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Abstract. Machine learning has yield significant advances in decision-making
for complex systems, but are they robust against adversarial attacks? We gener-
alize the evasion attack problem to the multi-class linear classifiers, and present
an efficient algorithm for approximating the optimal disguised instance. Experi-
ments on real-world data demonstrate the effectiveness of our method.

1 Introduction

Researchers and engineers of information security have successfully deployed systems
using machine learning and data mining for detecting suspicious activities, filtering
spam, recognizing threats, etc. [2, 12]. These systems typically contain a classifier that
flags certain instances as malicious based on a set of features. Unfortunately, evaded
malicious instances that fail to be detected are inevitablefor any known classifier. To
make matters worse, there is evidence showing that adversaries have investigated sev-
eral approaches to evade the classifier by disguising malicious instance as normal in-
stances. For example, spammers can add unrelated words, sentences or even paragraphs
to the junk mail for avoiding detection of the spam filter [11]. Furthermore, spammers
can embed the text message in an image. By adding varied background and distorting
the image, the generated junk message can be difficult for OCRsystems to identify but
easy for humans to interpret [7]. As a reaction to adversarial attempts, authors of [5]
employed a cost-sensitive game theoretic approach to preemptively adapt the decision
boundary of a classifier by computing the adversary’s optimal strategy. Moreover, sev-
eral improved spam filters that are more effective in adversarial environments have been
proposed [7, 3].

The ongoing war between adversaries and classifiers pressures machine learning
researchers to reconsider the vulnerability of classifier in adversarial environments. The
problem of evasion attack is posed and a query algorithm for evading linear classifiers
is presented [10]. Given a malicious instance, the goal of the adversary is finding a
disguised instance with the minimal cost to deceive the classifier. Recently, the evasion
problem has been extended to the binary convex-inducing classifiers [13].

We continue investigate the vulnerability of classifiers tothe evasion attack and
generalize this problem to the family of multi-class linearclassifiers; e.g. linear support
vector machines [4, 6, 9]. Multi-class linear classifiers have become one of the most
promising learning techniques for large sparse data with a huge number of instances
and features. We propose an adversarial query algorithm forsearching minimal-cost



disguised instances. We believe that revealing a scar on themulti-class classifier is the
only way to fix it in the future. The contributions of this paper are:

1. We generalize the problem of evasion attack to the multi-class linear classifier,
where the instance space is divided into multiple convex sets.

2. We prove that effective evasion attack based on the linearprobing is feasible under
certain assumption of the adversarial cost. A description of the vulnerability of
multi-class linear classifiers is presented.

3. We propose a query algorithm for disguising an adversarial instance as any other
classes with minimal cost. The experiment on two real-worlddata set shows the
effectiveness of our algorithm.

2 Problem Setup

Let X = {(x1, . . . , xD) ∈ R
D |L ≤ xd ≤ U for all d} be thefeature space. Each

component of aninstancex ∈ X is a featurebounded byL andU which we denote
asxd. A basis vector of the form(0, . . . , 0, 1, 0, . . . , 0) with a 1 only at thedth feature
termsδd. We assume that the feature space representation is known tothe adversary,
thus the adversary can query any point inX .

2.1 Multi-Class Linear Classifier

The target classifierf is a mapping from feature spaceX to its response spaceK;
i.e. f : X → K. We restrict our attention tomulti-class linear classifiersand use
K = {1, . . . ,K},K ≥ 2 so that

f(x) = argmax
k

wkx
T + bk, (1)

wherek = 1, . . . ,K andwk ∈ R
D, bk ∈ R. Decision boundaries between classk and

other classes are characterized bywk andbk. We assume thatw1, . . . ,wK are linearly
independent. The classifierf partitionsX intoK sets; i.e.Xk = {x ∈ X | f(x) = k}.

2.2 Attack of Adversary

As a motivating example, consider a text classifier that categorizes incoming emails
into different topics; e.g. sports, politics, lifestyle, spam, etc. An advertiser of pharma-
cological products is more likely to disguise the spam as lifestyle rather than politics in
order to attract potential consumers while remaining inconspicuous.

We assume the adversary’s attack will be against a fixedf so the learning method of
decision boundaries and the training data used to establishthe classifier are irrelevant.
The adversary does not know any parameter off but can observef(x) for anyx by
issuing amembership query. In fact, there are a variety of domain specific mechanisms
that an adversary can employ to observe the classifier’s response to a query. Moreover,
the adversary is only aware of an adversarial instancex

A in some class, and has no
information about instances in other classes. This differsfrom previous work which
require at least one instance in each binary class [10, 13]. In practice,xA can be seen as
the most desired instance of adversary; e.g. the original spam. The adversary attempts
to disguisexA so that it can be recognized as other classes.



2.3 Adversarial Cost

We assume that the adversary has the access to anadversarial cost functiona(x,y) :
X × X → R0+. An adversarial cost function measures the distance between two in-
stancesx,y in X from the adversary’s prospective. We focus on a linear cost function
which measures the weightedℓ1 distance so that

a(x,y) =
D∑

d=1

ed|xd − yd|, (2)

where0 < ed < ∞ represents the cost coefficient of the adversary associateswith
the dth feature, allowing that some features may be more important than others. In
particular, given the adversarial instancex

A, functiona(x,xA) measures different costs
of using some instances as compared to others. Moreover, we useB(y, C) = {x ∈
X | a(x,y) ≤ C} to denote the cost ball centered aty with cost no more thanC.

In generalizing work [10], we alter the definition ofminimal adversarial cost(MAC).
Given a fixed classifierf and an adversarial cost functiona we define the MAC of class
k with respect to an instancey to be the value

MAC(k,y) = min
x:x∈Xk

a(x,y), k 6= f(y).

2.4 Disguised Instances

We now introduce some instances with special adversarial cost that the adversary is
interested in. First of all, instances with cost of MAC(k,y) are termedinstances of
minimal adversarial cost(IMAC), which is formally defined as

IMAC(k,y) = {x ∈ Xk | a(x,y) = MAC(k,y), k 6= f(y)} .

Ideally, the adversary attempts to find IMAC(k,xA) for all k 6= f(xA). The most
naive way for an adversary to find the IMAC is performing a brute-force search. That
is, the adversary randomly samples points inX and updates the best found instance
repetitively. To formulate this idea, we further extend thedefinition of IMAC. Assume
X̃ is the set of adversary’s sampled or observed instances so far andX̃ ⊂ X , we define
instance of sample minimal adversarial cost(ISMAC) of classk with respect to an
instancey to be the value

ISMAC(k,y) = argmin
x:x∈X̃∩Xk

a(x,y), k 6= f(y).

Note, that in practice the exact decision boundary is unknown to the adversary, thus
finding exact value of IMAC becomes an infeasible task. Nonetheless, it is still tractable
to approximate IMAC by findingǫ-IMAC, which is defined as follows

ǫ-IMAC(k,y) = {x ∈ Xk | a(x,y) ≤ (1 + ǫ) · MAC(k,y), k 6= f(y), ǫ > 0} .

That is, every instance inǫ-IMAC(k,y) has the adversarial cost no more than a fac-
tor of (1 + ǫ) of the MAC(k,y). The goal of the adversary now becomes finding
ǫ-IMAC(k,xA) for all classesk 6= f(xA) while keepingǫ as small as possible.



3 Theory of Evasion Attack

We discuss the evasion attack from a theoretical point of view. Specifically, by describ-
ing the feature space as a set of convex polytopes, we show that IMAC must be attained
on the convex surface. Under a reasonable assumption of adversarial cost function, ef-
fective evasion attack can be performed by linear probing. Finally, we derive bounds
for quantitatively studying the vulnerability of multi-class linear classifiers to linear
probing.

Lemma 1. Let Xk = {x ∈ X | f(x) = k}, where the classifierf is defined in (1).
ThenXk is a closed convex polytope.

Proof. Let x be a point inXk. Asx ∈ X it follows that

x
T ≥ L · 1D and − x

T ≥ U · 1D, (3)

where1D is a D-dimensional unit vector(1, . . . , 1). Moreover, sincef(x) = k, it
follows that 


wk −w1

...
wk −wK


x

T ≥




b1 − bk
...

bK − bk


 . (4)

Thus, the foregoing linear inequalities define an intersection of at most(K + 2D − 1)

half-spaces. DenoteH+
i = {x ∈ X | w̃ix

T ≥ b̃i}, where1 ≤ i ≤ (K + 2D − 1). We
haveXk =

⋂
i H

+
i , which establishes a half-space representation of convex polytope [8,

14]. ⊓⊔
Lemma 1 indicates that the classifierf decomposesRD into K convex polytopes.

Following the notations and formulations introduced in [8], we represent a hyperplane
Hi as the boundary of a half-space∂H+

i ; i.e. Hi = ∂H+
i = {x ∈ X | w̃ix

T =

b̃i}. Let Xk =
⋂Pk

p=1 H
+
p , where{H+

1 , . . . , H+
Pk
} is irredundant3 to Xk. Let Hk =

{H+
1 , . . . , H+

Pk
} be an irredundant set that definesXk, thenXk ⊂ intX provided that

none half-space inHk is defined by (3). Moreover, we define thepth facetof Xk as
Fkp = Hp ∩ Xk, and theconvex surfaceof Xk as∂Xk =

⋃Pk

p=1 Fkp.

Theorem 1. Let y be an instance inX and k ∈ K \ f(y). Let x be an instance in
IMAC(k,y) as defined in Section 2.3. Thenx must be attained on the convex surface
∂Xk.

Proof. We first show the existence of IMAC(k,y). By Lemma 1,Xk defines a feasible
region. Thus minimizinga(x,y) onXk is a solvable problem. Secondly,Xk is bounded
in each direction of the gradient ofa(x,y), which implies that IMAC(k,y) exists.

We now prove thatx must lie on∂Xk by contrapositive. Assume thatx is not on
∂Xk thus is an interior point; i.e.x ∈ intXk. Let B(y, C) denote the ball centered at
y with cost no more thana(x,y). Due to the convexity ofXk andB(y, C), we have
intXk ∩ intB(y, C) 6= ∅. Therefore, there exists at least one instance inXk with cost
less thana(x,y), which implies thatx is not IMAC(k,y). ⊓⊔

3 Let C be a convex polytope such thatC =
⋂n

i=1
H+

i . The family{H+
1 , . . . , H+

n } is called
irredundantto C provided that

⋂
1≤j≤n,j 6=i

H+
j 6= C for eachj = 1, . . . , n.



Theorem 1 restricts the searching of IMAC to the convex surface. In particular,
when cost coefficients are equal, e.g.e1 = · · · = eD, we can show that searching in all
axis-aligned directions gives at least one IMAC.

Theorem 2. Lety be an instance inX such thatXf(y) ⊂ intX . LetP be the number of
facets ofXf(y) andFp be thepth facet, wherep = {1, . . . , P}. LetGd = {y+θδd | θ ∈
R}, whered ∈ {1, . . . , D}. LetQ = {Gd∩Fp | d = 1, . . . , D, p = 1, . . . , P}, in which
each element differs fromy on only one dimension. If the adversarial cost function
defined in (2) has equal cost coefficients, then there exists at least onex ∈ Q such that
x is IMAC(f(x),y).

Proof. Let Hp be the hyperplane defining thepth facetFp. Consider all the points
of intersection of the linesGd with the hyperplanesHp; i.e. I = {Gd ∩ Hp | d =
1, . . . , D, p = 1, . . . , P}. Letx = argmin

x∈I a(x,y). Thenx is our desired instance.
We prove thatx ∈ Q by contrapositive. Supposex /∈ Q , due to the convexity of

Xf(y), the line segment[x,y] intersects∂Xf(y) at a point on another facet. Denote this
point asz, thenz differs fromy on only one dimension anda(z,y) < a(x,y).

Next, we provex is IMAC(f(x),y) by contrapositive. LetB(y, C) denote thereg-
ular cost ball centered aty with cost no more thana(x,y). That is, each vertex of the
cost ball has the same distance ofC with y. Supposex is not IMAC(f(x),y), then
there existsz ∈ Xf(x) ∩ intB(y, C). By Theorem 1,z andx must lie on the same
facet, which is defined by a hyperplaneH∗. Let Q∗ be intersection points ofH∗ with
linesG1, . . . , GD; i.e.Q∗ = {Gd ∩H∗ | d = 1, . . . , D}. Then there exists at least one
point v ∈ Q∗ such thatv ∈ intB(y, C). Due to the regularity ofB(y, C), we have
a(v,y) < a(x,y). ⊓⊔

We now define special convex sets for approximatingǫ-IMAC near the convex sur-
face. Givenǫ > 0, the interior parallel body ofXk isP−ǫ(k) = {x ∈ Xk | B(x, ǫ) ⊆ Xk}
and the corresponding exterior parallel body is defined asP+ǫ(k) =

⋃
x∈Xk

B(x, ǫ).
Moreover, the interior margin ofXk isM−ǫ(k) = Xk \ P−ǫ(k) and the corresponding
exterior margin isM+ǫ(k) = P+ǫ(k) \ Xk. By relaxing the searching scope from the
convex surface to a margin in the distanceǫ, Theorem 1 and Theorem 2 immediately
imply the following results.

Corollary 1. Let y be an instance inX and k ∈ K \ f(y). For all ǫ > 0 such that
M−ǫ(k) 6= ∅, ǫ-IMAC(k,y) ⊆ M−ǫ(k).

Corollary 2. Lety be an instance inX andǫ be a positive number such thatP+ǫ(f(y)) ⊂
intX . Let P be the number of facets ofP+ǫ(f(y)) and Fp be thepth facet, where
p = {1, . . . , P}. Let Gd = {y + θδd | θ ∈ R}, whered ∈ {1, . . . , D}. Let Q =
{Gd ∩ Fp | d = 1, . . . , D, p = 1, . . . , P}, in which each element differs fromy on only
one dimension. If adversarial cost function defined in (2) has equal cost coefficients,
then there exists at least onex ∈ Q such thatx is in ǫ-IMAC(f(x),y).

Corollary 1 and Corollary 2 point out an efficient way of approximating ǫ-IMAC
with linear probing, which forms the backbone of our proposed algorithm in Section 4.

Finally, we consider the vulnerability of a multi-class linear classifier to linear prob-
ing. The problem arises of detecting convex polytopes inX with a random line. As one



can easily scale any hypercube to a unit hypercube with edge length1, our proof is
restricted to the unit hypercube inRD.

Definition 1 (Vulnerability to Linear Probing). LetX = [0, 1]D, andX1, . . . ,XK be
the sets that tileX according to the classifierf : X → {1, . . . ,K}, withK ≥ 2. LetG
be a random line inRD that intersectsX . DenoteZ the number of sets intersectG, the
vulnerability of classifierf to linear probing is measured by the expectation ofZ.

WhenEZ is small, a random line intersects small number of decision regions and
not much information is leaked to the adversary. Thus, a robust multi-class classifier
that resists linear probing should have a small value ofEZ.

Theorem 3. Letf be the multi-class linear classifier defined in (1), then the expectation

of Z is bounded by1 < EZ < 1 +
√
2(K−1)
2D .

Proof. By Lemma 1, we haveK convex polytopesX1, . . . ,XK . LetF be the union of
all facets of polytopes. Observe that each time the line touches a convex polytope, it
only touches its surface twice. The exit point is the entrance point for a new polytope,
except at the end-point. Thus, the variable that we are interested in can be represented
as

Z = |F ∩G|,

where| · | represents the cardinality of a set. Obviously,EZ is bounded by1 < EZ <
K. We will give a tighter bound in the sequel.

Let G be the class of all lines ofRD, andµ be the measure ofG. Following the
notation introduced in [15], we denote the measure ofG that meet a fixed bounded
convex setC asµ(G;G ∩ C 6= ∅). Considering anindependent Poisson point processon
G intensity measureµ, letN be the number of lines intersectingX . We emphasize that
N is a finite number, so that one can label them independentlyG1, . . . , GN . It follows
thatGn, n = 1, . . . , N arei.i.d.. Given a fixed classifierf , we have

E

N∑

n=1

|F ∩Gn| = E

N∑

n=1

[
P (N = n)

n∑

i=1

|F ∩Gi|
]

=
N∑

n=1

[P (N = n) · n · E|F ∩G1|]

= EN · (EZ). (5)

Remark thatG1, . . . , GN follow the Possion point process, we haveEN = µ(G;G ∩
X 6= ∅). Therefore we can rewrite (5) as,

EZ =
E
∑N

n=1 |F ∩Gn|
µ(G;G ∩ X 6= ∅) . (6)



Next, we computeE
∑N

n=1 |F ∩ Gn|. Let M = |F|. Due to the convexity ofXk,
any given line can hit a facet no more than once. Therefore, wehave

E

N∑

n=1

|F ∩Gn| = E

N∑

n=1

M∑

m=1

|Fm ∩Gn|

=
M∑

m=1

E

∣∣∣
{
n ∈ {1, . . . , N}|Fm ∩Gn 6= ∅

}∣∣∣

=
M∑

m=1

µ(G;G ∩ Fm 6= ∅). (7)

By substituting (7) into (6) we obtain

EZ =

∑M

m=1 µ(G;G ∩ Fm 6= ∅)
µ(G;G ∩ X 6= ∅) . (8)

Assume thatµ is translation invariant, by Cauchy-Crofton formula we canrewrite (8)
as

EZ =

∑M

m=1 A(Fm)

A(X )
, (9)

whereA(·) denotes the surface area4. Note, that the numerator of (9) depends on the
shape of each polytope and relates to the training method of classifier. Thus, it is difficult
to compute the exact value ofEZ. Nonetheless, we can bound the expectation by using
the factA(X ) <

∑M

m=1 A(Fm) < A(X ) +
√
2(K − 1) (see [1] for the upper bound).

Remark that the surface areaA(X ) of a unit hypercube is2D. We yield

1 < EZ < 1 +

√
2(K − 1)

2D
,

which concludes our proof. ⊓⊔

We remark that Theorem 3 implies a way to construct a robust classifier that resists
evasion algorithm based on linear probing, e.g. by jointly minimizing (9) and the error
function in the training procedure.

4 Algorithm for Approximating ǫ-IMAC

Based on theoretical results, we present an algorithm for deceiving the multi-class linear
classifier by disguising the adversarial instancex

A as other classes with approximately
minimal cost, while issuing polynomially many queries in: the number of features, the
range of feature, the number of classes and the number of iterations.

An outline of our searching approach is presented in Algorithms 1 to 3. We use
a K × D matrix Ψ for storing ISMAC ofK classes and an arrayC of lengthK for

4 The surface area inRD is the(D − 1)-dimensional Lebesgue measure.



the corresponding adversarial cost of these instances. Thescalar valueW represents
the maximal cost of all optimum instances. Additionally, weneed aK × I matrix T
for storing the searching path of optimum instances in each iteration. Thekth row of
matrixΨ is denoted asΨ[k, :]. We considerΨ, T, C,W as global variables so they are
accessible in every scope. After initializing variables, our main routineMLCEvading
(Algorithm 1 line 4) first invokesMDSearch (Algorithm 2) to search instances that is
close to the starting pointxA in all classes and saves them toΨ. Then it repetitively
selects instances fromΨ as new starting points and searches instances with lower ad-
versarial cost (Algorithm 3 line 6–7). The whole procedure iteratesI times. Finally, we
obtainΨ[k, :] as the approximation ofǫ-IMAC(k,xA) .

We begin by describingRBSearch in Algorithm 3, a subroutine for searching
instances near decision boundaries along dimensiond. Essentially, given an instancex,
an upper boundu and a lower boundl, we perform a recursive binary search on the line
segment{x+ θδd | l ≤ θ ≤ u} throughx. The effectiveness of this recursive algorithm
relies on the fact that it is impossible to havex

u andxl in the same class whilexm is in
another class. In particular, if the line segment meets an exterior marginM+ǫ(k) and
ǫ-IMAC(k,x) is the intersection, thenRBSearch finds anǫ-IMAC. Otherwise, when
the found instancey yields lower adversarial cost than instance inΨ does, Algorithm 4
is invoked to updateΨ. The time complexity ofRBSearch is O(u−l

ǫ
).

We next describe Algorithm 2. Givenx which is known as ISMAC(k,xA) and the
current maximum costW , the algorithm iterates(D − 1) times onP+ǫ(Xf(x)) for
finding instances with cost lower thanW . Additionally, we introduce two heuristics to
prune unnecessary queries. First, the searched dimension in the previous iteration ofx is
omitted. Second, we restrict the upper and lower bound of thesearching scope on each
dimension. Specifically, knowingW anda(x,xA) = c, we only allowRBSearch to
find instance in[xd − W−c

ed
, xd +

W−c
ed

] since any instance lying out of this scope gives
adversarial cost higher thanW . This pruning is significant when we have obtained
ISMAC for every class. Special attention must be paid to searched dimensions ofx
(see Algorithm 2 line 5–7). Namely, ifd is a searched dimension before the(i − 1)th

iteration, then we relax the searching scope to[xA
d − W−c

ed
, xA

d + W−c
ed

] so that no low-
cost instances will be missed.

Algorithm 1 : Query algorithm for evasion of multi-class linear classifiers

(Ψ, C)←MLCEvading(xA, e, D, L, U,K, I, ǫ):

for k ← 1 to K do1

Ψ[k, :]← 0, T [k, :]← 0, C[k]← +∞2

C[1]← 03

MDSearch(xA,xA, e, 1, 0, D, L, U, 1, ǫ)4

for i← 2 to I do5

for k ← 2 to K do6

MDSearch(Ψ[k, :],xA, e, k, C[k], D, L, U, i, ǫ)7



Algorithm 2 : Multi-dimensional search from ISMAC(k,xA)

MDSearch(x,xA, e, k, c,D, L, U, i, ǫ):

for d← 1 to D do1

if d 6= T [k, i− 1] then2

δ ← W−c
ed

3

u = min{U, xd + δ}, l = max{L, xd − δ}4

if d ∈ {T [k, 1], . . . , T [k, i− 2]} then5

if xd > xA
d then l = max{L, xA

d − δ}6

elseu = min{U, xA
d + δ}7

x
u ← x, xl ← x8

xu
d ← u, xl

d ← l9

if f(xu) 6= k then RBSearch(xd, u,x, d, i, ǫ)10

if f(xl) 6= k then RBSearch(l, xd,x, d, i, ǫ)11

Algorithm 3 : Recursive binary search on dimensiond

RBSearch(l, u,x, d, i, ǫ):

x
∗ ← x1

if u− l < ǫ then2

x∗
d ← u3

k ← f(x∗), c← a(x∗)4

if c < C[k] then Update(x∗, k, c, d, i)5

x
u ← x, xl ← x, xm ← x6

xu
d ← u, xl

d ← l, xm
d ←

u+l
2

7

if f(xm) = f(xl) then8

RBSearch(m,u,x, d, i, ǫ)9

else iff(xm) = f(xu) then10

RBSearch(l,m,x, d, i, ǫ)11

else12

RBSearch(l,m,x, d, i, ǫ)13

RBSearch(m,u,x, d, i, ǫ)14

Algorithm 4 : Update ISMAC(k,xA)

(Ψ, C, T,W )←Update(x∗, k, c, d, i):

Ψ[k, :]← x
∗1

C[k]← c2

T [k, i]← d3

W ← max{C[1], . . . , C[K]}4

Theorem 4. The asymptotic time complexity of our algorithm isO(U−L
ǫ

DKI).



Proof. Follows from the correctness of the algorithm and the fact that the time com-
plexity of RBSearch is O(u−l

ǫ
). ⊓⊔

5 Experiments

We demonstrate the algorithm5 on two real-world data sets, the20-newsgroups6 and
the10-Japanese female face7. On the newsgroups data set, the task of the adversary is
to evade a text classifier by disguising a commercial spam as amessage in other top-
ics. On the face data set, the task of adversary is to deceive the classifier by disguising
a suspect’s face as an innocent. We employ LIBLINEAR [6] package to build target
multi-class linear classifiers, which return labels of queried instances. The cost coeffi-
cients are set toe1 = · · · = eD = 1 for both tasks. For the groundtruth solution, we
directly solve the optimization problem with linear constraints (3) and (4) by using the
models’ parameters. We then measure the average empiricalǫ for (K−1) classes, which

is defined aŝǫ = 1
K−1

∑
k 6=f(xA)

[
C[k]

MAC(k,xA)
− 1

]
, whereC[k] is the adversarial cost

of disguised instance of classk. Evidently, small̂ǫ indicates better approximation of
IMAC.

5.1 Spam Disguising

The training data used to configure the newsletter classifierconsists of7, 505 docu-
ments, which are partitioned evenly across20 different newsgroups. Each document
is represented as a61, 188-dimensional vector, where each component is the number
of occurrences of a word. The accuracy of the classifier on training data is100% for
every class. We set the category “misc.forsale” as the adversarial class. That is, given
a random document in “misc.forsale”, the adversary attempts to disguise this docu-
ment as from other category; e.g. “rec.sport.baseball”. Parameters of the algorithm are
K = 20, L = 0, U = 100, I = 10, ǫ = 1. The adversary is restricted to query at most
10, 000 times. The adversarial cost of each class is depicted in Fig.1 (left).

5.2 Face Camouflage

The training data contains210 gray-scaled images of7 facial expressions (each with
3 images) posed by10 Japanese female subjects. Each image is represented by a100-
dimensional vector using principal components. The accuracy of the classifier on train-
ing data is100% for every class. We randomly pick a subject as an imaginary suspect.
Given a face image of the suspect, the adversary camouflage this face to make it be
classified as other subjects. Parameters of the algorithm areK = 10, L = −105, U =
105, I = 10, ǫ = 1. The adversary is restricted to query at most10, 000 times. The
adversarial cost of each class is depicted in Fig. 1 (right).Moreover, we visualize dis-
guised faces in Fig. 2. Observe that many disguised faces aresimilar to the suspect’s
face by humans interpretation, yet they are deceptive for the classifier. This visualization
directly demonstrates the effectiveness of our algorithm.

5 A Matlab implementation is available at http://home.in.tum.de/∼xiaoh/pakdd2012-code.zip
6 http://people.csail.mit.edu/jrennie/20Newsgroups/
7 http://www.kasrl.org/jaffe.html
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Fig. 1. Box plots for adversarial cost of disguised instance of each class.(Left) On the20-
newsgroups data set, we consider “misc.forsale” as the adversarialclass. Note, that feature values
of the instance are non-negative integers as they represent the number of words in the document.
Therefore, the adversarial cost can be interpreted as the number ofmodified words in the dis-
guised document comparing to the original document from “misc.forsale”. The value of̂ǫ for 19
classes is0.79. (Right) On the10-Japanese female faces data set, we randomly select a subject as
the suspect. The box plot shows that the adversarial cost of camouflage suspicious faces as other
subjects. The value of̂ǫ for 9 classes is0.51. A more illustrative result is depicted in Fig. 2.

It has not escaped our notice that an experienced adversary with certain domain
knowledge can reduce the number of queries by careful selecting cost function and
employing heuristics. Nonetheless, the goal of this paper is not to design real attacks
but rather examine the correctness and effectiveness of ouralgorithm so as to understand
vulnerabilities of classifiers.

6 Conclusions

Adversary and classifier areYin andYangof information security. We believe that un-
derstanding the vulnerability of classifiers is the only wayto develop resistant classifiers
in the future. In this paper, we showed that multi-class linear classifiers are vulnerable
to the evasion attack and presented an algorithm for disguising the adversarial instance.
Future work includes generalizing the evasion attack problem to the family of general
multi-class classifier with nonlinear decision boundaries.
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