thanks to a sophisticated
network of Electronic Control Units. Each year car makers
develop new automotive features for use inside and outside of
the car. But improving this infrastructure each time adds new
costs and overhead to the system. A promising solution resides in
the use of Internet Protocol (IP) standards for both on-board and
vehicle-to-X communications. With IP over Ethernet, bandwidth
and system performance will increase, but so will the security
risks for both passenger safety and vehicle system integrity. IP
is a well-known and attack-prone technology and the car an
easy prey. Communication encryption and static access controls
won’t be sufficient; more suitable and complex security protocols
and infrastructures are required. In this paper we present a
new middleware architecture for on-board security, allowing
establishment of internal and external secure communication
channels and secure runtime environment for automotive appli-
cations. The modularization of our architecture allows protocol
independency and adaptability in terms of performance and
security for automotive use cases.

I. INTRODUCTION

In decades of technical and functional evolution automotive
embedded systems have grown to a very specialized, highly
reliable, effective and cost-efficient composition for a wide
range of real time safety critical functions. In recent years the
major share of innovations in the automotive sector, especially
in the area of driver assistance, is based on software executed
distributedly on networked electronic control units (ECU) in
the vehicle, more recently also beginning to be supported
by communication over the borders of the vehicle, e.g. to
mobile devices like smartphones, to infrastructure, or to other
vehicles.

Since many of the systems are built to improve and guar-
antee the safety of traffic participants inside and outside of
the car, a failure, deficient function, or manipulation of these
systems poses an implicit threat to the lives of these persons.
Many steps of technical improvements were done to harden the
systems and to deliver a very high level of protection against
failure and malfunction. But in recent years an additional
threat arose that has to be considered: direct, deliberate and

potentially malicious manipulation. Apart from long ongoing
discussions and awareness in research and development, sev-
eral recent academic publications clearly showed the attack
potential on current vehicles. This attention was also perceived
by a broader public. Kosher et al. showed ([1]) some vul-
nerabilities of automotive bus systems assuming the attacker
is able to obtain direct access. Additionally Checkoway et
al. [2] showed how weaknesses in external interfaces can
be leveraged to gain access and manipulate internal systems,
using common weaknesses known from the computer world
like bad policy checks, insecure implementations and static
cryptographic material. It becomes apparent that system secu-
rity has to be guaranteed in order to maintain safety especially
in embedded systems and that the growth of software-based
functions and external interfaces in the automotive domain
rapidly increases the attack surface and therefore the need for
protection against malice.

Most of the automotive systems operate at least semi-
autonomously, based on a clearly defined mission, without
direct interaction with the owner or user. A mostly static
structure in hardware and software makes it a complex task to
change or add functionality like security features, especially
when a holistic design approach is necessary as it is the
case when securing a system. Security functions have to be
evaluated very close in their response to attacks and errors,
since the system has to maintain safety requirements at all
costs and security measures therefore must not affect safety
functions.

With the introduction of Internet Protocol (IP) based com-
munication and usage of standardized IP-solutions (subject of
the SEIS project [3]), security becomes even more important,
since knowledge about, tools for, and attacks on IP are
wide-spread and common. Therefore SEIS considers security
in a dedicated part project proposing an architecture for a
secure communication infrastructure recommending IPsec as
a security-protocol. But some problems remain, e.g. how to
set up the infrastructure regulating and securing the commu-
nication channels, where to enforce security policies, where



and how to store secrets and cryptographic material securely,
or where to enforce access control based on which criteria.
Hence another work package inside the security part project
of SEIS focuses on these questions with a middleware-oriented
view, having the goal of establishing secure communications
(internally and externally) and to ensure a secure runtime envi-
ronment for applications with security properties tailored to the
respective application, including authorization, authentication,
integrity and confidentiality of data and communication. This
paper presents the security architecture proposed by the latter
work package.

The remainder of this paper is organized as follows. Section
provides some background information on automotive secu-
rity and next generation on-board networks. We then present
in section our security architecture and concrete runtime
functionality. The same section discusses error management
and provides a description of our prototypes. Finally in section
[[V] we discuss some related work and conclude in section [V]

II. SCOPE OF THIS WORK

In this section we provide background information on
automotive networks and security. We present relevant threats
and the adversary model considered for this work.

A. Future Automotive Applications and Networks

During the last decade, the car became a complex IT
infrastructure. In several upper class vehicles, up to 80 ECUs
are interconnected thanks to different proprietary bus systems
like CAN, MOST or FlexRay. These bus systems have their
own requirements, protocols and are not interoperable with
each other. For the moment on-board communication mostly
consists of simple control signals and the coupling between
two different buses is achieved through complex translation
gateways. Since the communication carries no routing infor-
mation, the gateways are statically configured to translate and
route every packet. On the contrary, communication between
two IP networks relies on simple switches or routers and a
suitable packet addressing at the data link or network layer and
can allow dynamic routing features, since the packet header
includes both source and destination. IP-based communica-
tion can simplify the on-board infrastructure and make the
integration of external communication partners easier, e.g. for
interaction with a back-end server, CE device integration over
WLAN or LTE.

Future applications will exchange bigger and more expres-
sive messages, e.g. complex models for radar environment
perception or high-definition navigation maps. For the next
generations of automotive applications, a significant bandwidth
increase will be necessary in the near future. The solution of
this challenge is not possible with current automotive com-
munication technologies. An automotive variant of a 100 Mbit
Ethernet is a serious candidate allowing such performances and
a Gigabit Ethernet version could be soon available as well.

IP over Ethernet is apparently a good solution for automo-
tive on-board communication; it complies with most automo-
tive requirements and offers standards, directly adaptable for

the car purpose [4]. Though, in order to properly administrate
the on-board communication, a middleware offering an effi-
cient abstraction layer for network management and security
is required.

B. Security Threats for Automotive Middleware

Automotive middleware threats are similar to the ones
concerning traditional communication middleware and can be
listed in three categories.

1) Asset Corruption: Attacks aim at modifying or destroy-
ing automotive data and services. They are usually
resulting from software and implementation weaknesses
(weak security mechanisms, injection of bogus packets)
and allow unauthorized use of the service (discovery
of wrong services, ECU memory modification, ECU
flashing. . .).

2) Information Disclosure: Successful attacks result in
unauthorized access to middleware assets (mostly data).
Attackers aim at stealing automotive information from
the driver (privacy infringement) or from the car manu-
facturer (industrial espionage). Both communication link
and data storage units can be targeted.

3) Service Interruption: Here the service availability is
affected. Attacks aim at making the service unusable
or slower, they usually consist in resource exhaustion
(jamming/flooding), unauthorized service deactivation or
in producing errors and thereby delays in the system.

These threats are mainly posed by attackers or adversaries
that are generally driven by motivations like theft of vehicles,
obtaining features by fraud, illegal reuse of components, data
manipulation or causing malfunctions.

C. Adversary Model

Adversary models are essential for security risk analyses
and can be formalized. As an example, the Dolev-Yao-model
[5] specifies an attacker with full control over the network who
can intercept, modify and replay all messages.

Our adversary consideration bases on a mighty internal
or external attacker with properties of the Dolev-Yao-model.
We assume timely unrestricted access of attackers to the
vehicle. We assume the attacker to be only polynomially
bounded in computational power and storage, so that the
current cryptographic primitives (like AES, RSA etc.) can be
assumed to be secure, since there are no algorithms known to
break them in polynomial time. Thus the assumed adversary
cannot break strong cryptographic protocols or successfully
guess random numbers. Due to the scope of our work, we
restrict the attacker to software-based attacks so that he cannot
physically tamper ECUs for e.g. memory content reading or
flashing. Hardware-based attacks are in principle out of reach
of middleware-based security mechanisms.

III. SECURING THE MIDDLEWARE

Previous work done within the SEIS Project [[6] motivated
the necessity to classify automotive on-board communication
regarding their characteristics and requirements. A model in



three security zones was designed, highlighting the different
security risks for the on-board network. Building on this work,
the following section proposes concrete solutions to comply
with the mentioned model.

A. Security Requirements

With regard to the risks and challenges described above, our
system should comply with the following requirements:

o Functional requirements: The security middleware should
provide reliable on-board communication and propose
performances at least similar to traditional automotive
systems. Additionally, it should allow integration of ex-
ternal services running outside the car.

o Communication requirements: The security middleware
should provide secure communication channels between
ECUs. They should offer mutual authentication mecha-
nisms and assurance of integrity and confidentiality for
the exchanged messages depending on the application’s
needs. In the same way, the security middleware should
adapt the secure channel when dealing with external
communication.

o Application runtime requirements: The security middle-
ware should assure integrity of every ECU platform. Ac-
cess control to any ECU-resources shouldn’t degrade the
overall system performance, disclose secret information
or endanger the passenger in any way.

B. Security Middleware Extension

This paper presents a security middleware extension pro-
viding modular security services for automotive on-board
networks. These security services provide the basis for secure
applications runtime and establishment of secure communi-
cation channels. For the rest of this paper we define the
abstract representation of these security services as security
modules, independent from their implementation (present on
several ECUs or not). The security extension communicates
with the communication middleware through the Security
Abstraction Layer and relies on security Plug-Ins included
within the modules. The Plug-Ins are the concrete security
mechanisms and communication protocols used by the system.
This architecture is designed to offer scalability, flexibility and
middleware protocol independency following some principles:

e Suitable modularization: each extension sub-component
can be adapted and configured based on specific security
requirements (e.g. use cases, considered security zones
and additional functional information) and therefore will
be optimally designed for its target purpose. Modulariza-
tion allows the definition of different versions for each
module offering an adapted choice of security Plug-Ins,
for example a full- versus a light-security version.

o Abstraction of security interfaces: for a flexible integra-
tion of security services, suitable abstracted interfaces
should be defined. They simplify the enforcement of
security at each level (e.g. in the application and in the
middleware at transport-, network- and physical-level).

o Configurability: The system should allow static and dy-
namic updates for configuration at the end of assembly
or during system runtime.

Developing automotive applications with security in mind
can be complex though. The proposed middleware extension
aims at easing and automating this process: each application
and communication should be mapped with a set of both
functional and security-relevant requirements, that can be
declared either in the middleware during service definition
for static implementation or in application-level context data,
transferable to the security services. The development of a se-
curity middleware allows the car manufacturer to mitigate the
risk of potential security misconfiguration of the application.
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KMM: Key Management Module - PMM: Policy Management Module -
SCM: Secure Communication Module)

C. Security Modules

The SEIS security middleware extension consists of six
modules integrated within the middleware and specialized for
six different security purposes. Figure |1{shows the interactions
between modules and with the functional middleware- and
application-layers. A more detailed description of each module
follows later in this section. The modularization is based on a
security management consisting of three layers:

o A security decision management and monitoring layer, in
charge of the authorization process and the detection of
security violation consisting of the Policy Management
Module (PMM) and the Intrusion Management Module
(IMM).

o A security layer responsible for the establishment and ver-
ification of secure communication channels: the Secure
Communication Module (SCM) and the Authentication
Management Module (AMM). This layer controls the
session semantics of the security protocol and guaran-
tees authentication, confidentiality and integrity of the
exchanged messages according to the respective needs.



o A layer in charge of trust anchoring and management of
cryptographic processing. The Key Management Module
(KMM) stores and administrates the keys and the Crypto
Service Module (CSM) controls the process of encryp-
tion/decryption and generation/verification of authentica-
tion fields.

This modularization offers the possibility to take the hardware
and software capacity of each ECU into account and allows
to setup the security on both levels as necessary.

1) Crypto Service Module (CSM): Most of the security
mechanisms used on different layers and by different appli-
cations are based on a couple of carefully chosen security
primitives and algorithms which in turn are based on the usage
of sensible, secret cryptographic data, like keys. Integrity,
authenticity and confidentiality of these keys are basic assump-
tions for the security of the entire system so that these secrets
have to be especially protected. In addition all mechanisms
for security can only be as secure as the base primitives,
their implementation, and the hardware and software they are
executed on.

The CSM offers cryptographic services like encryption,
decryption, digital signature generation and verification, pro-
cessing of Message Authentication Codes (MACs), etc. based
on various cryptographic primitives and algorithms. Calling
entities and processes can parameterize the request to use the
appropriate primitives and modes and also give data and keys
via handles. Depending on the security properties (e.g. key
storage, protected processing...) and processing capabilities
(especially asymmetric primitives tend to be resource inten-
sive) of the respective ECU these services can be implemented
locally or centrally, in the latter case the local request is
relayed over the vehicle internal network using a secured
channel (see SCM in section [[II-C2). The SCM therefore
abstracts from the actual implementation and also location of
processing.

The grouping of security processing as a service has several
benefits. First of all the cryptographic processing is the only
service in the system that needs direct access to secret cryp-
tographic key material. All other entities and processes, even
the actual authorized owners of the material and credentials
only need a key identifier/handle to point out the key to use
to the CSM. So all internal communication and parameter
transmission can be done with key handles instead of keys in
plain text, reducing the need for confidentiality and mitigating
the risk of disclosure. The actual key is only communicated
between CSM and KMM (see section [[IT-C4)) using a specially
protected channel. Ideally this can be done by integration of
CSM and KMM in one protected environment (e.g. on an
Hardware Secure Module - HSM).

A second benefit is that implementation of cryptographic
algorithms can be pooled. So it is easier to maintain and en-
force secure programming guidelines (e.g. also for protection
against side-channel attacks) to make sure correct and secure
processing, locate the implementation to suitable platforms and
make use of hardware support or acceleration if available.
As the entity responsible for crypto services the CSM is

a crucial part of the trust anchoring of the overall system.
Also maintenance of algorithms and adding of new primitives
can be done more centrally for a better Crypto-Agility. In
addition the processing shall be done in a secure, isolated
environment. Approaches may e.g. include secure virtualiza-
tion with hypervisors and strong seperation of memory. If
further protection mechanisms like a dedicated HSM [7], [8I]
are available, security can be improved by using dedicated,
access restricted processing units only for secure processing.
For resource-intensive primitives like asymmetric algorithms
(e.g. RSA [9] or ECC [10]], [11]) and especially for real-time
environments hardware acceleration may be necessary and also
part of the HSM.

2) Secure Communication Module (SCM): In current and
even more in future vehicular networks, new functionality
is often realized by interconnecting functions that are dis-
tributed across numerous ECUs. Communication relationships
are being formed to facilitate information exchange and remote
function invocation. These relationships have use case specific
requirements of communication reliability, bandwidth and also
security. In order to avoid applications implementing their own
custom communication mechanisms, the ECUs’ middleware
often provides the necessary infrastructure. Traditionally, these
mechanisms seldomly cover the applications’ security require-
ments and leave this task to custom application layer solutions.
As implementing security mechanisms is non-trivial and thus
error-prone, this should be avoided.

It is the purpose of the SCM to solve this problem at the
middleware layer and provide transparent access to commu-
nication services that meet the applications’ specific security
requirements. The SCM hides as much complexity from the
application as possible by offering an API that is based on the
standard POSIX [12] socket APL If an application for exam-
ple wants to establish a secure communication relationship,
it invokes a function called openSecConnection and passes
the desired security requirements as parameters. These re-
quirements encompass connection properties such as whether
the transmission has to be authentic, integrity-protected, or
confidential, as well as the security credentials to be used.
Additionally, a set of actual security mechanisms that are to be
used can be set. The specification of the security requirements
is optional. If nothing is specified by the application, the SCM
contacts the PMM to query for the configured standard security
policy for such a connection.

In order to create a holistic security solution, the SCM
integrates with the middleware’s other security modules. This
includes mainly the modules AMM to facilitate the authen-
tication process while establishing a secure connection, the
CSM to perform the applied cryptographic calculations and
the KMM to access the necessary cryptographic keys. In order
to comply with the ECU’s configured security policies, the
SCM cooperates with the PMM. Section [[II-D] depicts the
internal message flow among the involved security modules
while sending a message.

3) Authentication Management Module (AMM): Responsi-
ble for the authentication process of every internal and external



entity, the AMM tasks can be separated in two parts: Accoun-
tant and Enforcer. Implemented on every ECU establishing
authenticated communication, its main role is to support the
SCM with the communication security management.

First as accountant, the module maintains a mapping of ev-
ery entity’s authentication, i.e. status of the process, associated
protocol and security token ID. Its role also includes revoking
and managing the generation of new tokens (certificates or
authentication tickets). Besides, it can support the IMM with
analysis of patterns related to the authentication process. This
module can be extended for vehicle-to-X (V2X) communica-
tion with privacy mechanisms (for pseudonym management)
and modules for hardware based remote attestation.

For all the considered protocols (IPsec, TLS/SSL, DTLS)
authentication plays an essential role to authenticate the peer
and to give proof of origin for every exchanged data frame.
As enforcer, the AMM’s task is synchronization of KMM
and CSM for appropriate generation and verification of the
authentication fields (e.g. digital signature or HMAC).

4) Key Management Module (KMM): The KMM provides
access to cryptographic keys that are necessary for execut-
ing cryptographic operations. To guarantee a high level of
security, the KMM is tightly integrated with the CSM - both
together forming a special trusted zone as depicted in figure
[2l Cryptographic keys are to be used in this zone exclusively
and are not permitted to leave this zone. If applications or
modules of the middleware request access to keys, the KMM
only provides indirect access via handles. These handles can
be used to invoke cryptographic functions of the CSM. As
the CSM is part of this trusted zone, it can use the provided
handles to retrieve the necessary keys from the KMM and
perform the requested operations.
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Fig. 2. Collaboration of CSM and KMM in secure environment. Keys are
never communicated in plaintext outside this protected area.

One of the purposes of the KMM is to hide the ac-
tual key storage mechanism from the requesting party. As

cryptographic keys are to be considered critical information,
they have to be properly secured. However, implementation
depends on the actual capabilities of the underlying ECU. For
example, if an ECU is physically equipped with a Hardware
Security Module (HSM), this can (and should) be used to
properly encrypt the key storage and keep the storage en-
cryption key secure. If this is not the case, the KMM has
to implement other measures to protect the keys in the ECU’s
flash memory. It is clear that these alternatives are less secure
and just increase the effort an attacker has to take.

As the automotive industry is very cost driven, the equip-
ment with HSMs is expected to be kept to a minimum. If
an ECU is equipped with an HSM, it can offer specialized
services based on the HSM to other ECUs. One of these can
be to provide a secure storage for cryptographic keys. Such a
key server can store cryptographic keys that are too critical to
be stored locally in potential insecure flash memory. This key
server can be transparently integrated into the local KMM to
hide the additional complexity of remotely requesting access
to cryptographic keys.

5) Policy Management Module (PMM): As pointed out in
the name, this module is in charge of the policy decision
process for every application and security service. Its role is
mostly consultative; the requester has to enforce the decision
itself. However with support of the IMM, the enforcement can
be monitored and appropriate reactions (e.g. process isolation,
recovery process) can be taken in case of a security issue. The
PMM is implemented on every ECU requiring the enforcement
of a security decision. It should locally dispose of all the nec-
essary policies and context information in order to minimize
the risk of error and latency. A central interface is responsible
to deploy the policy and security configuration (firewall rules,
virus signature database) at the end of assembly and update
these policies during functional runtime with localized policy
updates while the car is stopped.

Designing policy management models for complex and
time-critical systems like cars can be challenging, trade-offs
between policy expressiveness and processing performance
have to be made. In order to limit the latency and risk of
errors we designed two policy formats [13]]. The first one
at the middleware-level defines the authorized communication
between pre-defined internal services and over specific security
protocols, whereas the second, more expressive, provides
constraints evaluation possibilities (time, location, user ID) and
is particularly adapted for not-time-critical applications with
user interaction or integration of external services (CE device,
back-end server).

6) Intrusion Management Module (IMM): The IMM aims
to defend the system against external tampering or targeted
attacks on single or multiple ECUs within the car. It is a
distributed module, in which the different implementations
of the IMM inside the middleware of different ECUs work
together. The different ECUs do not have to run the same im-
plementation of an IMM. It is even suggested to use different
implementations on different types of ECUs. The cooperation
can be seen as a distributed intrusion detection (or prevention)
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system within the automotive middleware. All collected data
can be aggregated on central nodes, where further analysis
is performed and further decisions on countermeasures are
considered. As a countermeasure the system can, for example,
decide to send warnings to the driver or notify the car
manufacturer about a distributed attack [14].

The IMM has no specific external dependencies to collect
its data. However its senses can be extended with information
forwarded by other modules within the security middleware.
The AMM could, for example, inform the IMM about authen-
tication errors, the PMM could forward policy infringements
and the SCM could forward attempts to open insecure con-
nections.

Like in the world of customer electronics there are multiple
ways of implementing intrusion detection systems. For a
detailed description see [13]. To adapt the needs of the ECU
(data intensive multimedia service or safety-critical sensor)
the IMM is able to implement different mechanisms to de-
tect tampering with the system. Signature-based detection or
remote attestation on a power constrainted ECU. A routing
ECU, like the cars security gateway, could implement its IMM
by inspecting network traffic.

In addition to the common types of host-based and network-
based intrusion detection, a further type of intrusion detection
is interesting in the automotive environment: Introspection-
based Intrusion Detection [16]. An introspection-based IDS is
able to inspect the state of an ECU from an external point
of view. It is particularly interesting with virtualized ECUs.
The IDS on the physical ECU is then able to use information
from the hypervisor to make assumptions about the monitored
ECUs internal state.

Within the proposed IMM architecture a host-based or
introspection-based intrusion detection module should be
placed on every ECU, whereas important ECUs also should
be integrated into the attestation process by requiring periodic
remote attestations [17]. Furthermore the architecture suggests
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to apply network-based intrusion detection to all routing ECUs
within the system.

7) Security Abstraction Layer (SAL): The SAL provides
a logical interface linking applications and communication
middleware to its security extension. A generic API
accessible from the application and middleware allows the
developers to query access control decisions or to transmit
requirements (abstract or not) relative to the communication
security. The SAL is in charge of resolving the dependencies
relative to the security modules, the communication middle-
ware and their different versions.

Inversely, the SAL provides the security services with
interfaces on several layers of the ISO-OSI model to allow an
efficient integration of the security plug-ins at both application-
and middleware-level.

D. Functional Use Case for the Security Extension Manage-
ment

As we described the proposed security extension in the
previous section, we will now demonstrate its usage by ex-
plaining a functional use case. We consider the connection
establishment process and sending of data to a server through a
secure connection. The connection established is bidirectional,
although it is used unidirectionally in the following example.
We assume that the server is already configured to receive the
intended connection and the server socket is already opened
using the corresponding function of the security middleware.
The server functionality is analog to the client side flow path
shown in this example.

The process of secure connection establishment is also
shown in figure 3] In order to establish a secure connection the
application initiates the security s openSecConnection function
which initiates a process consisting of four different steps.
An application optionally can provide the desired connection
properties as parameters to the function call. If the application
does not provide connection properties, these are requested



from the PMM (default parameters are provided to prevent
connection misconfiguration).

In the first step, the SCM requests a policy decision from the
PMM whether the establishment of the intended connection is
permitted. In case the connection is denied, the PMM informs
the IMM about the possible intrusion.

After the SCM assured that the connection is permitted, the
authentication phase starts in the second step with a call to the
AMM, which prepares the authentication handshake by calling
the CSM. The CSM then directly requests the corresponding
key material from the KMM. The SCM is then able to request
encryption of payload from the CSM.

Now the SCM establishes a connection to the server and
requests the AMM to finish the authentication phase in the
third step. The AMM handles the necessary handshake used
in the underlying authentication protocol. At the end of step
three the authentication is finished and a secure connection
is established between client and server. The application is
now able to send data through the secure connection in step
four. The payload is sent by the communication middleware
using the properties and keys specified within the connection
previously established.

This example presents a simple three-way authentication
handshake, but more complex handshakes are supported as
well. The SCM processes the additional exchanged messages
in a same way in step two and three. Considering the time
demanding requirements for start-up and during the runtime,
the connection establishment and exchange of session keys
can already be accomplished at the assembly line.

E. Error Management

Adding security into cars should not degrade performance
or produce faults within the application or middleware. We
consider as fault any interruption of the normal operativeness
of a subsystem or of any of its sub-components. This includes
both accidental events and intentional ones (e.g. caused by
attacks). The latter ones are difficult to detect, differentiate
and isolate. When a fault occurs, fault detection mechanisms
should be able to identify the fault and create awareness, so
that in a second step the system is able to restore the disturbed
service.

This section discusses a reaction scenario for an automotive
fail safe mode. This process occurs if the system is unable to
restore security services for a sufficient level of functionality.
The measures can be summarized as two steps. First the
system should be able to shutdown the disturbed services
completely or partly and second adapt other uncompromised
services to reduce the impact of the error and the surface of
attack (e.g. deactivation of external communication means,
limitation of the driving speed or the engines revolutions
per minute, audio or visual signaling of the error status). A
complete system deactivation is infeasible since for obvious
safety reasons the car needs to be movable even while in fail
safe mode. The fail safe mode has to be used as a last resort
since attacks could aim at leveraging from starting this mode in

order to either take advantage of the partial security disabling
or simply to limit the car performance and functionality.
This security architecture is aimed at limiting errors and
their propagation. Our focus is to limit presence of single
points of failure (SPOF) inducing latency and system blocking.
Every ECU is independent in term of security decisions
and communication channel establishment and does not rely
on any central entity. Though in order to avoid too much
redundancy in the system, centralized interfaces are provided
in the architecture for cryptographic key or policy distribution.

F. SEIS Prototypes

To highlight the concepts mentioned above, two prototypes
were developed. They both present use cases including on-
board and V2X communications.

1) Automotive authentication with central trust-anchor for
secure software download: With the ECUs’ functionalities
being increasingly integrated via software, the creation of
new software-based functionality is taking up more and more
of the development effort. As a result, the life cycle of
automotive software is changing and approaching that of
the regular software industry. The increasing integration of
Internet connectivity is presenting new challenges in the way
of an increased need for regular security updates but also
offers novel ways of how to solve this problem. It is the
goal of this demonstrator to show a cost-effective but secure
way to implement remote software updates using wireless
connections, such as the driver’s domestic wireless LAN or
cell phone. Furthermore, we also enable the driver to install
additional features via an online marketplace.

In this demonstrator, we implement a proof of concept that
facilitates secure software updates. To support software main-
tenance we continuously inspect the ECUs’ software using
software attestation techniques and thus create a verifiable
software platform. If an ECU’s firmware check yields to
the result that it has been manipulated or just out of date,
appropriate options can be presented.

2) Security proxy architecture for secure CE device integra-
tion: Consumer electronics (CE) devices are now belonging to
our daily life and propose very innovative use cases when com-
bined with a car. Their integration can prevent from expansive
software and hardware updates. But to do so, more secure
and deeper integration is necessary. Mobility and potential
misconfiguration make them a big security threat. Due to
safety and security reasons, direct communication between
CE device and ECU is not allowed. Such a communication
requires protocol decoupling at the network access level: a
communication proxy. The proxy is in charge of integrating
the CE device and enforcing the necessary security measures
to maintain a sufficient security level.

This prototype proposes a CE adaptive security architecture
enforcing decoupling of security mechanisms between inside
and outside with performances suitable for infotainment use
cases [18]. The proxy relies on the security middleware
presented earlier. It adapts its security services based on the
security capacities and the integrity measurement provided



by the CE device and provides cooperation mechanisms with
ECUs for optimal security enforcement thanks to a in-band
signaling protocol, supported by the middleware.

IV. RELATED WORK
A. Security Communication Middleware

Traditional middlewares already provide security, e.g. mes-
sage encryption and access control mechanisms [[19]]. But most
of them do not fulfill the necessary functional and security
requirements of automotive applications [20] at the same time.
Besides, they usually do not propose suitable modularization in
order to provide software/hardware-based security or different
versions offering different security levels.

In recent years the avionics industry has been confronted
with the same problems and is increasingly willing to in-
tensify communication with the outside (e.g. ground-based
communication partners) and to tether infotainment services
to customers’ CE devices. Despite few available research
work the main approaches tend towards firewalls and physical
network separation [21]] and strong security protocols [22].

B. Automotive Security Projects

A few years ago, car makers and the research community
realized the importance of automotive security and launched
several projects for both in-car and V2X security. This section
does not provide an exhaustive list of projects but presents
some major ones. The SeVeCom project [23]] addressed the se-
curity of future vehicle communication network and designed
security mechanisms for encryption and authentication at the
edge of the car. sim”” [24] developed the associated V2X
communication platform, but both of them did not consider
on-board security otherwise.

OVERSEE [25] proposed a reduction of the number of
ECUs to increase security and suggested a virtualization
architecture; Super-ECUs host smaller application ECUs and
virtualize the on-board network. EVITA [7]] like SEIS aimed at
securing the on-board network. It proposed a modular security
framework: all ECUs are managed by a Security Master in
charge of communication security and runtime monitoring.
Additionally, this project developed its own versions of secure
hardware platforms providing secure boot and secure storage.
Albeit aiming to secure the on-board network like SEIS,
these two projects (OVERSEE & EVITA) do not consider IP-
based communications and rely on centralized architectures
presenting a risk of SPOF.

V. CONCLUSION AND FUTURE WORK

Automotive security has become essential, especially with
the arrival of IP standards in car. In this paper we presented
a security middleware extension which is independant from
the middleware and which offers variable and adaptable level
of security for on-board components and communications.
Our approach proposes concrete mechanisms and runtime
functionality to enforce in-car security for IP-based commu-
nication networks. The features of this security architecture

have been implemented in two prototypes, presenting realistic
and security-relevant automotive use cases.

In future work, we want to keep on specifying the security
middleware management to integrate existing and car adapted
standards for policy update, re-keying process or initial key
distribution. In addition, we want to define a security driven
migration strategy to allow the cohabitation of secure IP-
based middleware with traditional bus technologies, offering
a lower security level (CAN, MOST) and to potentially and
partly integrate our architecture with existing non-IP-based
middleware such as AUTOSAR.
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