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Abstract

Collapsed Gibbs sampling is a frequently applied method to approximate intractable inte-
grals in probabilistic generative models such as latent Dirichlet allocation. This sampling
method has however the crucial drawback of high computational complexity, which makes
it limited applicable on large data sets. We propose a novel dynamic sampling strategy to
significantly improve the efficiency of collapsed Gibbs sampling. The strategy is explored
in terms of efficiency, convergence and perplexity. Besides, we present a straight-forward
parallelization to further improve the efficiency. Finally, we underpin our proposed im-
provements with a comparative study on different scale data sets.
Keywords: Gibbs sampling, Optimization, Latent Dirichlet Allocation

1. Introduction

Latent Dirichlet allocation (LDA) is a generative probabilistic model that was first pro-
posed by Blei et al. (2003) to discover topics in text documents. LDA is based on the
assumption that a document is a mixture of different topics and can be considered as a
hierarchical generative process of creating documents given the topics. By reversing the
generative process of LDA, one obtains a predictive model by means of the posterior dis-
tribution. However, this “reversal” requires an estimation of an intractable integral and
hence approximation algorithms are required. There are three estimation algorithms for
LDA. Blei et al. (2003) proposed a variational Expectation-Maximization algorithm, which
iteratively executes the E-step and M-step. The E-step estimates the topic distribution of
each training document using current model parameters, and the M-step updates the model
parameters. This approach is prone to local optima due to the wiggly likelihood function.
Minka and Lafferty (2002) showed that variational EM can lead to inaccurate inferences
and biased learning, they developed the Expectation-Propagation algorithm that leads to
higher accuracy at comparable cost. Griffiths and Steyvers (2004) proposed the Collapsed
Gibbs Sampling (CGS), which is a Markov-chain Monte Carlo method. Due to the fact
that CGS is a straight-forward approach and rapidly converges to a known ground-truth,
it has been widely used in many LDA variants. However, CGS has the crucial drawback of
high computational complexity, which makes it inefficient on large data sets.

In this paper, we propose an Efficient Collapsed Gibbs Sampling algorithm (ECGS) to
speedup the estimating procedure of LDA. In particular, we introduce a dynamic sampling
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strategy to reduce the total number of sampling times in each iteration. By exploiting
the fact that the posterior distribution is usually sparse, the dynamic sampling can au-
tomatically adapt the sampling times for each word to avoid unnecessary sampling, while
converging to the same ground truth solution as the standard CGS. Experiments on real-
world data sets suggest that ECGS is 3-6 times faster than standard CGS and 2-4 times
faster than previously published fast sampling methods. Furthermore, we parallelize ECGS
using OpenMP, which gives a superior efficiency on shared memory system. For the sake
of clarity the paper is structured as follows: In Sect. 2, previous works on optimization and
parallelization of CGS are briefly reviewed. Sect. 3 describes the standard CGS algorithm
and points out the optimization part. In Sect. 4 the proposed ECGS algorithm is explained
and different sampling strategies are presented. Experiments on real-world data sets are
presented in Sect.5. Sect. 6 concludes.

2. Related Work

In prior works different implementations and improvements have been explored to overcome
the limitation of scalability of CGS. The earliest C++ implementation is GibbsLDA1, and
is therefore widely used as a baseline in comparative studies. Porteous et al. (2008) im-
plemented FastLDA2 in C, which draws equivalent samples as GibbsLDA but requires on
average significantly less operations per word. They exploited the fact that the posterior
distribution P (z|w) is sparse for most of the words w and topics z. As a consequence, they
constructed an adaptive upper bound of the normalization factor of P (z|w), and hence
obtained an efficient multinomial sampler. Moreover, FastLDA produces equivalent results
as the standard CGS. Yao et al. (2009) presented SparseLDA3 to further improve the com-
plexity of Gibbs sampling. They divided the full conditional probability mass into three
parts and employed an approximate sampling scheme to change the document-topic count
and word-topic count respectively. Although the relative speedup compared to standard
CGS seems promising, SparseLDA is implemented in JAVA, which makes it much slower
than other C/C++ implementations, thus it is hard to gauge the absolute performance of
SparseLDA. Furthermore, Canini et al. (2009) proposed two online inference algorithms:
incremental Gibbs sampler and particle filter. In incremental Gibbs sampler, only particu-
lar words in the “rejuvenation sequence” are sampled in each iteration. Thus, the choice of
rejuvenation steps determines the runtime of the incremental Gibbs sampler. The particle
filter introduced a resampling strategy to optimize the Gibbs sampler, however, to imple-
ment this algorithm efficiently a special data structure has to be designed and maintained
in the memory.

Even after exploring a great deal of optimization approaches, training LDA using CGS
still remains computationally expensive, therefore an effective parallelization becomes a
natural choice. Newman et al. (2007) presented two synchronous methods, AD-LDA and
HDLDA, to perform distributed CGS. Wang et al. (2009) implemented AD-LDA by using
MPI and MapReduce and called the new approach PLDA. They observed that their PLDA4

1. http://gibbslda.sourceforge.net/

2. http://www.ics.uci.edu/~iporteou/fastlda/

3. http://mallet.cs.umass.edu

4. http://code.google.com/p/plda/
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implementation scales well on up to 64 distributed machines. Recently, Yan et al. (2009)
proposed parallel LDA on Graphics Processing Units (GPU). To address limited memory
constraints on GPUs, their LDA-GPU introduced a novel data partitioning scheme that
effectively reduces the memory cost. LDA-GPU can be regarded as an extension of AD-
LDA by using the data partition in local sampling and inserting synchronization steps within
an iteration.

In this paper, we take advantage of the sparse posterior distribution P (z|w) and propose
the ECGS algorithm which is based on two novel optimization strategies. On real-world
data sets, the ECGS-Dynamic provides 3-6 times speedup against the standard CGS and
converges to the same ground truth distribution given by the latter. ECGS-Shortcut further
improve the speedup to 5-9 times, while provides a suboptimal solution. Moreover, our
parallel ECGS-OpenMP enjoys approximately linear speedup on shared memory system.

3. Standard CGS

Before introducing the ECGS algorithm, we briefly review the standard CGS algorithm.
The notations used in this paper are summarized in Table 1. Besides, the following name
convention is used throughout this paper. The occurrences of a word is termed token, the
unique words are termed types. For example,“The dog barks at the cat” has 5 tokens but
4 types. There are two tokens of the type “the”.

Symbol Description

K number of topics
D number of documents
W number of tokens
V number of types
Nd number of types in document d
Ndi number of the ith type in document d
wdi the ith type in document d
zdij the topic associated with the jth token of wdi

Cvk number of type v which are assigned with topic k
Cdk number of topics k in document d
Idi sampling times of wdi in one Gibbs Sampling iteration
St

di sampling rate of type wdi in iteration t
S̄t average sampling rate in iteration t
Γdi parameter vector of the multinomial distribution P (Idi|Γdi),

it has Ndi entries: [Γdi1, · · · ,ΓdiNdi
]

α, β Dirichlet priors
γ dumping factor

Table 1: Notations used in ECGS algorithm. A symbol that is in bold refers to an array.
Arrays can be vectors or matrices.
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The standard CGS iteratively samples a topic for every token in the training set from
a full conditional probability. There are three steps involved in this procedure. First, the
unnormalized posterior distribution is computed as follows:

P (zdi = k|wdi = v,W¬wdi
,Z¬zdi

, α, β) ∝ (Cdk + α)
Cvk + β∑

v′ Cv′k + V β
. (1)

Second, a random variable x is sampled from a uniform distribution, namely
x ∼ uniform(0,

∑K
z=1 P (z|w)). The final step is to find the interval that x falls into. That

is, finding k̂ such that
∑k̂−1

z=1 P (z|w) < x <
∑k̂

z=1 P (z|w), where k̂ is the sampled topic of
the current token. The time complexity for each iteration is O(KW ) 5. The pseudo-code
of the standard CGS algorithm6 is provided in Figure 1, which is also the basement of
our proposed two novel algorithms as we later shall see. By studying the code of standard
CGS, one can observe that there are typically four nested for-loops involved. Porteous et al.
(2008) and Yao et al. (2009) focused on optimizing the computation in the 4th loop (line 7
to 8) by eliminating topics having small probabilities. The parallel CGS methods proposed
by Yan et al. (2009) and Wang et al. (2009) can be seen as optimizing the 1st and 2nd
loop, as they divide the data set on different processors and reduce the total number of D
and Nd on each processor. Alternatively, our ECGS algorithm mainly optimizes the 3rd
loop (line 4 to 12) by reducing the number of iterations Ndi.

4. ECGS Algorithm

In this section, two optimization strategies that form the ECGS algorithm are presented.
The underling philosophy of the two strategies is the same: reducing the number of it-
erations Ndi in the 3rd loop. For the sake of clarity, we first introduce a relative simple
strategy: shortcut sampling, which is helpful to understand the more elaborate one: dy-
namic sampling.

4.1 ECGS-Shortcut

To introduce our optimization strategies, we first define the sampling rate in CGS iteration
t for type wdi as follows:

St
di =

Idi

Ndi
, where St

di ∈ [0, 1]. (2)

Idi is defined as the sampling times in 3rd loop for type wdi. Additionally, the average
sampling rate for a training set is defined as:

S̄t =
∑D

d=1

∑Nd
i=1 St

diNdi

W
, where S̄t ∈ [0, 1]. (3)

5. For the sake of clarity, we define the complexity of invoking the multinomial random number generator
multinomial() as O(1). This ignores the internal computational cost of the generator.

6. The foreach statement randomly visits each element in the set to ensure that the algorithm samples from
correct posterior. Moreover, in many LDA algorithms which employ CGS, inner for-loops in Figure 1
(line 2 and 4) are merged by cycling over tokens in the order they occur. Such an implementation is
nevertheless equivalent to ours, yet in a different programming style.
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foreach d ∈ {1, · · · , D}1

foreach i ∈ {1, · · · , Nd}2

v ← wdi, Idi ← Ndi3

foreach j ∈ {1, · · · , Idi}4

k̂ ← zdij5

Cdk̂ ← Cdk̂ − 1, Cvk̂ ← Cvk̂ − 16

for k = 1 to K do7

ρk ← ρk−1 + (Cdk + α)× (Ckv + β)/(
∑

v′ Cv′k + V β)8

x ∼ Uniform(0, ρK)9

k̂ ← BinarySearch(k̂ : ρk̂−1 < x < ρk̂)10

Cdk̂ ← Cdk̂ + 1, Cvk̂ ← Cvk̂ + 111

zdij ← k̂12

Figure 1: Pseudo-code of standard CGS algorithm of one iterated step which is
denoted as one CGS iteration in the rest of the paper. Note, that
{ρ1, ρ2, · · · , ρK} is an increasing sequence, we thus employ binary search
to find the suitable k̂. This simple trick improves the efficiency of CGS,
however it is surprisingly ignored in previous implementations (a simple lin-
ear list search is employed in the other implementations). Since we do not
focus on optimizing the algorithm of generating multinomial random num-
ber, we hereinafter use k̂ ∼ multinomial(·) to denote the code from line 7
to 10.

Intuitively, S̄t can be explained as the sampling coverage of the training set in CGS iteration
t. The larger S̄t is, the more tokens are covered in the sampling procedure, and thus the
slower the running speed of the algorithm. Obviously, St

di and S̄t in standard CGS have the
constant value 1 regardless of the number of iterations and the type, as it samples topics for
all tokens in the training set. It is also clear that S̄t = 1 is the highest sampling rate and
gives the slowest running speed. In general, we want a small value of S̄ so that the algorithm
runs faster. This can be achieved by sampling only a topic for every type in each document,
rather than sampling a topic for every token in each document. The sampled topic is then
assigned to all tokens of that type in the document. Thus, all repetitive tokens in one
document have the same topic. This strategy (termed ECGS-Shortcut) can significantly
reduce the sampling rate, as it introduces a shortcut sampling that only iterates over the
types in each document. The pseudo-code of ECGS-Shortcut is given in Figure 2.

The benefit of ECGS-Shortcut is obvious. Due to the large amount of repetitive tokens
in the real-world data set, it reduces St

di from 1 to 1/Ndi, and S̄t from 1 to
∑

d Nd/W .
As a consequence, it provides a significant speedup. The time complexity for each CGS
iteration is O(K

∑
d Nd). Note, that the actual speedup depends on the redundancy of

the data set. Nevertheless, ECGS-Shortcut may only give a suboptimal solution, as the
cursory sampling may miss the optimum solution. To address this problem, we introduce
the dynamic sampling strategy, meanwhile keep a high running speed.
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foreach d ∈ {1, · · · , D}1

foreach i ∈ {1, · · · , Nd}2

v ← wdi, k̂ ← zdi13

Cdk̂ ← Cdk̂ −Ndi, Cvk̂ ← Cvk̂ −Ndi4

k̂ ∼ Multinomial(P (z|wdi))5

Cdk̂ ← Cdk̂ + Ndi, Cvk̂ ← Cvk̂ + Ndi6

zdi1 ← k̂7

Figure 2: Pseudo-code of ECGS-Shortcut of one iterated step. The 3rd for-loop is
eliminated by setting Idi = 1,St

di = 1/Ndi for type wdi.

4.2 ECGS-Dynamic

The intuition behind ECGS-Dynamic is to automatically adapt S̄t over the iterations,
where S̄t ∈ [

∑
d Nd/W, 1]. Loosely speaking, we start CGS with a high sampling rate (e.g.

S̄1 = 1), such that every token is involved in the sampling procedure. This ensures that
the solution space is sufficiently explored at the beginning. Then, we gradually reduce S̄t

over the iterations, that is, S̄1 > S̄2 > · · · > S̄t.
Rather than directly decrementing S̄t by a predefined function, our algorithm is distinc-

tive in two aspects. First, for each type in the data set, we specify the “sampling times” Idi

of the type as a random variable. Second, we estimate the probability distribution of Idi in
the Gibbs sampling procedure. Specifically, we model P (Idi) as a multinomial distribution
with a parameter vector Γdi, where Γdi has Ndi entries. Instead of iterating a constant num-
ber of times to sample topics for wdi, the algorithm first draw the “sampling times” from
a multinomial distribution, namely Idi ∼ P (Idi|Γdi), and then iterate Idi times to sample
topics for wdi. As Idi ∈ {1, · · · , Ndi}, the sampling rate St

di can be either low (when Idi

close to 1) or high (when Idi close to Ndi). After sampling Idi times, the parameter vector
Γdi is updated according to the number of unique topics drawn. This sampling strategy is
therefore named as dynamic sampling, as the value of Idi is dynamically adapted over the
iterations. The pseudo-code of ECGS-Dynamic is given in Figure 3.

An illustrated comparison of different sampling procedures is provided in Figure 4. Given
for instance an 8-tokens document with 5 times “cat” and 3 times “dog”. The standard
CGS samples 8 times for every token. ECGS-Shortcut samples 2 times only, since there
are only two types in the document. In ECGS-Dynamic, Γcat is initialized as [0, 0, 0, 0, 1],
the sampling procedure for each type involves two steps. For instance, to sample the topics
for type “cat”, we first draw a “sampling times” from multinomial(0, 0, 0, 0, 1) (Figure 3
line 4), in this case the only possible outcome is Icat = 5. Thus, we iteratively sample the
topics of “cat” for 5 times, which covers all five tokens in this document, and S1

cat = 1. Next,
we find this 5-times sampling results in 3 unique topics, that is, |M| = 3. Consequently,
Γcat is updated to [0, 0, 1, 0, 1], the new Γcat will be used for generating the “sampling times”
in the 2nd CGS iteration. If Icat = 3 in the 2nd CGS iteration, then we save the time cost
by excluding two tokens of “cat” from the sampling procedure. Ergo, we get a sampling
rate for the 2nd CGS iteration of S2

cat = 0.6. On the other hand, if Icat = 5 is drawn again,

68



Efficient CGS for LDA

foreach d ∈ {1, · · · , D}1

foreach i ∈ {1, · · · , Nd}2

v ← wdi,M← ∅3

Idi ∼ multinomial(P (Idi|v, Γdi))4

foreach j ∈ {1, · · · , Idi}5

k̂ ← zdij6

Cdk̂ ← Cdk̂ − 1, Cvk̂ ← Cvk̂ − 17

k̂ ∼ multinomial(P (z|wdi))8

Cdk̂ ← Cdk̂ + 1, Cvk̂ ← Cvk̂ + 19

zdij ← k̂10

M←M∪ {k̂}11

u← |M|, Γdiu ← Γdiu + 112

Figure 3: Pseudo-code of ECGS-Dynamic by modeling Idi as a random number. After
the 3rd loop (line 5 to 11) is finished, we add 1 to the uth entry of Γdi

(line 12), where u is given by |M|, the number of unique topics sampled in
the 3rd loop, and |M| ∈ {1, · · · , min{Idi,K}}.

then we have to sample 5 times for the “cat”, which will give S2
cat = 1. This procedure

continues and consequently more and more tokens are excluded. To sum up, the sampling
times Idi for each type is generated from a multinomial distribution, which is the major
difference between ECGS-Dynamic, ECGS-Shortcut and standard CGS algorithms.

To achieve a high sampling rate at the beginning, Γdi is initialized as [0, · · · , 0, γ] for
every type, where γ is the damping factor and γ ∈ N+. That is, the Ndith entry has a
positive value and all other entries are 0. This setting ensures a high sampling rate (close to
1) and an exhaustive exploration in solution space at the beginning. The damping factor γ
controls the descending speed of the sampling rate. A large value of γ prevents the sampling
rate decreasing too fast and preserves a high sampling rate over several iterations, whereas
a small value of γ reduces the sampling rate rapidly to a low value after a few iterations.
Additionally, we can build standard CGS and ECGS-Shortcut from ECGS-Dynamic, by
simply initializing Γdi for every word to [0, · · · , 0,∞] and [1, 0, · · · , 0] respectively.

By observing Figure 3 and the example above, one may notice that |M| plays a key role
in the dynamic sampling, as it controls the updated parameters of Γ. Indeed, |M| is affected
by the sparseness of P (z|w) in a subtle way. To study the relation between sparseness of
P (z|w) and |M|, we derive the expectation of |M| as:

E(|M|) =
K∑

k=1

(
1−

(
1− P (z = k|w)Idi

))
. (4)

The proof of (4) is given in Appendix. Intuitively, E(|M|) indicates the entry of Γdi which
is updated. Therefore, it also affects the value of Idi which is used in the next iteration.
Furthermore, we use the entropy of k̂ to describe the sparseness of P (z|w), which is given
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1w 2w 3w 4w 5w 6w 7w 8w 1w 2w 3w 4w 5w 6w 7w 8w 1w 2w 3w 4w 5w 6w 7w 8w

standard CGS shortcut sampling dynamic sampling

3 11 15 3

Figure 4: Sampling procedure of standard CGS, ECGS-Shortcut and ECGS-Dynamic.
Each box represents a token, the box with same color has the same type, dif-
ferent colors/patterns indicates different types. The number in the circle is the
sampling times for a certain type. Each arrow denotes invoking the function
x ∼multinomial() for one times. In this example, the document contains 8 to-
kens and 2 types. Standard CGS samples 8 times (for every token) per iteration,
ECGS-Shortcut samples 2 times (only for 2 types) per iteration, and then assigns
the same topic to all tokens that have same type. By contrast, the sampling times
in ECGS-Dynamic is a random variable, which is controlled by the multinomial
distribution P (Idi|Γdi).

by:

H(k̂) = −
K∑

k=1

P (z = k|w) log P (z = k|w). (5)

A uniformly distributed P (z|w) gives the highest value of H(k̂), whereas a salient and
sparse P (z|w) gives a small value of H(k̂). Figure 5 shows the plot of E(|M|) and H(k̂) for
different values of Idi. One can observe that as the entropy increases, the expectation value
increases as well for large values of Idi. Intuitively, when P (z|w) is close to an uniform
distribution (usually at the beginning, as topics are randomly initialized), it is more likely
that sampled topics are different, thus E(|M|) is close to Idi. As a consequence, a high
sampling rate is preserved in the next iteration, which implies the solution space is not well
explored yet. On the other hand, when P (z|w) gets salient and sparse (usually after some
iterations), sampling several times may result in duplicate topics, thus E(|M|) is smaller
than Idi. Therefore, a lower sampling rate is encouraged in the next iteration. Since
P (z|w) gradually becomes sparse in the training procedure, the dynamic sampling ensures
a descending sampling rate and provides significant speedup. In conclusion, FastLDA,
SparseLDA and ECGS-Dynamic all exploit the sparseness P (z|w) to accelerate the standard
CGS algorithm but from different perspectives.

The time complexity of ECGS-Dynamic is bounded by the complexity of ECGS-Shortcut
(lower bound) and the standard CGS (upper bound). Notably, for every type in the doc-
ument we first have to generate Γdi, which needs an additional multinomial() operation.
Therefore, for types that have Ndi 6 2, dynamic sampling can not give us any benefit on
efficiency. In practice, we apply dynamic sampling only for wdi such that Ndi > 3. For the
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Figure 5: Expectation E(|M|) and entropy H(k̂) for different of values Idi. We use the
entropy to measure the sparseness of P (z|w). A high value of H(k̂) indicates
that P (z|w) is close to an uniform distribution, whereas a low value of H(k̂)
indicates that P (z|w) is a sparse distribution. Given a certain value of Idi, a
sparse distribution P (z|w) results in low values of E(|M|). On contrary, an
uniformly distributed P (z|w) results in high values of E(|M|).

remaining types the standard CGS is conducted. The space complexity of ECGS-Dynamic is
approximately two times of the standard CGS.

We summarize different CGS algorithms described above in Table 2 to highlight the
characteristic of each algorithm.

Name Characteristic Idi = Reference

Standard CGS No optimization Ndi Fig.1
ECGS-Standard Binary search and code-level

optimization
Ndi Fig.1

ECGS-Shortcut Sampling only one time for
each type

1 Fig.2

ECGS-Dynamic Sampling times is a random
variable

Idi ∼ P (Idi|Γdi) Fig.3

Table 2: Summary of differences between all CGS algorithms described in this paper. In
our implementation, ECGS-Shortcut and ECGS-Dynamic is based on the code of
ECGS-Standard, thus inherit all optimization tricks used in ECGS-Standard.
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4.3 Parallelization

To further improve the efficiency on large-scale data set, we parallelize ECGS in AD-LDA
fashion. As we do not modify the sampling formula itself, the only variable introduced
in ECGS-Dynamic is the parameter vector of the multinomial distribution Γ. Since Γ
is a document specific variable, there is no dependency between Γdi and Γd′i if d 6= d′.
Thus, a local Γp can be maintained on processor p as well, without any communication or
synchronization in between. To summarize, parallelizing ECGS is straight-forward and no
special treatments are needed.

5. Experiments

The experiments are conducted on three data sets: KOS blog entries (from dailykos.com),
NIPS full papers (from books.nips.cc), and NYTimes news articles (from ldc.upenn.edu)7.
These three data sets span a wide range of collection size, content, and average document
length. The KOS data set is the smallest one, NYTimes data set is relatively large, while
NIPS data set is moderately sized. Therefore they are useful for fully demonstrating the
performance of ECGS. For each collection, after tokenization and removal of stopwords, the
vocabulary of unique words was truncated by only keeping words that occurred more than
ten times. The size parameters for these three data sets are shown in Table 3.

Name D W V
∑

d Nd/W

KOS 3, 430 0.4× 106 6, 906 0.755
NIPS 1, 500 6.4× 106 12, 419 0.385
NYTimes 300, 000 100× 106 102, 660 0.700

Table 3: Size parameters of the three data sets used in experiments. The value of
∑

d Nd/W
characterizes the redundancy of the data set. The smaller the value is, the more
repetitive tokens exist in the data, thus the more redundancy in the data set.∑

d Nd/W also denotes the average sampling rate for ECGS-Shortcut .

The purpose of the experiments is to show the validity of the ECGS algorithms, espe-
cially, the ECGS-Dynamic , and to demonstrate the speedup against standard CGS. We
present the experimental results from three perspectives. First, we use perplexity curve to
validate the convergence of ECGS-Dynamic and ECGS-Shortcut on KOS and NIPS data
sets. Second, we measure the execution time of ECGS-Dynamic , ECGS-Shortcut compar-
ing with FastLDA and GibbsLDA implementations on all three data sets, and report their
corresponding speedup. Finally, we examine the performance of the parallelized ECGS al-
gorithm on NYT data set and compare it with the PLDA implementation. With the goal
of repeatability, we have made our ECGS code publicly available8.

Before explaining our experiments, we describe here the parameter specifications used to
run our experiments. For all data sets, we run 500 iterations (including burn-in period) with

7. All data sets are available at http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

8. http://home.in.tum.de/~xiaoh/pub/ecgs.html
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the empirical Dirichlet priors α = 50/K and β = 0.02 proposed by Griffiths and Steyvers
(2004). The value of 500 iterations is chosen to guarantee that burn-in had occurred,
and topics are drawn from the converged posterior distribution. For ECGS-Dynamic ,
the damping factor is set to γ = 1. In the perplexity experiment different values of γ
are studied. All experiments are conducted with 4-fold cross-validation, each time with a
different random initialization. Significant tests are done with t-test at the 5% significance
level. All implementations are compiled using gcc with argument -O3, to enable the full
optimization of the compiler and achieve the best performance. Experiments concerning
time measurement are conducted on a Linux machine with 8 CPUs, each 2.7 Ghz and 64GB
of memory in total.

5.1 Convergence Analysis

We first use perplexity to measure the convergence of ECGS-Shortcut and ECGS-Dynamic .
Given test set D, the perplexity can be computed as follows:

Perplexity(D) = exp

(
− 1

N

D∑
d=1

Nd∑
i=1

Ndi log
K∑

k=1

θwdi,kφd,k

)
, (6)

where θv,k =
Cvk + β∑

v′ Cv′k + V β
, φd,k =

Cdk + α∑
k′ Cdk′ + Kα

.

We report the average perplexity of 5 randomly initialized runs on KOS and NIPS data sets
with K = 40. For each run, 3/4 data is used for training, 1/4 is used for testing. Perplexity
as a function of the number of iterations for standard CGS, ECGS-Shortcut and ECGS-
Dynamic algorithms is depicted in Figure 6. For ECGS-Dynamic , we also plot perplexity
curves given by the algorithm with different damping factors γ and study the influence
of γ on the model convergences. We treat the perplexity given by standard CGS as the
ground-truth. One can observe, that ECGS-Shortcut converges to a suboptimal value on
both data sets. This problem can be attributed to the cursory sampling strategy ignoring
the repetitive tokens in the data set. Notably, ECGS-Dynamic converges to the ground
truth as rapidly as standard CGS. On KOS data set, ECGS-Dynamic converges to the
same perplexity result as standard CGS9. On NIPS data set, ECGS-Dynamic with γ = 1
converges to a slightly higher perplexity comparing to the ground-truth10, while it is still
significantly lower than the perplexity given by ECGS-Shortcut 11. Although intuitively
the choice of γ will surely affect the model convergence, the ECGS-Dynamic however seems
to be insensitive to the γ according to this figure. To further examine the influence of γ
in the ECGS-Dynamic algorithm, we depict the average sampling rate S̄t as a function
of the number of iterations t in Figure 7. Figure 7 clearly illustrates two facts. First, S̄t

always converges to a value (termed S̄∞) that lies between 1 (given by standard CGS) and∑
d Nd/W (given by ECGS-Shortcut ). Second, the damping factor γ substantially affects

the curve of S̄t. The bigger γ is, the slower S̄t converges, and the larger the value of S̄∞ is.
Since the average sampling rate is directly related to the running time of the algorithm, it is

9. Two-tailed test, p-value is 0.81
10. Right-tailed test, p-value is 7 × 10−4

11. Left-tailed test, p-value is 4 × 10−7
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crucial to understand the factors that affects S̄∞. The lower bound of S̄∞ is determined by
γ and

∑
d Nd/W . This implies that the speedup of ECGS-Dynamic may vary on different

data sets.
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(a) Perplexity curve on KOS data set.
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(b) Perplexity curve on NIPS data set.

Figure 6: Perplexity versus number of iterations (a small perplexity value is better). The
models are trained on KOS data set (left) and NIPS data set (right) with 40
topics and 500 iterations. The result of ECGS-Dynamic with different damping
factors γ = 1, 10, 100, 1000 is showed.

5.2 Sequential Speedup Results

The average runtime per iteration of the different CGS algorithms for different values of K
is depicted in Figure 8. The baseline implementation is given by GibbsLDA, which employs
standard CGS but without any code-level optimization. We use ECGS-Standard to denote
the implementation based on GibbsLDA with included tricks such as binary search, loop fu-
sion and other trivial optimizations. These tricks are also inherited in ECGS-Dynamic and
ECGS-Shortcut implementations. In general, the speedup of all ECGS algorithms are re-
markable on the three data sets. The ECGS-Shortcut enjoys the fastest speed among all
algorithms, however it can not converge to the optimum. Besides, it is surprising to see that
by just doing some code-level optimization, ECGS-Shortcut has 2 times lead over FastLDA.
ECGS-Dynamic performs on average 4-6 times faster than GibbsLDA and 2 times faster
than ECGS-Standard, meanwhile it converges to the equivalent model given by standard
CGS. Another interesting fact is that the speedup of ECGS-Dynamic and ECGS-Shortcut is
highly related to the redundancy of the data set. As summarized in Table 3, the redundancy
of a data set is measured by

∑
d Nd/W . On a small data set like KOS, ECGS-Dynamic can

not substantially reduce the sampling times as there are not many repetitive tokens in
each document. When the data set is large and span a wide range of content, like NYT,
the vocabulary size is usually large as well. Consequently, less redundancy exists in the
data set, and thus ECGS-Dynamic also fails to show a promising speedup. Despite these
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(a) Average sampling rate curves on KOS. The average
sampling rate of ECGS-Shortcut is 0.755.
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(b) Average sampling rate curves on NIPS. The av-
erage sampling rate of ECGS-Shortcut is 0.385.

Figure 7: Average sampling rate of ECGS-Dynamic with different damping factors γ versus
number of iterations. The models are trained on KOS data set (left) and NIPS
data set (right) with 40 topics and 500 iterations. The constant average sampling
rate of ECGS-Shortcut is depicted for comparison. As the average sampling
rate and speedup are in inverse proportion, one can obtain speedup curves with
different γ by flipping these figures.

two cases, when the data set is large but the content is concentrated in few areas, ECGS-
Dynamic scales well and demonstrates a full speedup (e.g. NIPS data set).

5.3 Parallel Speedup Results

Finally we demonstrate the performance of the parallel algorithm. Figure 9 shows the
execution time of the parallelized ECGS algorithms against PLDA on NIPS and NYT data
set. In general, by increasing the number of processors, we can significantly reduce the
training time. Indeed, on the large-scale data set like NYT, all parallel implementations
can achieve approximately linear speedup of 7 on up to 8 processors. As PLDA is based on
the standard CGS, the actual execution time is much higher than of the parallel ECGS. By
joining optimization and parallelization together, ECGS-Dynamic dramatically reduces the
training time of 500 iterations on NYT from 5 days (given by sequential standard CGS) to
5 hours without losing optimality.

6. Conclusion

Collapsed Gibbs sampling is a method which can be applied to approximate intractable
integrals in probabilistic generative models such as LDA. The method however, suffers of
high computational complexity and is therefore limited applicable on large data sets. To
overcome this limitation, we proposed a novel and efficient Collapsed Gibbs sampling strat-
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Algorithm 50 100 200 400

ECGS-Standard 0.2 0.3 0.6 1.1
ECGS-Dynamic 0.1 0.3 0.5 0.9
ECGS-Shortcut 0.1 0.2 0.4 0.8
FastLDA 0.3 0.6 1.4 3.2
GibbsLDA 0.5 1.0 2.0 3.9

(a) KOS data set
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Algorithm 50 100 200 400

ECGS-Standard 0.7 1.2 2.2 4.0
ECGS-Dynamic 0.5 0.8 1.5 2.8
ECGS-Shortcut 0.3 0.5 0.9 1.7
FastLDA 1.0 1.8 3.6 7.9
GibbsLDA 2.2 4.2 8.1 16.0

(b) NIPS data set
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Algorithm 50 100 200 400

ECGS-Standard 42.0 67.1 122.7 220.0
ECGS-Dynamic 37.3 60.6 104.6 194.4
ECGS-Shortcut 32.6 52.8 88.3 164.7
FastLDA 52.0 111.5 251.5 540.0
GibbsLDA 128.3 243.0 482.4 936.3

(c) NYT data set
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Figure 8: Runtime results of the sequential algorithms for data sets KOS, NIPS and NYT.
All algorithms are trained with 500 iterations. The tables show the average
runtime per iteration (in seconds) as a function of the number of topics, which
is calculated by the total runtime/500. The figures illustrate the speedup as a
function of the number of topics of the corresponding data sets. The speedup is
calculated as the average runtime of GibbsLDA divided by average runtime of
the benchmark algorithms.

egy: dynamic sampling. Unlike previous works, our strategy focus on reducing the sampling
times for each word. In particular, the dynamic sampling method significantly increased
the sampling speed while retaining all the optimality guarantees associated with standard
Gibbs sampling. Additionally, we presented an overview of already proposed techniques
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(a) Average execution time on NIPS.
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(b) Average execution time on NYT.

Figure 9: Average execution time per iteration on NIPS dataset (left) and NYT data set
(right). The parallel ECGS is implemented using OpenMP, PLDA is implemented
using MPI. The models are trained with 400 topics for 500 iterations.

and conducted a comparison study. The experiments on three public data sets showed that
our strategy entertain promising speedups. Moreover, we proposed a parallelization of the
strategy and demonstrated a significant speedup (training of 5 days reduced to 5 hours). It
has not escaped our mind that there is still some room to further improve the efficiency of
Gibbs sampling, namely, by combining FastLDA and ECGS.
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Appendix

Proof of (4)

We formulate the dynamic sampling procedure in Figure 3 line 5 to line 11 as the following
urn problem. Given an urn with an infinite number of balls, divided up among K colors.
Color k has proportion Pk of the total balls, and

∑K
k=1 Pk = 1. We draw n balls out of the

urn with replacement. Let m be the number of different colors in the drawn sequence.
For color k, the probability that at least one of the balls drawn has that color is 1 −

(1− Pk)n. The expectation of having m different colors is hence the sum over K colors

E(m) =
K∑

k=1

(
1− (1− Pk)n

)
. (7)
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