
Empowering Convolutional Networks for Malware
Classification and Analysis

Bojan Kolosnjaji1, Ghadir Eraisha1, George Webster1, Apostolis Zarras1, and Claudia Eckert1,2

1 Technical University of Munich 2 Fraunhofer AISEC

Abstract—Performing large-scale malware classification is in-
creasingly becoming a critical step in malware analytics as the
number and variety of malware samples is rapidly growing.
Statistical machine learning constitutes an appealing method to
cope with this increase as it can use mathematical tools to extract
information out of large-scale datasets and produce interpretable
models. This has motivated a surge of scientific work in develop-
ing machine learning methods for detection and classification of
malicious executables. However, an optimal method for extracting
the most informative features for different malware families,
with the final goal of malware classification, is yet to be found.
Fortunately, neural networks have evolved to the state that
they can surpass the limitations of other methods in terms of
hierarchical feature extraction. Consequently, neural networks
can now offer superior classification accuracy in many domains
such as computer vision and natural language processing.

In this paper, we transfer the performance improvements
achieved in the area of neural networks to model the execution
sequences of disassembled malicious binaries. We implement a
neural network that consists of convolutional and feedforward
neural constructs. This architecture embodies a hierarchical
feature extraction approach that combines convolution of n-
grams of instructions with plain vectorization of features derived
from the headers of the Portable Executable (PE) files. Our
evaluation results demonstrate that our approach outperforms
baseline methods, such as simple Feedforward Neural Networks
and Support Vector Machines, as we achieve 93% on precision
and recall, even in case of obfuscations in the data.

I. INTRODUCTION

Malicious software (malware) detection and analysis is
becoming more and more difficult as the number of newly
detected malware samples grows with an increasing rate.
As such, the amount of new malware variants identified by
security companies has exponentially increased throughout the
years. This is an overwhelming volume of data for malware an-
alysts as they need to extract pertinent information out of these
extremely large-scale datasets. The statistics page of Virus-
Total shows that the number of newly submitted samples for
analysis can easily reach, or even surpass, the one million files
per day [1]. This surge of samples makes reverse engineering
a challenging task. Although there exist efforts to automate
the reverse engineering and malware analysis process, manual
signature-based or heuristics-based detection and analysis pro-
cedures are still very prominent. The samples not only increase
in sheer numbers but also in variety, which is usually caused
by advances in malware development that utilize polymorphic
and metamorphic algorithms to generate different versions of
the same malware. This confines signature-based systems to

correctly detect, classify, and analyze malware. Furthermore,
it encumbers existing reverse engineering processes to scale
up to the order of millions of samples.

To aid malware analysts in retrieving useful information
from such a large amount of executables, we need to solve
the problem of performing large-scale automatic detection and
classification under the existing statistical variance. Assigning
malicious examples to preexisting families helps malware ana-
lysts to focus their efforts and automate the system protection
countermeasures. In order to improve this malware triage
procedure, we need a more robust alternative that can abstract
away the noise and capture the essential information from
static or behavioral malware properties.

Static analysis tools, such as PEInfo [2] and Yara [3],
offer extraction of different properties and metadata (e.g.,
entropy, histograms, section length) from malware code. This
data is crucial for characterizing malware samples, under
the condition that the binary is not obfuscated to the extent
that the majority of properties and metadata are significantly
changed. On the other hand, behavioral analysis tools are
less sensitive to code obfuscation, as they only record traces
of activity retrieved from the execution of malware samples.
However, the behavioral traces provide information about only
one execution path out of many possible cases.

Many machine learning-based systems have been developed
as a solution to the problems of processing a large number
and variety of malware samples. As a matter of fact, previous
works attempted to tackle the problem of modeling malware
behavior [4]–[7]. Apart from behavioral data, static code
properties have also been used as data sources for statistical
analysis [8]. Furthermore, there are works trying to combine
static and dynamic approaches [9]. Yet, albeit neural networks’
increasing popularity in machine learning applications, as
they have caused performance improvements in many areas,
these approaches have not been extensively used in malware
analysis. Nevertheless, there exist efforts trying to introduce
neural networks to this application area. For instance, feedfor-
ward networks have been recently utilized to analyze malware
code [10], while recurrent and convolutional networks have
been employed for modeling system call sequences in order
to construct a “language model” for malware [11], [12].

The previous works proved valuable in malware classifica-
tion, but they are weak for capturing features out of assembly
instructions, as for example in cases where the data has hierar-
chical structure. The reason is that standard machine learning

methods do not take into account the feature hierarchies.
Using the assumption that the sequence of instructions in
the program actually represents a manifestation of high level
actions, we hypothesize the existence of such feature hierarchy.
As a matter of fact, we show that by using the convolutional
network layers it is possible to obtain clear benefits in terms of
discovering valuable information and increasing classification
performance.

In this paper, we attempt to improve the feature extrac-
tion and classification methodology for malware datasets. To
achieve this improvement, we use a neural network that com-
bines convolutional and feedforward layers. More specifically,
we provide as input to the feedforward layers various Portable
Executable (PE) metadata. Additionally we feed the sequences
of one-hot encoded assembly instructions into convolutional
layers. Using this approach we achieve 93% on precision and
recall with a 92% on F1-measure and outperform the standard
machine learning approaches, even in the case of obfuscated
code. Overall, we show that our proposed approach constitutes
a valuable asset in the fight against malware.

In summary, we make the following main contributions:
• We construct a deep neural network and apply it for the

classification of malicious executables.
• We combine convolutional and plain feedforward ap-

proaches to neural networks for optimizing malware
classification.

• We investigate neural unit activation patterns and explain
the performance improvement of our models by showing
the inner workings of our neural network.

II. BACKGROUND

This work suggests the use of convolutional networks for
improving malware detection and analysis. To facilitate the
understanding of this paper, we introduce the concepts of PE
files and convolutional networks.

A. PE Files

In malware analysis and classification, it is important to
know the PE format of binaries to properly parse and interpret
the malware samples. In detail, the PE format is used as
a typical way of structuring windows executable files [13].
More precisely, this format prescribes the PE File Header,
which contains metainformation about the executable files. For
example, in the PE File Header we can find which Dynamic
Link Libraries (DLLs) are used by the considered executable
and which functions are imported. In addition, we can see
the timestamp from the compilation, names of different code
sections, their sizes on disk and in memory.

After the PE File Header we can find the actual program.
This program is divided into multiple sections, for example
.text, .rdata, .data, and .rsrc section. The .text
section contains the executable code of the program. This
section provides more in-depth insight on how a program
operates. Therefore, this code can be disassembled into as-
sembly representation by analysts to inspect it and extract the

exact possible features of the given program. The .rdata
section holds the import and export information, whereas
the .data section stores the data that is globally accessible
throughout the executable. Finally, the .rsrc section contains
the resources required by the executable, such as images,
strings, icons, and menus.

As we already mentioned, it is possible to use the afore-
mentioned sections to characterize the program and enrich this
with the additional data using tools like objdump and retrieve
a series of assembly language instructions. Furthermore, in
some cases, it is also possible that this code can be further
decompiled to get the source code in a higher level programing
language. Although this could simplify the analysis, it does
come with its own limitations. For instance, frequently there
is a lack of information regarding all the compilation require-
ments of the binary and therefore an attempt to decompile the
binary in a higher level programing language can lead to a
loss of valuable information.

B. Convolutional Networks

Neural networks are biologically motivated machine learn-
ing constructs. They consist of multiple layers of nonlinear fea-
ture transformation, where parameters of this transformation
are trained using a gradient descent procedure. In feedforward
networks the transformation looks like the following:

y = f(

M∑
j=1

wjxj + w0) (1)

where wi are parameters of the neural network (weights), and
f is a nonlinear function that adds complexity to the model.

Multiple layers can be connected by using the output of
one layer as an input to the next one. This series typically
ends with a softmax function in case of classification, which
transforms activation values of the last layer into vectors of
values between 0 and 1. These vectors indicate the classifi-
cation labels. Neural networks have long been present in the
machine learning community. Some theoretical results show
that even the 3-layer network (with one nonlinear layer) can
be a universal approximator for smooth functions [14]. Yet, in
practice, it has been shown that increasing the number of layers
further can improve performance as it enables hierarchical
feature extraction [15]. This paradigm of using a high number
of layers has been called deep learning and it brings many
improvements and promising results in the literature, as for
example in image processing [16] and text classification [17].

Many successful approaches in deep learning come also
from using convolutional networks. This type of networks
have been successfully used in image and text processing.
In general, convolutional networks often consist of multiple
layers of convolution and pooling. On the one hand, convo-
lution layer uses a nonlinear function to extract features from
data samples by moving the convolution filter in a predefined

window [18]. Discrete convolution with filter K executes the
following transform on the input I:

(I ∗K)r,s =

h1∑
u=−h1

h2∑
v=−h2

Ku,vIr+u,s+v (2)

where the filter is given by:

K =

K−h1,−h2 · · · K−h1,h2

... K0,0

...
Kh1,−h2

· · · Kh1,h2

 (3)

The output of a convolutional layer (Y) consists of a series
of feature maps. The ith feature map (Yi) is computed as:

Yi = Bi +
∑

Ki,j ∗Xj (4)

On the other hand, pooling layer takes the results of a
convolutional layer as input and extracts the most salient
features. This layer effectively executes subsampling by taking
an average or maximum value in a given window. A sequence
of convolutional and pooling layers alternates feature extrac-
tion and dimension reduction, both of which are trained by
executing gradient descent on filter parameters. Gradient is
computed using backropagation, i.e., by propagating the errors
from the output layer back to the hidden layers.

In image processing, the convolutional filter is used to
recognize features in the image, which is very useful for
object recognition. This way the objects can be detected almost
invariant from their position. Similar to images, in text pro-
cessing (e.g., sentence classification, search, recommendation)
we can extract information and detect high level features for
short text using the flexible convolutional filters. Since logs
containing instructions from malicious executables consist of
sequences of words from a predefined dictionary, there is an
obvious analogy with text documents when selecting modeling
methods.

III. METHODOLOGY

Our methodology consists of gathering and preprocessing
appropriate input data, feature extraction, and classification
using a neural network.

A. Data Acquisition

We collected a set of malware samples over multiple months
from three primary sources: Virusshare Maltrieve and private
collections. We selected these sources to provide a large and
diverse volume of samples for evaluation. In order to extract
useful data out of a large-scale sample set we use a malware
zoo, where we define and query RESTful services to obtain
data from multiple malware analysis tools. In our case, we
utilize objdump [19] to retrieve the opcodes and PEInfo [2]
to extract information from the PE Header. The zoo back-
end infrastructure is composed of large-scale analysis concepts
proposed by Webster et al. [20]. This enables us to distribute
and parallelize the data extraction process.

B. Preprocessing

We extract features of PE files by preprocessing the fields
of the PE Header and opcodes from the code section. In order
to use this data in the classification process, we need to create
numerical feature vectors out of the already existent structure.

PE Metadata. The metadata contained in the PE Header
offers some potentially useful input. This data is often used
in malware analysis, as it is easy to just extract it from
the beginning part of the binary. In this work we used the
following metadata: (i) compile time stamp, (ii) address
offsets to image resources (dialog boxes, menus etc), and
(iii) size of image resources. In addition, for each code section
we take (i) the entropy, (ii) the virtual address, (iii) the
virtual size, and (iv) the size on disk. In total, we extract 27
numerical features.

Our motivation for extracting these features is that the PE
metadata may help the neural network to detect suspicious
aspects of a given PE file. For instance, if the virtual size of
the .text section is much larger than its raw size, then it is
implied that the code is packed (i.e., it has been modified using
a runtime compression or encryption program). Furthermore,
the set of image resources may help the neural network to
identify the resources required by malware samples belonging
to the same malware family.

PE Import Features. Next, we look at the list of imported
functions and their DLL files. We can extract these lists from
the PE files using the PE Header. To vectorize these lists,
we encode the presence of unique funictions along with their
associated DLLS using the one-hot encoding approach. In
total, we counted 488 unique functions from the PE files in
our collection.

Our motivation for extracting these features is that imported
functions may help the neural network to identify the pur-
pose of a particular malware sample. For instance, functions
imported from kernel32.dll—such as OpenProcess, GetCur-
rentProcess, and GetProcessHeap—imply that malware opens
and manipulates processes. This DLL file provides functions
for most of the Win32 APIs. Many GUI manipulation im-
ported functions—such as RegisterClassEx, SetWindowText,
and ShowWindow—indicate that the malware has a GUI and
possibly imitates the appearance of a benign GUI application.
Functions imported from shell32.dll imply that the malware
launches other programs. Subsequently, the neural network
classifies malware samples with a semantically similar com-
bination of imported functions to the same family.

Assembly Opcode Features. The last set of features is derived
from the assembly instructions of the PE files. For each
PE file, we first disassemble it to generate the assembly
instructions with opcode information. Second, we convert the
generated sequence of opcodes into a matrix representation,
where each row of the matrix is a vector representation of one
opcode in the sequence. To convert an opcode into a vector, we
represent it by the one-hot encoding scheme. Our motivation
for extracting these features is that opcodes may help the

Table I: The most frequent malware signatures included in
each of the 13 clusters.

Cluster Signatures

0 Neurevt, QQPass, Keylogger and IRCbot
1 Zapchast and Banload
2 Artemis and IRCbot
3 Neurevt, QQPass and IRCbot
4 Dridex
5 QQPass and Keylogger
6 Banload
7 Generic
8 Genbl
9 Keylogger

10 IRCbot
11 QQPass and IRCbot
12 Androm

neural network to capture the semantics of the instruction
usage patterns that a particular malware sample relies upon and
thus exhibit the exact behavior of the sample. Consequently,
the neural network can learn the discriminative instruction
usage patterns among different benign and malware families.

Signature Clustering. In the past, there were many issues with
training labels for malware classification [21]. To get more
confident labels, we perform a selection procedure that utilizes
a simplified version of signature clustering method introduced
in VAMO [22]. Specifically, we create boolean label vectors
for every malware sample that represent presence or absence of
signatures given by different antivirus engines. Our assumption
is that the malware samples of the same family will have the
same or at least similar boolean feature vector. The sample
signature vectors are clustered using DBSCAN [23] and a
variant of cosine distance, as we do not know the number
of clusters in advance. The DBSCAN algorithm enables us
to find significant clusters in the signature vector dataset and
tune the algorithm to make clusters with high population and
compactness in the feature space. It also enables us to detect
outliers, as they will not be included in any significant cluster.
Finally, we select 13 clusters with the highest number of
members as families for classification, since they cover most
of our dataset. Table I illustrates the most prominent antivirus
signatures included in each of the 13 clusters.

C. Neural Network Architecture

We use a hybrid approach to design our neural network
to get an optimal structure for hierarchical feature extraction.
Figure 1 illustrates an overview of our architecture. While
we transform the PE metadata and PE Import features using
feedforward neurons, in parallel, we leverage convolutional
network layers for the malware opcode sequences.

As we mentioned, in order to construct our final neural
network-based malware classifier, we combine the feedfor-
ward and convolutional neural network architectures along
with their corresponding features into a single network. The
second hidden layer from the feedforward neural network and
the pooling layer from the convolutional neural network are
aggregated into one layer. Then, a fully-connected output layer,

OpcodesPE ImportPE Metadata

Input Layer

Convolutional Layer

Pooling Layer

Input Layer

Hidden Layer

Hidden Layer

Dropout Layer

Output Layer

Figure 1: Overview of our neural network architecture.

of 13 softmax units is added to generate the final classification
output. In the following, we provide more details about the
feedforward and convolutional layers.

Feedforward Layers. We use feedforward sublayers to process
the data that does not have the structure which would benefit
from convolutional filters. Specifically, we use 27 features
from PE metadata and 488 boolean features from the PE
Import list. We apply a dropout layer with 20% dropout rate.
This is followed by two fully-connected hidden layers, where
each of the layers has 500 units, with a Parametric Rectifier
Linear Unit (PReLU) [24] activation function. Both of the
hidden layers apply 20% dropout to the hidden units. The
weights of the hidden layers are initialized using Glorot’s
scheme [25]. Finally, after the last dropout layer, we use a
fully connected output layer of 13 softmax units to generate
the final classification output.

Convolutional Layers. For the assembly opcode sequences
we use convolutional layers to make the neural network
learn the high level features out of this data. We want to
use convolution as a way of capturing the semantics of the
instruction usage patterns. Figure 2 reveals the structure of
convolutional layers. We assume that as a consequence of
the good feature extraction, our convolutional architecture in
the neural network will help us to discriminate usage patterns
among benign and malware families. Indeed, the convolutional
filter helps to discover the higher-order local features that
are invariant to small changes in data. This means that our
method can also help with small obfuscation done by the
malware authors, such as reordering of instructions and adding
an amount of unreachable code.

Since the rows of the input matrix represent discrete op-
codes, it is reasonable for filters to slide over full rows of
the matrix, similar to the applications in Natural Language
Processing. Thus, we choose the width of the filters to be
118, which is equal to the dimensionality of the opcode

Add . . .
Jmp . . .
Pop . . .

Mov . . .
Rep . . .

Push . . .
Add . . .
Sub . . .
Ret . . .

.

N x 118 matrix representation
of the opcodes sequence

Convolutional layer
with filter height of 3

Max pooling
subsampling layer

Figure 2: Convolutional layers.

vectors. However, the height of the filters, which represents the
number of adjacent opcodes, varies among different variants
of our model. We mainly experimented with 2, 3, 4, and 5
filter heights with 10 feature maps each. The dimensions of
the filters are chosen by looking at NLP application papers,
where convolutional filters can detect specific patterns in the
assembly instructions that are quite similar to opcode n-grams.
Finally, we choose the height 3 as it gives best results in our
experiments.

The convolutional layers are followed by a max-pooling
subsampling layer with factor 2 in one dimension, which
reduces the output dimensionality while keeping the significant
global information captured by the filters. If a specific opcode
sequence pattern is reallocated in the code, information regard-
ing whether this pattern occurred in the code will be kept,
but information regarding its order in the code will be lost.
Finally, we use a fully-connected output layer of 13 softmax
units to generate the final classification output. Similar to the
feedforward neural network design, PReLU was chosen as
the activation function, and Glorot’s scheme was selected to
initialize the network weights.

The neural network is trained over shuffled mini-batches
using backpropagation and stochastic gradient descent with
Nesterov momentum [26].

IV. EVALUATION

In this section we show and comment on the results of
our approach. More precisely, we first discuss about our
crossvalidation experiments and then present our classification
results. Finally, we show how our approach is robust against
instruction reordering.

A. Crossvalidation Experiments

We conducted a set of crossvalidation experiments to assess
how well each of the feedforward and convolutional neural
networks individually perform, and then we evaluated the
performance of the hybrid neural network. We ran the ex-
periments on a machine with a CUDA graphical processing
unit. In addition, we built and trained the neural network

Table II: Classification performance of the feedforward, con-
volutional, and hybrid neural networks as well as the SVM.

Model Precision Recall F1-score

FFNN 0.90 0.92 0.90
CNN 0.92 0.92 0.91

SVM 0.92 0.92 0.92

Hybrid NN 0.93 0.93 0.92

models using the Lasagne v0.1 [27] and Tensorflow [28]
libraries. Finally, we wrote the feature extraction in Python
programing language, and extensively use the SciPy and
NumPy libraries. Our final dataset after noise filtering contains
22,757 executables, with 22,694 malicious executables and
63 benign executables from ZDNet’s download list of most
popular programs [29]. (“benign” class). One may notice that
we ended up with unbalanced datasets. However, since we
use multiclass classification, where we have one benign class
and multiple classes of malicious executables, this reduces the
problem with balance among class size.

In detail, we conducted 3-fold crossvalidation experiments
to estimate the results over new data. In each experiment, we
randomly split the dataset into three equally sized partitions,
where we trained against two partitions and tested against the
remaining one. This process was repeated for three times while
a different partition is left out for testing each time. Finally,
we computed the average results of the three tests to obtain
a reliable measure of how well the proposed neural network
architecture performs over the entire dataset. We quantitatively
assessed the performance of the neural network architecture
using three metrics: precision, recall, and F1-score.

To measure the performance gain brought by our combined
deep neural network, we trained a reference support vector
machine (SVM) classifier using the PE metadata, PE import,
and assembly opcode features. In detail, we used the same set
of PE metadata and import bag-of words features. However, in
the case of the assembly opcodes of a PE file we used counts
of 3-grams of opcode instructions to get a methodology for
comparison with convolutional neural networks.

B. Classification Results

We compared the averages of the classification performance
of the fully feedforward, convolutional, and our neural net-
work as well as the support vector machine, as shown in
Table II. Our hybrid neural network provides a performance
improvement over the feedforward and convolutional neural
networks as well as the support vector machine. The hybrid
neural network achieves an F1-score value of 0.92 as well as
precision and recall values of 0.93.

The experiments demonstrated that our approach accurately
classifies malicious executables that behave similarly into the
same family. Table III depicts the averages of the classification
performance for each of the classes of the hybrid neural
network. Table IV, on the other hand, shows the confusion
matrix of the hybrid neural network, which illustrates how

Table III: Classification performance of our neural network for
each of the classes.

Class Precision Recall F1-score

0 1.00 0.16 0.27
1 1.00 1.00 1.00
2 0.00 0.00 0.00
3 0.41 1.00 0.59
4 0.93 1.00 0.96
5 0.92 0.99 0.95
6 0.87 0.31 0.46
7 0.98 0.96 0.97
8 0.56 1.00 0.72
9 0.78 0.75 0.77
10 0.67 0.10 0.18
11 0.00 0.00 0.00
12 0.50 0.80 0.61

Benign 1.00 0.92 0.96

Average 0.93 0.93 0.92

malware samples of a particular family are correctly classified,
or misclassified into different families. In detail, Table III
reveals that samples belonging to classes 1, 4, 5, and 7 as well
as the benign samples are approximately correctly classified.
In contrast, samples belonging to classes 0, 2, 10, and 11 are
misclassified. Furthermore, the confusion matrix of the deep
neural network, shown on Table IV, indicates that malware
samples belonging to classes 0, 2, and 11 are particularly
confused with class 3. The reason behind this is that these
classes share common malware signatures, as demonstrated in
Table I.

Next, we examined the activation values of the input neu-
rons at the input layers in order to determine which features
have higher activation values after training. For instance,
Figure 3 presents the average activation values of the input
features for ten malware samples of class 1. It is interesting
to see that the most active neurons at the input layer are
the assembly opcode features. This indicates that in our
tests the assembly opcode features make the most significant
contribution to the malware classification.

Furthermore, the high-dimensional activations of the neu-
rons at the last hidden layer were projected to a lower
dimensional space for visualization and analysis. As shown in

PE Metadata PE Functions Opcodes
0

0.2

0.4

0.6

0.8

1

Figure 3: Visualizing the average activation values of the input
features for ten malware samples of class 1.

Figure 4, the feature points for classes 1, 3, 4, 5, 8, 12, and 13
are well separated. However, there is confusion among classes
6, 7, 9, and 10. To keep the distances between activation values
of different samples while reducing the vectors to 2D we used
the T-SNE [30] method for dimension reduction.

C. Robustness Against Instruction Reordering

Attackers often create malware variants by reordering the
instructions to bypass signature detection. The instructions are
reordered in such a way that preserves the inter-instruction
dependencies. Hence, in this experiment, we demonstrate the
robustness of the neural network against instruction reorder-
ing. Given 150 test samples, we randomly shuffled their
corresponding sequences of opcode and measured the neural
network performance. Our neural network was still able to
accurately classify the malware and benign samples with F1-
score values above 0.90 until 50% rate of shuffling. Addition-
ally, we randomly increased or decreased the input frequencies
of 3-gram opcodes to the support vector machine for these
150 test samples and measured the support vector machine
performance. The support vector machine performance has

Table IV: The confusion matrix of the deep neural network.

0 1 2 3 4 5 6 7 8 9 10 11 12 Benign
0 26 0 0 119 0 0 0 0 0 0 0 0 0 0
1 0 100 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 267 0 0 0 0 0 0 0 0 0 0
3 0 0 0 504 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 157 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 869 0 4 0 2 0 0 0 0
6 0 0 0 0 0 0 70 170 14 0 0 0 12 0
7 0 0 0 200 25 2 14 18572 245 16 10 0 180 0
8 0 0 0 0 0 0 0 0 430 0 0 0 0 0
9 0 0 0 0 4 2 2 20 0 98 0 0 4 0

10 0 0 0 0 0 0 0 112 19 5 12 0 0 0
11 0 0 0 129 0 65 0 0 1 0 0 0 0 0
12 0 0 0 0 0 0 0 66 0 0 0 0 145 0

Benign 0 0 0 0 0 0 0 4 0 0 0 0 0 59

-30

-20

-10

 0

 10

 20

 30

 40

-10 -5 0 5 10 15 20 25

F
e
a
tu

re
 2

Feature 1

0
1
2
3
4
5
6
7
8
9

10
11
12

Benign

Figure 4: Visualizing ten samples from each class with their corresponding activation values of the last hidden layer neurons.

0 10 20 30 40 50 60 70

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Rate of shuffling (%)

F1
-s

co
re

Hybrid NN
SVM

Figure 5: Demonstrating the decrease in the F1-score for
the hybrid neural network and support vector machine while
increasing the rate of instruction reordering.

dramatically decreased to an F1-score of value 0.82. Figure 5
shows the small decrease in the F1-score of the hybrid neural
network while increasing the rate of instruction shuffling.
In addition, it shows the significant decrease in the F1-
score of the support vector machine while increasing the
rate of 3-grams’ distribution alteration. This shows that our
methodology contains a defense mechanism against the above
mentioned obfuscation approaches.

D. Saliency Maps

In order to visualize and interpret the classification process
of our neural network, we use the methodology developed by
Symonian et al. [31]. In particular, we use Taylor expansion
and compute first partial derivative of the classification results
before putting them through the softmax function. This gives
us a detector of salient features that contribute the most to

attributing samples with a certain class. Out of a saliency map
we can draw conclusions about the reasons for classification
results. For example, in Figure 6 we can see that the chosen
sample should be given a label 7, according to most of the
PEInfo features. Yet, there is a significant peak at the feature
with number 34 that indicates that this sample also has some
characteristics of the class 10 (i.e., IRCBot). This feature is
the size of a certain PE RESOURCE field in the PE Header.

 0 100 200 300 400 500

Features

 0

 2

 4

 6

 8

 10

 12

C
la

s
s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Figure 6: Saliency map for a chosen sample and PEInfo
features.

V. LIMITATIONS AND FUTURE WORK

Although we have, in principle, achieved our goal of lever-
aging convolutional network to improve malware classifica-
tion, there are some limitations to our methodology. Regarding
the dataset, we only use results of static malware analysis.
Although we show that our convolutional layers are somewhat
robust to code obfuscation, there still are ways to obfuscate
the code to an extent that our methodology will not work. For
example, the malware samples may be packed with a custom
packer or contain code that gets decrypted in execution. In
dynamic analysis, malware samples are executed in a protected

environment and traces of actual malware behavior can be ex-
tracted. Optimal methodology would be to use both static fea-
tures and behavioral traces to gain knowledge from both views.
Since multiple views on malware provide different aspects of
malware characteristics, one machine learning method cannot
be optimal for this heterogeneous data. Previous work has
shown a multiple kernel learning approach to unifying models
based on different aspects of malware characteristics [32].

The second limitation is that we use a closed world assump-
tion, i.e., we do not consider how appearance of malware from
a family unknown to our system will affect the performance.
Finally, in our methodology we use convolutional filters to
capture information from opcode sequences. However, we
do not create an explicitly sequential model. One possible
improvement would be to create such a model using fully
recurrent networks. This may be difficult because recurrent
networks are hard to train efficiently. However, future work
can be directed to tackle this problem.

VI. CONCLUSION

In this paper, we presented a novel neural network for
detection and classification of malware based on information
from static analysis. The neural network consists of convolu-
tional and feedforward layers and uses metadata of PE files,
imported functions, and series of opcodes to separate malicious
executables from benign programs and classify malware into
13 predefined classes. Furthermore, it differentiates benign
executable files from the predefined malicious classes. The
evaluation results demonstrate that our approach outperforms
baseline machine learning methods such as feedforward net-
works and support vector machines. In detail, we achieved
93% on precision and recall, with an F1-score of 92%. Our
neural network also maintains partial resilience to obfuscation
done by shuffling instructions and adding bogus code, as a
difference from baseline machine learning methods.

ACKNOWLEDGEMENTS

The research was supported by the German Federal Ministry
of Education and Research under grant 16KIS0327 (IUNO)
and by the Bavarian State Ministry of Education, Science and
the Arts as part of the FORSEC research association.

REFERENCES

[1] VirusTotal, “File Statistics,” https://www.virustotal.com/en/statistics/,
Nov 2015.

[2] “PEInfo Service,” https://github.com/crits/crits services/tree/master/
peinfo service.

[3] V. M. Alvarez, “Yara 3.3.0. VirusTotal (Google, Inc),” http://plusvic.
github.io/yara/, 2015.

[4] S. Attaluri, S. McGhee, and M. Stamp, “Profile Hidden Markov Models
and Metamorphic Virus Detection,” Journal in computer virology, vol. 5,
no. 2, pp. 151–169, 2009.

[5] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, Behavior-Based Malware Clustering.” in ISOC Network and
Distributed System Security Symposium (NDSS), 2009.

[6] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and
J. Nazario, “Automated Classification and Analysis of Internet Malware,”
in International Symposium on Research in Attacks, Intrusions and
Defenses (RAID), 2007.

[7] J. Pfoh, C. Schneider, and C. Eckert, “Leveraging String Kernels for
Malware Detection,” in Network and System Security, 2013.

[8] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data Mining Meth-
ods for Detection of New Malicious Executables,” in IEEE Symposium
on Security and Privacy, 2001.

[9] B. Kolosnjaji, A. Zarras, T. Lengyel, G. Webster, and C. Eckert, “Adap-
tive semantics-aware malware classification,” in Detection of Intrusions
and Malware, and Vulnerability Assessment. Springer, 2016, pp. 419–
439.

[10] J. Saxe and K. Berlin, “Deep Neural Network Based Malware Detection
Using Two Dimensional Binary Program Features,” arXiv preprint
arXiv:1508.03096, 2015.

[11] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware Classification With Recurrent Networks,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015.

[12] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for
classification of malware system call sequences,” in Australasian Joint
Conference on Artificial Intelligence. Springer, 2016, pp. 137–149.

[13] M. Pietrek, “An In-Depth Look Into the Win32 Portable Executable File
Format,” MSDN magazine, vol. 17, no. 2, pp. 80–90, 2002.

[14] G. Cybenko, “Approximation by Superpositions of a Sigmoidal Func-
tion,” Mathematics of control, signals and systems, vol. 2, no. 4, pp.
303–314, 1989.

[15] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and
trends in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification
With Deep Convolutional Neural Networks,” in Advances in neural
information processing systems, 2012.

[17] Y. Kim, “Convolutional Neural Networks for Sentence Classification,”
arXiv preprint arXiv:1408.5882, 2014.

[18] Y. LeCun and Y. Bengio, “Convolutional Networks for Images, Speech,
and Time Series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[19] “ObjDump UNIX Tool,” https://sourceware.org/binutils/docs/binutils/
objdump.html.

[20] G. Webster, Z. Hanif, A. Ludwig, T. Lengyel, A. Zarras, and C. Eckert,
“SKALD: A Scalable Architecture for Feature Extraction, Multi-User
Analysis, and Real-Time Information Sharing,” in International Confer-
ence on Information Security (ISC), 2016.

[21] A. Mohaisen and O. Alrawi, “Av-Meter: An Evaluation of Antivirus
Scans and Labels,” in Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), 2014.

[22] R. Perdisci and M. C. U, “VAMO: Towards a Fully Automated Malware
Clustering Validity Analysis,” in Annual Computer Security Applications
Conference (ACSAC), 2012.

[23] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases With
Noise.” in Kdd, 1996.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep Into Rectifiers:
Surpassing Human-Level Performance on Imagenet Classification,” in
IEEE International Conference on Computer Vision, 2015.

[25] X. Glorot and Y. Bengio, “Understanding the Difficulty of Training Deep
Feedforward Neural Networks,” in International Conference on Artificial
Intelligence and Statistics, 2010.

[26] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. Springer Science & Business Media, 2013.

[27] “Lasagne Library,” http://lasagne.readthedocs.io/en/latest/index.html.
[28] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). Savannah,
Georgia, USA, 2016.

[29] “ZDNet Most Popular Downloads,” http://downloads.zdnet.com/
popular/.

[30] L. Van der Maaten and G. Hinton, “Visualizing Data Using T-Sne,”
Journal of Machine Learning Research, vol. 9, no. 2579-2605, p. 85,
2008.

[31] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps,”
arXiv preprint arXiv:1312.6034, 2013.

[32] B. Anderson, C. Storlie, and T. Lane, “Multiple Kernel Learning
Clustering With an Application to Malware,” in IEEE International
Conference on Data Mining (ICDM), 2012.

