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Abstract—We present the design of a trusted platform module
(TPM) that supports hardware-based virtualization techniques.
Our approach enables multiple virtual machines to use the com-
plete power of a hardware TPM by providing for every virtual
machine (VM) the illusion that it has its own hardware TPM.
For this purpose, we introduce an additional privilege level that
is only used by a virtual machine monitor to issue management
commands, such as scheduling commands, to the TPM. Based on
a TPM Control Structure, we can ensure that state information
of a virtual machine’s TPM cannot corrupt the TPM state of
another VM. Our approach uses recent developments in the
virtualization technology of processor architectures.

I. INTRODUCTION

The Trusted Computing Group (TCG) [1] is a non-profit
organization that defines open standards for hardware-enabled
trusted computing and security technologies. A core compo-
nent of the specifications issued by the TCG is the Trusted
Platform Module (TPM) [2], that can be viewed as functionally
equivalent to a high-end smart card. The TPM can be used to
significantly enhance system security, since it offers a means
of storing cryptographic keys in a protected manner and of
establishing trust relationships between remote systems [3].

However, [4], [5], [6], [7] show that using all mechanisms
of the TPM in practice requires a system that is based on
virtualization [8]. This is especially true if a system wants to
demonstrate to a remote party that it is in a trusted state by
using the attestation facilities of a TPM.

Virtualization technologies are actually getting increased
interest from both industry and academia because they offer an
alternative means of hardening an operating system and thus of
increasing system security [9], [10]. This trend is also reflected
in the current hardware architectures. Intel [11], [12] and
AMD [13] have added virtualization support to their processor
architectures in order to accommodate emerging developments
that require the support of multiple virtual machines (VMs)
on a single entity. This is not only of interest in the server
market, where the execution of multiple commodity operating
systems should be supported on a single machine, but also in
the client area, where there is a need to completely increase
system security and reliability [14].

Unfortunately, the TPM was never designed to be used in
virtual environments, and is thus not capable of being used
in a system that is based on virtualization. This restriction

results from the fact that the TPM holds state specific data.
If two different VMs are accessing the same TPM, one VM
could change the state of the TPM, which would also change
the state of the other virtual machine’s TPM. To overcome
this restriction, Berger et al. [5] propose to virtualize the
hardware TPM, by equipping every VM with its own software
TPM. This software TPM only uses the underlying hardware
TPM for certain operations. However, this approach does not
provide the same security level, since the TPM is completely
implemented in software and thus cryptographic secrets are
temporarily not protected by hardware measures.

To provide life-time protection of cryptographic secrets and
the possibility of using the functionalities of a hardware-
based TPM inside the VMs, we propose to use a TPM
that is capable of supporting virtualization with hardware
measures. We present the design of such a TPM and show
how the interactions between the VMs and the TPM could
be realized. The approach presented in this paper utilizes
hardware-based virtualization techniques as provided through
Intel’s VT processor architecture.

The remainder of this paper is organized as follows: we first
look in Section II at other work that is related to our proposal.
We then extract requirements for a hardware-based virtual
TPM and present the main idea of our approach in Section III.
In Section IV, we explain our architecture and the components
that are involved in our approach. Section V shows how
we enable the different VMs to directly use the underlying
hardware TPM. Section VI presents the protocol for securely
migrating a TPM context to another VM. In Section VII,
we explain how the endorsement credentials for the different
TPM contexts are handled and how the TPM management
commands are realized. We conclude with Section VIII.

II. RELATED WORK

Berger et al. [5] illustrate how to virtualize a TPM and
present a driver-pair that utilizes these concepts. To virtualize
a TPM, they propose to create a software TPM instance for
every VM. This software TPM is then used by the VM as
a full-fledged TPM. The software TPM is able to use the
underlying hardware TPM for certain operations, e.g., sealing
the storage of the software TPM; however, it does not provide
lifetime protection of secrets. Therefore, this approach does



not provide the same security capability as a hardware TPM,
since cryptographic keys are only protected through software
measures. In addition, software TPMs cannot provide the same
protection level as a hardware TPM if they are evaluated
according to Common Criteria.

Microsoft’s Next Generation Secure Computing Base
NGSCB [15], [10] is an approach that aims at establishing
a small trusted computing base, while satisfying the need
for open mass-market operating systems. The approach is
also based on a microkernel, called isolation kernel, which
establishes two different execution environments, i.e, VMs,
with different trust-levels. NGSCB highly depends on hard-
ware virtualization technology as well as on trusted computing
technology. Since in this approach only one VM can access
the TPM, virtualizing the TPM is not necessary. However,
NGSCB therefore does not support multiple VMs with access
to the TPM, leaving NGSCB is un-applicable when a need for
multiple VMs occurs.

Current research findings have clearly identified a need
for using virtualization techniques to reliably use trusted
computing technologies. In this context, two major approaches
have taken shape to support trusted computing. One approach
builds on the L4 microkernel [16] and the other on the
Xen hypervisor [9]. These approaches are mainly bundled
in the EMCSB-project [17] and the Open-TC project [18],
where both projects aim at building open and trustworthy
computing platforms based on trusted computing technology.
As in NGSCB, a software TPM is not necessarily required
in the L4 micorkernel approach, since this approach only
provides one TPM-enhanced VM. However, in that case, the
approach is not capable of supporting multiple TPM-enhanced
VMs.

Intel and AMD have recently introduced the Trusted Ex-
ecution Technology (TXT) [12], [19] and the Secure Virtual
Machine technology [13], respectively. Both architectures ex-
tend the processor instruction set with a number of additional
special purpose instructions, that directly communicate with
a TPM. In addition, these architectures implement virtualiza-
tion technology and are thus capable of supporting different
efficient VMs with hardware measures.

Our approach uses functionalities of the Intel VT-X/I
architecture. This architecture augments the x86-processor
architecture with two new forms of CPU operation: VMX
root operation, in which the VMM runs, and VMX non-root
operation, in which the guest systems run. Both operations
support the privilege set of the x86 architecture. The VMM is
then typically run in CPU ring 0 of the VMX root mode and
the guest system is run in CPU ring 0 of the VMX non-root
mode. The processor additionally provides a special purpose
structure called virtual machine Control Structure (VMCS).
In this structure, state information of the virtual machine is
stored and loaded into the processor if a state transition is
performed. A state transition to a VM is called vmentry
and the transition back to the VMM is called vmexit. But
in contrast to directly integrating a TPM into the processor
core, both architectures use a TPM that is attached to the Low

Pin Count-bus. Therefore, both approaches do not provide any
means of virtualizing a TPM.

III. VIRTUALIZING THE TPM

One design criteria of currently available TPMs was that
they should be easily attachable to a mainboard of a PC.
Attaching a TPM to an Low Pin Count (LPC) bus seemed
to be a very convenient solution; however, this approach is
very problematic as it does not enable the establishment of
trust relationships using the TPM in a system that is based
on virtualization [4]. One solution for this problem is to
use software TPMs [5], [4] that only use the underlying
hardware TPM for certain operations. This approach allows
the virtualization of the TPM and thus the establishment
of trust in a system that is based on virtualization. On the
downside, this approach does not satisfy the same security
needs as a hardware TPM, since the TPM is implemented
in software. In addition, a software TPM cannot provide the
same protection level if it is evaluated according to Common
Criteria, because software TPMs does not provide mechanisms
for preventing unauthorized access to protected data, such
as active shields or active security sensors. However, a high
evaluation may be necessary if VMs are using a TPM and
rely on trusted computing technology. To enable a VM to use
the full functionality of a hardware TPM without accepting
security restrictions, we propose a multi-context TPM that is
completely realized in hardware.

A. Requirements

In this section we present the design goals for using a TPM
in virtual environments. These goals apply to a multi-context
TPM as well as a software TPM. The approach presented in
this paper is adapted to fulfill the presented design goals. These
goals are:

a) Performance: Performance is a measure for the virtu-
alization overhead. This goal states that the overhead from
using a TPM in a VM should be negligible compared to
directly executing commands on the TPM. The VM should
therefore be able to execute TPM commands at nearly the
same speed as when these commands are used on a non-
virtualized machine.

b) Compatibility: It should be possible to execute TPM
command code in a VM without modifying the code or
adapting it to the virtualized environment. Therefore, we
explicitly forbid using paravirtualization techniques [20].

c) Simplicity: A fault in a VMM can cause a failure in
all VMs which could result in a crashing VM. A VMM that
provides abstraction and sharing of a TPM should therefore
be as simple as possible [21].

d) Security: A TPM that is used in a VM should provide
the same security properties as if the TPM would be accessed
natively.

e) Minimal modifications to the specification: If the
specifications by the TCG must be modified, these modifica-
tions should be as slight as possible, leaving the modifications
and the specification as compatible as possible.



B. Our approach

The main challenges to providing hardware enhanced virtu-
alization of TPMs is determining how to handle TPM data that
is specific for a certain platform, e.g., data that is specific for
the physical machine. Such data includes the owner-password
of the TPM, the PCRs, the Storage-Root-Key (SRK) and the
EK. This data cannot be shared across all VMs, because if
it were, a VM could modify this data, which would result in
a TPM state change and thus influence the TPM state of the
other VMs.

It is thus necessary to provide every VM with its own
instance of a full-fledged hardware TPM, including its own
owner-password, PCRs, SRKs and EKs. Since it should be
possible to use the hardware TPM for a theoretical unlimited
number of VMs, the multi-context TPM should be flexible and
not associate one specific TPM, non-volatile memory region
for every VM.

We propose that the multi-context TPM operates on a
Control Structure that is loaded into the TPM each time a
particular VM operates on its TPM. A VMM is responsible
for providing an abstract interface to the underlying hardware
TPM and for isolating the different TPM instances. It also
performs scheduling operations and is responsible for assign-
ing an unique ID to every VM. This unique ID refers to a
specific TPM context. If a VM wants to issue a command
to the hardware TPM, the VMM loads the corresponding
TPM Control Structure (TPMCS) into the TPM (if not already
loaded) and the TPM then operates on this structure. The TPM
Control Structure is a data structure that encapsulates all the
information needed to capture the state of a TPM or to resume
a TPM. This approach enables the direct execution of the TPM
instructions from a VM on a TPM, and is thus very efficient.
To provide a hardware protection mechanism, we introduce
another privilege level to the TPM. A virtual machine runs in
a lower TPM privilege level and thus can only operate on its
own TPM Control Structure. Operations on other TPMCS can
only be done by management commands issued by a VMM.
The issuing of such a command by the VM must be intercepted
and thus results in a controlled context switch to the VMM.
We will discuss this mechanism in detail in Section V.

IV. TPM ARCHITECTURE

The layout of our multi-context TPM is shown in Figure 1.
Despite the components of a generic TPM, it also provides a
second non-volatile storage in which the active TPM Control
Structure is loaded. The data of the TPM Control Structure
can only be loaded and unloaded into the TPM by TPM
management commands. When a TPM Control Structure is
unloaded and written back to background storage, it is always
protected by secrets that are stored in the root-data structure.
Both the root-data structure and the TPM Control Structure
hold TPM specific data that is expected to never leave the
TPM, as specified by the TCG. This includes Endorsement
keys (EKs), Attestation Identity Keys (AIKs), etc. Only TPM
commands that are issued by a VMM can operate on the root-
data structure.

Random 

Number Gen.
SHA-1

Key-

Generation
RSA-Engine

Root-Data

Structure
Active TPM-Control 

Structure

Non-volatile Storage

Fig. 1. Layout of a multi-context TPM

We assume that our multi-context TPM is either integrated
on the CPU or on a fast bus, and thus has a direct connection
to the CPU, leaving it essentially free of hard speed constraints
compared to the LPC bus.

A. TPM Protection Rings

To provide the TPM with a hardware-based protection archi-
tecture and to isolate one VM TPM context from another, we
introduce hierarchical protection domains (protection rings)
into the TPM. These protection rings are shown in Figure
2 and distinguishes two different TPM modes of execution.
For this purpose, we introduce a 1-bit non-volatile control
register (CR), which the actual TPM state refers to. Every time
a context switch occurs, i.e., a controlled state transition from
non-privilege TPM mode to the privilege TPM mode and vice
versa, the TPM control register is set appropriately. The Figure
also shows which x86 CPU modes, and thus which software
(VMM or guest-OS), is executed in which ring. If our TPM
is directly integrated inside the CPU, and is therefore able to
use the protection rings of the CPU, the integration of the CR
inside the TPM could be omitted. Nevertheless, our proposed
architecture requires a direct interaction with the CPU in order
to satisfy the necessary protection domains and to ensure that
context switches are reliably enforced. Hence, we require a
strong collaboration between CPU and TPM as we will see in
the following sections.
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Fig. 2. Privilege level of a multi-context TPM

The VMM ought to be run in the privilege VMX root-
operation of the CPU as well as in the TPM privilege mode.
The VMM runs on a higher privilege level of the TPM and is
thus able to manage TPM state transitions. However, under the
assumption that the authorization data (e.g. owner password)
of the TPM are kept secure inside the VM, the VMM cannot
inspect the communication between VM and TPM. Parts of
the communication between TPM and the software stack
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are encrypted with a session-key that is derived from the
authorization data (Cf. [22], pp. 60).

B. TPM back-end device driver

The TPM back-end device driver is integrated into the
VMM and therefore runs in ring 0 of the CPU’s VMX-
root mode. Its main purposes are isolating the different TPM
interfaces and scheduling the TPM commands invoked by the
VM. It also maintains a data set including the unique IDs
of each TPM context as well as their associations to the
VMs. Note that this TPM back-end device driver does not
need to implement the full software stack of the TPM, since
conventional operations on the TPM are issued by VMs that
implement their own software stacks.

Figure 3 shows a typical sequence of operations inside a
virtualized TPM environment. The white areas of the Figure
show the operations of a VMM that set up the environment for
every VM and its corresponding TPM context. The gray areas
represent two different VMs with their corresponding TPM
contexts. The transition between VMM and VM are invoked
by special instructions, which can only be executed in the TPM
privilege mode.

Every TPM that has been turned on in normal mode can
be made to enter the virtualization mode by executing the
TPM_Xon operation. The transition of the TPM contexts needs
to be synchronized with the transitions between the different
modes of execution on the Intel VT-X/I architecture, in order
to support direct native execution on the TPM. This property
is discussed in detail in Section V.

The VMM assigns for every TPM context, as well as for
every VM instance, an execution time in which the VM is
allowed to execute operations on the TPM. This execution time
not only includes the time a VM is allowed to use the TPM, but
also how long the VM is allowed to use the CPU. Determining
the exact execution time is task of a scheduling algorithm, such
as round-robin. Thus, all VM does not necessarily receive the
same execution time to execute instructions on the underlying
ressources. If this execution time has passed, the VMM regains
control of the TPM and assigns the next context of the TPM.
To keep the VMM from losing control of the TPM, the VMM
must set an interval timer, that states how long the VM is
allowed to use the TPM and the underlying processor. This

interval timer is set by the VMM before passing control to
a VM. It counts down clock circles and if it reaches zero,
triggers an interrupt. The interrupt then passes the control back
to the VMM.

C. TPM Control Structure
A transition from one TPM context to another is controlled

by the VMM through a TPM Control Structure (TPMCS).
The VMM associates to every TPM context its own TPM
Control Structure. This structure holds all state specific TPM
data as shown in Figure 4 and only the TPM can operate on
this structure. Each time the VMM closes a TPM context and
spawns a new context, the old Control Structure is saved on the
background storage and the new Control Structure is loaded
into the TPM. Since this Control Structure holds sensitive
TPM data, cryptographic measures must be in place to prevent
unauthorized modifying of a Control Structure.

To protect this TPM structure from unauthorized modifica-
tions, we propose using the Storage Root Key of the TPM to
seal this structure to the current platform configuration of the
system. This SRK is stored inside the TPM root-structure and
is only accessible by the TPM in the root-mode of the TPM.
Sealing the structure to a set of platform configuration registers
is necessary for ensuring that the VMM is in its initial state
and thus trusted. In contrast to the SRK of the VM, the SRK
of the root-mode will never leave the TPM.

Fields of the TPM Control Structure
Storage Root Key (SRK)
PCRs [16..23]
Attestation Identity Keys (AIK)
Endorsement Key (EK)
Endorsement Credential
Monotonic Counter Values
Values of the non-volatile storage
Delegation Tables
TPM context data
DAA TPM specific secret (f )
TPM PERMANENT FLAGS/DATA
TPM STCLEAR FLAGS/DATA
Authorization data

Fig. 4. TPM Control Structure

The TPM also possesses a number of special purpose
registers, such as the tick counter or the PCRs. Tick counter
and the lower values of the PCRs are special, since both should
be consistent in all VMs. We suggest that the tick counter
and the PCRs [0..15], which hold the data from the bootstrap
procedure and the VMM’s integrity, be stored in a special
region of the TPM. Every TPM context should be able to read
the values stored in these registers. Writing to this registers
is only possible if the TPM is in the privilege mode and its
CR is set to 0. To enable a VM to attest its configuration,
the TPM computes the signature on PCRs [0..15] and PCRs
[16..23] using one AIK stored inside the loaded TPM Control
Structure.



D. Extended Instruction Set

To realize the management features of the TPM, we extend
the specification to a number of additional TPM commands.
These commands manage the TPM state and are used to con-
trol the different TPM contexts. All commands are executable
only by the VMM, since they must be executed in ring 0 of
the TPM. If one such command is executed in ring 1 of the
TPM, they trap into the VMM, where a dispatcher emulates the
instruction. In the remainder of this paper, these instructions
are referred to as sensitive instructions. The TPM also supports
a number of instructions that allow a TPM context of being
migrated to another TPM. We will explain these instructions
in detail in the remainder of this work.
TPM_Xon, TPM_Xoff enables/disables the second priv-

ilege level of the TPM. TPM_Launch creates and launches
a new TPM context and an empty TPMCS. TPM_Resume
loads an existing TPMCS into the TPM and launches the
corresponding TPM contexts. TPM_Exit saves an existing
TPMCS and seals it to certain PCRs. TPM_Clear deletes
an existing TPMCS and the corresponding TPM context.
TPM_Migrate migrates an existing TPMCS from a source
TPM to a destination TPM. TPM_InitializeMigration
initializes the migration procedure on the source TPM.
TPM_InitializeImport initializes the migration proce-
dure on the destination TPM. TPM_Import imports a mi-
grated TPMCS into the destination TPM.

These instructions also control which TPM context and
which corresponding VM will receive the underlying hardware
TPM thus which VM is allowed to operate on the TPM.

V. DIRECT NATIVE EXECUTION

For virtualizing a resource, there exist a number of different
techniques. A processor is typically shared by a number of
processes or VMs and every process is allowed to use the
resource for a particular time period. This technique is also
adapted to our approach. However, other techniques also exist,
for example, partitioning which is normally done for back-
ground storage (disks); and emulation, which is for example
used in the software TPM approach [5] or if a processor is
completely emulated [23].

The main advantage of the sharing technique is that it
enables direct native execution and thus the use of efficient
virtualization, as stated by Popek and Goldberg’s first Theorem
[24]. To enable an efficient virtualizable TPM, we adapt the
TPM so that it is possible to execute nearly all instructions
directly on the TPM and thus to satisfy Popek and Goldberg’s
first Theorem.

In order to achieve direct native execution, it is absolutely
necessary that sensitive instructions trap into the VMM. Sensi-
tive instructions are instructions which can result in an illegal
TPM state change. If such a sensitive instruction is executed by
a VM it must trap into the VMM where a dispatcher routine
emulates the instruction. However, since the TPM does not
possess its own program counter, it cannot autonomously trap
into the VMM if it encounters a sensitive instruction. This
property is similar to sensitive x86 processor instructions such

as POPF, which do not perform a trap if they are executed in
the non-privilege processor mode [25].

Since TPM state transitions and VM state transitions are
synchronized and controlled by the VMM, the VM, which is
actually the owner of the processor also occupies the TPM.
Therefore, only the VM that currently has execution time on
the processor can issue commands to the TPM. Consequently,
we only have to consider the case in which a sensitive
instruction is executed in ring 1, such as TPM_Exit.

A. Handling sensitive instruction

If a sensitive instruction, such as TPM_Exit, is executed in
ring 1, the TPM must trap into the VMM. Sensitive commands
must be executable only by the VMM, otherwise, a VM could
overwrite values of a TPM Control Structure which belongs
to another TPM context. Since a VMM cannot inspect all
commands sent by a VM, the TPM must decide whether or
not this command is to be executed. If the TPM receives a
management command, it should check internally whether the
TPM CR is in ring 0. If not, the TPM should jump to the
dispatcher routine running inside the VMM. Note that either
the VMM or the VM could issue a management command
while the TPM’s privilege level is set to 1. This is due to the
fact that the status register of the CPU and the TPM are not
necessarily synchronized. Thus, it could happen, that the CPU
is operating in VMX-root mode, while the CR of the TPM is
still set to 1. In that case, the CR of the TPM must first be set
to 0 before the TPM can execute a VMM issued management
command.

Algorithm 1: Handling sensitive instructions
TPM receives TPM Exit ;
if CR0 == 0 then

Execute TPM Exit;
else

CR0 = 0 ;
Execute INTR ;
Interrupt causes vmexit ;
CPU loads exit information from VMCS ;
CPU sets PC to VMM entry point address ;
VMM executes/emulates TPM_Exit ;
CR0 = 1 ;
vmentry (VMCS) ;

Since the TPM cannot directly modify the program counter
of the CPU if it receives a privilege command, an exception
must be caused that allows the CPU to jump into the correct
dispatcher routine inside the VMM. We propose to use inter-
rupt requests as they are typically used by other PCI devices
through the INTR bus signal [26]. If the TPM is integrated
inside the CPU, the TPM might be able to directly modify the
program counter and thus jump directly into the dispatcher
routine of the VMM.

Algorithm 1 shows the steps performed by the CPU and
the TPM respectively. If an exception happens, the TPM
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Fig. 5. Workflow of retiring one VM/TPM and activating the next VM/TPM

signals an interrupt by emitting the INTR bus signal. The
processor then reads from the system bus the interrupt vector
number provided by an external interrupt controller. This
vector number signals to the CPU which interrupt is caused.
Based on the information given inside the VMCS held by the
VT-I/X CPU, the CPU performs a vmexit and jumps into
the corresponding dispatcher routine of the VMM. For this
purpose, the VMCS of the VT-I/X architecture must hold the
information where the TPM dispatcher routine is located in
memory.

B. Scheduling the TPM

The VMM is responsible for the transitions between differ-
ent VM contexts. This approach is analogous to scheduling
VMs. However, the problem is that if the TPM is not directly
integrated into the CPU, the privilege level of the TPM does
not directly depend on the privilege level of the CPU. Thus,
a vmexit does not directly set the control register of the
TPM to zero. Therefore, a controlled state transition must be
passed to the TPM, which then issues an interrupt that jumps
to a concrete entry point of the VMM.

Figure 5 shows the actions performed by the VMM in
retiring one VM and activating the next VM. The figure
also shows the value of the TPM control register. The CPU
performs a vmexit that is caused by the interval timer and
sets the PC to a specific entry point of the VMM. This
controlled state transition also stores the actual state of the
VM inside the VMCS. The VMM then determines which VM
is next in line to use the processor. The VMM then closes the
TPM context by sending a TPM_Exit command to the TPM.
The TPM resets its control register to zero, issues an interrupt
and delivers the corresponding interrupt vector number using
an interrupt controller to the CPU [26]. Based on the actual
interrupt descriptor table (IDT), the CPU again jumps to a
specific entry point of the VMM, where the instruction is
again sent to the TPM. The VMM then resumes the next TPM
context by sending the TPM_Launch command together with
the stored and encrypted TPMCS to the TPM. Afterwards, the
VMM resets the interrupt timer and relinquishes control to

the VM by loading the VM state information into the CPU
(vmentry).

VI. SECURE TPM CONTEXT MIGRATION

VMs can be migrated to other platforms. Since a VM might
have stored cryptographic keys inside our multi-context TPM,
we have to consider how a complete TPM context is securely
migrated to another TPM. Basically, all state information of
a TPM context is stored inside the TPM Control Structure.
However, since this Control Structure is bound to a specific
TPM, it cannot be transferred directly.

To prevent a TPMCS’s being migrated to multiple contexts
or an old TPMCS’s being again replayed into the system,
we propose the use of the monotonic counter of the TPM to
synchronize all existing TPM contexts with the root-structure
of the TPM. For this purpose, each TPMCS and the root-
TPM structure hold a register in which both are incremented
each time a TPMCS is migrated. We refer to this register
as the migration counter. Before a TPMCS can be migrated,
the TPM internally verifies whether both migration counters
have the same value. If an already migrated TPMCS is loaded
again in the TPM, its migration counter differs from the one
stored inside the TPM and the TPM will refuse to operate on
this structure. This check must always be performed before
a TPM context is allowed to operate on a TPMCS. Note
that the migration counter cannot be reset and can only be
incremented. Before a TPMCS can be migrated to another
context, it must be ensured that the destination platform is in
a trustworthy state. This should be done by remotely verifying
the platform state of the destination platform using platform
attestation. For this purpose, a number of proposed solutions
exists that establish a secure attestation channel [27], [28]. We
assume that a secure attestation channel has been established
between both entities and that our migration protocol runs
inside the resulting channel.

Figure 6 shows our migration protocol. It has similarities
to the concept the TCG introduced with migratable keys and
simply transfers an encrypted TPMCS blob to the other TPM.
The TPMCS is directly bound to random nonces generated on
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the source and the destination platform to prevent a TPMCS
from being migrated to multiple TPMs.

In the first two steps, the TPM generates a non-migratable
TPM key KA and certifies this key to provide assurances
that it is held in a protected storage of a genuine TPM.
This key is then transferred together with a nonce (NA) and
the AIK certificate to the destination platform, where the
import is initialized. The migration interface verifies that the
query is coming from a genuine TPM and that the KA is
protected by a TPM, using the provided certificates (Cf. [29],
pp. 91). The destination TPM initializes the import procedure
by generating and certifying its own non-migratable TPM key
(KB). For this purpose, the interface of the migration platform
must provide owner authorization, including NA and the
certificate of the source platform. Then, the TPM delivers the
encrypted package consisting of NA and NB to the migration
interface. The migration interface collects all certificates that
are necessary to prove that KB is a TPM protected key and
transfers the package back to the source TPM. The source
migration interface then provides owner authorization to the
TPM and delivers the received encrypted package, including
the TPMCS that is to be migrated to the TPM. The TPM
verifies authorization of the command and checks internally
whether the migration counter conforms to the migration
counter of the TPMCS that is to be migrated. If everything
checks out, the TPM increments the internal migration counter
and the migration counter of all other TPMCS that reside on
this system. The TPM must ensure that the migration counter
of each TPMCS is only incremented once, since otherwise, an
old TPMCS could be replayed into the system.

The TPM then encrypts the TPMCS and the nonces with the
delivered TPM key of the destination platform and transfers
the package to the destination platform. The TPM of the
destination platform imports the package and activates the
TPMCS if the nonces and the asserted authorization data
are correct. The migration procedure finishes by setting the
migration counter of the TPMCS to the destination’s TPM
actual value of the internal migration counter and by re-
certifying the EK of the TPMCS.

VII. TPM CREDENTIALS

Every TPM is uniquely identifiable by the Endorsement Key
(EK). This EK is pre-installed by the manufacturer of the TPM
and is used to generate the owner-password.

In order to provide full-fledged TPMs for every TPM
context, every context needs to possess its own EK. However,
it should also be possible for a verifier to decide whether the
EK of a TPM context is an authentic EK, i.e., generated and
protected by a hardware TPM. It is possible for a manufacturer
to generate a number of EKs and integrate them on our multi-
context TPM. However, we believe that this process is not
feasible, since this would require an additional overhead for
the manufacturer. In addition, all EKs and certificates could
be migrated out of the domain of the multi-context TPM and
deplete the device of its pre-installed EKs.

We propose to establish a certificate chain with the EK,
which is held in the root-TPM structure as a root node. For
every TPM context, the TPM generates its own EK, which then
becomes certified by the root EK. Generating EKs directly
on the TPM is a feature that current TPMs already support
(Cf. [22], pp. 141). This process allows us to obtain AIKs for
every TPM context simply by verifying the certificate chain
of the EK. If a TPM is migrated, the EK of the migrated
structure must then be re-certified with the EK that resides on
the destination platform.

In the following, we provide the protocols for creating and
exiting a TPM context. These protocols are exemplary for the
other TPM commands that we introduced in IV-D.

A. Spawning a TPM context

The protocol for creating a new TPM context is shown in
Figure 8. First, a TPM Object-Specific Authorization Protocol
(OSAP) session is created between the TPM and the VMM.
This command requires authorization (owner-password and
SRK-password), computes a cryptographic secret and gener-
ates a handle (H) to this session; both to protect the whole
session traffic (Cf. [29], pp. 71). The returned handle is then
used to issue the TPM_Launch command. The TPM then
internally creates a new TPM context and adds an EK and the
corresponding credential to this structure.



1. VMM → TPM : TPM_OSAP(authData)
2. VMM ← TPM : H
3. VMM → TPM : TPM_Exit(H)
4. TPM : Store TPMCS values in Dn+1

: Create PCRInfo Structure
: {Dn+1}SRK =Seal(Dn+1, PCRInfo, H)
: sign+1 = D(Dn+1, K−1

TPM )
5. VMM ← TPM : {Dn+1}SRK , sign+1

6. VMM → TPM : TPM_Resume(H , {Dn}SRK , sign, authData)

7. TPM : Check if migration counter ?= TPMCS.migration counter
8. : Dn =Unseal({Dn}SRK , H)

: Verify sign with Dn

: Load Dn into TPMCS
: CR0 = 1

9. VMM ← TPM : TPM SUCCESS

Fig. 7. Exiting and Resuming a TPM context (CR of the TPM is set to 0)

1. VMM → TPM : TPM_OSAP(authData)
2. VMM ← TPM : H
3. VMM → TPM : TPM_Launch(H)
4. TPM : Create empty D
5. TPM : Create 2048-bit Endorsement key-

pair (KvEK , K−1
vEK)

: Sign KvEK with K−1
EK

: Add Cert(KvEK) and KvEK to
D

6. TPM : Load D into TPMCS data field
7. TPM : CR0 = 1
7. VMM ← TPM : TPM_SUCCESS
8. VMM : LaunchandMeasureVM

Fig. 8. Creating a new TPM context (CR of the TPM is set to 0)

After the TPMCS has been created, the VMs integrity is
measured [4] and the obtained measurements are added to the
PCR value of the current loaded TPMCS.

B. Exiting a TPM context

Exiting requires that the current loaded TPMCS is stored
on the background storage. To prevent an attacker from being
able to inject corrupt data structures, a TPMCS is sealed and
signed with keys that are protected by the TPM. Figure 7
shows how this is realized. The TPM creates a special purpose
data structure Dn in which the current values of a TPMCS are
stored. This data structure is then sealed to the actual platform
configuration, which must also include the integrity of the
VMM.

This can easily be achieved by using the Safer Mode
Extension (SMX) of the Intel TXT technology [12] or the
AMD Secure Virtual Machine technology [13]. Both provide
a special CPU command; in the case of Intel, it is called getsec
and in the case of AMD, it is called skinit. These commands
measure the VMM into a PCR and thus create a so-called
Dynamic Root of Trust for Measurement (DRTM).

We denote the sealing of the structure Dn+1 at a specific

time ∆t with Seal(Dn+1, PCRInfo, H). H is a key-handle
for the storage root key and PCRInfo is a TPM_PCR_INFO
structure that contains the information to which PCRs Dn+1

will be bound. The operation to unseal is denoted as Un-
seal({Dn+1}SRK) where for simplicity reasons {Dn+1}SRK

also includes the structure of the platform configuration regis-
ters. Unsealing the {Dn+1}SRK at ∆t+x is then only possible
if the current platform configuration is equal to the platform
configuration that {Dn+1}SRK is bound to.

The data structure (Dn) is additionally signed using a TPM
specific signing key (K−1

TPM ), which is stored in the root-
structure of the TPM only for that purpose. The sealed data
structure and the corresponding signature is then passed to the
VMM, which stores it locally. The VMM then executes the
TPM_Exit command and delivers the sealed data structure
and the corresponding signature of the TPM context which
should be resumed by the TPM. The TPM internally verifies
whether the migration counter of the TPMCS is consistent
with the one stored inside the migration counter of the root-
data structure. This verification prevents against an already
migrated TPM context or a replayed TPM context being again
loaded into the TPM. The TPM then unseals the structure and
verifies that the signature sign+1 is a valid signature of Dn+1.
If the signature is valid, implying that the data structure was
generated on this specific TPM, the TPM loads the values
Dn+1 into its internal memory.

VIII. CONCLUSIONS

Trusted Computing technologies provide a sound way of
securing computer systems and also a technological means for
trust establishment. For this purpose, the Trusted Computing
Group introduced a hardware module called trusted platform
module (TPM) that protects cryptographic secrets and is
capable of acting as a trust anchor. However, the TPM cannot
be used directly in next-generation operating systems that
utilize virtualization technologies. In this paper we proposed
an efficient approach for using TC-technology in virtual en-
vironments. Our approach extends the TPM specification and



shows how a hardware TPM that is capable of supporting
virtualization with hardware measures should be designed. To
provide hardware-based protection domains, we introduced a
second TPM privilege level and a TPM Control Structure. The
combination of both concepts allows a virtual environment
to directly operate on the TPM without loss of security
properties. Since the approach we presented in this work
utilizes recent developments in the virtualization technology of
processor architectures, it could easily be adapted to integrate
trusted computing technology in next-generation processor
architectures. In that case, highly-efficient and secure trusted
computing technology would be available to next-generation
operating systems that are based on virtualization.

We are currently working on the implementation of our
proposed TPM architecture. In this context, we are planing
to extend the TPM emulator with our proposed concepts
and to integrate it into the Xen-hypervisor. Based on the
implementation we will then be able to evaluate the exact
performance of our proposal.
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