
Exploiting the x86 Architecture to Derive Virtual Machine State Information

Jonas Pfoh, Christian Schneider, Claudia Eckert
Department of Computer Science
Technische Universität München

Munich, Germany
{pfoh,schneidc,eckertc}@in.tum.de

Abstract—Virtual machine introspection (VMI) describes the
method of monitoring and analyzing the state of a virtual
machine from the hypervisor level. Using knowledge of the vir-
tual hardware architecture, it is possible to derive information
about a guest operating system’s state from the virtual machine
state. We argue that by deriving this information it is possible
to build VMI applications which are more robust against
circumvention techniques than applications that do not rely on
hardware knowledge. In this paper, we present various ways
to leverage Intel’s x86 architecture as well as the virtualization
extensions from both Intel (VT-x) and AMD (SVM) to derive
such information. Additionally, we describe how this derived
information may be used in VMI-based security applications
and against which threats they are most applicable.

Keywords-Virtualization; Security; Anti-malware; Intrusion
Detection; Introspection

I. INTRODUCTION

Virtualization is a technology that allows one to run a
guest operating system (OS) on a software layer, called the
virtual machine monitor (VMM) or hypervisor, as if it were
being run directly on the hardware. Virtualization clearly
has its applications in the field of IT security. For example,
it enables the analysis and manipulation of the state of a
guest operating system running inside the virtual machine
(VM) from the isolation of the hypervisor. This method of
combining isolation, inspection and interposition is referred
to as virtual machine introspection (VMI) [1].

The most crucial part of any VMI application is the
extraction of appropriate system state information from the
binary data that comprises the virtual machine state. This
process is called view generation [2]. Any information that
is not extracted from this binary data will not be available
for further processing. Therefore the view generation must
retain all information relevant for a given application. It is
also important to perform this view generation in the most
robust manner possible, that is, it is ideally immune to any
malicious influence.

Pfoh et al. [2] describe three fundamental patterns for
view generation (ref. Section II). From these three patterns,
the derivation pattern is the most robust as it only makes
use of knowledge about the virtual hardware architecture
in order to generate the view. More precisely, from the
perspective of the virtual machine, the state information is
collected at the lowest level possible. There is no way for

an attacker inside the virtual machine to perform actions
at a level lower than the hardware in order to circumvent
introspection and hide his activities from the hypervisor.1

In this paper, we investigate the potential of Intel’s x86
architecture and the virtualization extensions from both Intel
(VT-x) and AMD (SVM) for derivative view-generation. We
identify and describe methods for extracting security relevant
information about a guest system from its low-level state
through knowledge of the hardware. These methods allow
one to enumerate the running processes, monitor system
calls, or track network connections on a per-process basis
in a completely guest OS independent manner. Some of
these methods may be improved by adding knowledge of
the guest operating system. With this, for example, the entire
system call mechanism can be monitored in such a way that
it cannot be circumvented by any malicious activity within
the guest.

The remainder of this paper is organized as follows.
In Section II we introduce some terminology and briefly
describe view-generating patterns. Section III motivates our
work by outlining the advantages of the derivation pattern.
The possible threats that we intend to counter follow in Sec-
tion IV. In Section V, the actual mechanisms for derivative
approaches are presented and discussed. Finally, Section VI
concludes this work.

II. BACKGROUND

In this section, we introduce some terms and concepts
which were established by Pfoh, et al. [2]. This will help
for a better understanding and discussion of the motivation
in Section III and the hardware-based mechanisms for view
generation in Section V. Since we only cover the required
minimum and do not detail every definition, we encourage
the reader to consult the aforementioned publication for an
in-depth discussion of the foundations we are using in this
work.

VMI is a technique for inspecting and manipulating the
state of a guest OS from the isolation provided by the
hypervisor. The hypervisor has a complete and untainted

1For our considerations, we make the idealistic assumption that an
attacker cannot break out of the virtual machine. However, we are well
aware of the fact that privilege escalation attacks for several widely-spread
hypervisors do exist.

2010 Fourth International Conference on Emerging Security Information, Systems and Technologies

978-0-7695-4095-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SECURWARE.2010.20

155

2010 Fourth International Conference on Emerging Security Information, Systems and Technologies

978-0-7695-4095-5/10 $26.00 © 2010 IEEE

DOI 10.1109/SECURWARE.2010.35

166

view of all guest system state as well as the ability to
manipulate that state. These are ideal properties for security
applications.

The system state of a virtual machine can be described as
the combination of all CPU registers, all volatile memory,
the entire contents of stable storage, virtual BIOS settings,
and so on. The challenge is that the hypervisor has no
inherent knowledge of the meaning of this state. That is,
a particular memory region or register may be used differ-
ently among different OSs. The hypervisor has no inherent
knowledge of the role a particular piece of the guest system
state plays. Chen and Noble refer to this lack of knowledge
as the semantic gap [3]. The set of knowledge the hypervisor
requires in order to determine the role of each piece of guest
system state is referred to as semantic knowledge.

In summary, the state alone is not very useful until
some semantic knowledge is applied to it. For example,
the contents of kernel memory is only useful once we
know where key data-structures and functions lie within
that memory. The representation of the VM state after some
semantic knowledge has been applied is called a view of
the VM. In our example, the kernel memory is a portion
of the guest system state; semantic knowledge is applied
to this state in the form of key data-structure and function
locations; and finally, these key data-structures and functions
are extracted as the view.

There are several ways for the hypervisor to bridge the
semantic gap. Pfoh et al. [2], present three fundamental
patterns for bridging the semantic gap, namely: the out-
of-band delivery pattern, the in-band delivery pattern, and
the derivation pattern. They differ in two ways, first, where
within the architecture the view generation takes place (i. e.,
internally or externally with respect to the VM) and second,
how semantic knowledge is incorporated. Additionally, we
found that every published VMI approach we are aware of
can be described as a combination of one or more of these
patterns. We will briefly summarize these patterns in the
following.

A. Delivery Patterns

The in-band and out-of-band delivery patterns are the
most widely used methods for bridging the semantic gap
in various VMI approaches. Here semantic knowledge is
delivered to the external view-generating component. This
can either happen out-of-band (i. e., before VMI begins), or
in-band (i. e., at run-time).

For example, in the out-of-band delivery pattern the view-
generation might rely on a previously delivered symbol table
based on the guest OS kernel to determine the position and
layout of kernel-level data-structures in memory. While, in
the in-band delivery pattern the view-generation might rely
on a daemon running inside the VM which provides the
view-generation with information about all active processes.

B. Derivation Pattern

The derivation pattern does not require any knowledge
about the guest operating system or any other software
component but rather derives information through semantic
knowledge of the virtual hardware architecture. For example,
understanding the function of particular control registers
within the virtual CPU and monitoring their contents pro-
vides information about the current state of the system. It is
this pattern that we will focus on for the remainder of this
paper.

III. MOTIVATION

VMI is a strong enabler for derivative methods. However,
many published VMI-based approaches [1], [4], [5] fail to
consider VMI as a new paradigm, thus failing to acknowl-
edge the potential advantage of derivative methods. As an
example, if one is monitoring a variable within a software
system for change, it is possible to circumvent this monitor
by altering the underlying system in such a way that the
monitored variable is no longer used. On other hand, if one
is monitoring a critical hardware register, it is impossible for
any malicious entity to alter the system such that the register
is no longer used. In this example, monitoring the hardware
register is totally robust against circumvention because the
hardware interface cannot be changed. In the same way,
derivative approaches are more robust against circumvention
than the more common delivery approaches.

As it turns out, the amount of information we can gather
about a system based solely on knowledge of the hardware
is limited. However, it is possible to combine a derivative
approach with delivered knowledge in such a way that we
retain this robustness against circumvention. This requires
rooting delivered knowledge in a derivative component we
will call the anchor.

To illustrate this, we consider a component of Garfinkel
and Rosenblum’s Livewire system [1]. We choose this sys-
tem because it is well known. Their polling policy modules
monitor low-level system state which is resident in memory.
This polling module may be used to monitor the integrity
of critical kernel data-structures, such as the system call
table. However, this module would be susceptible to a
class of attacks that manipulate the Interrupt Descriptor
Table Register (IDTR) in order to circumvent use of the
monitored system call table all together. Since this module
only considers state resident in memory, such an attack is
not detected. The IDTR is a system register that holds the
base address of the Interrupt Descriptor Table (IDT). This
mechanism is explained in more detail in Section IV-A.

We would suggest augmenting this module to not only
consider memory, but also CPU registers, thus allowing
one to anchor delivered knowledge (location of the system
call table) in a derivative component (IDTR monitor). The
position of the system-call table in memory can be retrieved

156167

by following the address in the IDTR, the address of the cor-
responding interrupt dispatcher in the interrupt description
table (IDT), and finally the actual dispatching code as shown
in Figure 1. Here the robustness against circumvention is
increased in that any change to the system call table will be
detected nor can the system be altered in such a way that
the system call table is not used.

Figure 1. Rooting the system-call table to a hardware register of the virtual
CPU

While the above example is fairly trivial, this same
approach can be applied in far more complex scenarios. Our
contribution in this paper is a thorough investigation of the
x86 architecture in order to determine what potential this
architecture has with respect to derivative methods for VMI.
We present several building blocks which may be used to
anchor security mechanisms in the hardware of the system.

IV. THREATS

There are certain threats to system security which can
be countered by mechanisms that would benefit from a
hardware anchor. These threats are presented here. The
building blocks that provide the hardware anchor through
derivative methods are then presented in Section V.

A. Interrupt Hooks

Setting interrupt hooks is a common tactic among rootkit
authors, especially hooks in the system call mechanism.
This allows the rootkit to perform keystroke logging, for
example, to ascertain further passwords for the intruder. To
further understand this threat, it is important to understand
the interrupt mechanism as it is implemented in the x86
architecture.

The standard interrupt mechanism makes use of a system
register, the IDTR. This system register contains the address
of the Interrupt Descriptor Table (IDT), which, in turn, holds
the addresses of the various interrupt handlers. When an
interrupt occurs, the system refers to the IDT to determine
the address of the appropriate handler, then invokes this
handler.

A system call is a software interrupt, though the mecha-
nism is a bit more complex as there are two primary ways a
system may choose to handle them. The first is through the
INT instruction which triggers a software interrupt. The sec-
ond uses dedicated SYSENTER or SYSCALL instructions.
Further technical differences are irrelevant in this section,

but note that each of the mechanisms makes use of specific
system registers that point either to the IDT or to the system
call dispatcher (i. e., an interrupt handler) directly. Modern
operating systems generally support both mechanisms.

Another critical component of the system call mechanism
is the system call table. This is generally a kernel data-
structure that contains the entry point addresses for the
individual system call handlers. That is, the system call
dispatcher consults the system call table to determine the
memory address of the respective handler, then invokes that
handler.

Considering these two ways for system call invocation,
there are four possible stages at which an attacker could
possibly perform system call hooking:

1) Manipulate the appropriate system registers and/or
IDT to point to a malicious system call dispatcher.

2) Manipulate the system call dispatcher to consult a
malicious system call table.

3) Manipulate the system call table to point to malicious
handler routines.

4) Manipulate the system call handlers themselves to
perform malicious activity.

In order to protect against interrupt hooking, verifying the
integrity of the interrupt mechanism at all possible stages is
imperative. That is, one must protect the integrity of the
system registers, the IDT, the interrupt handlers, the system
call table, and the system call handlers.

B. Information Hiding

Hiding information from the guest OS is another common
tactic employed by rootkits. Information hiding may include
a wide range of goals, but we will focus on three of the
most common, namely: process hiding, kernel module or
driver hiding, and network activity hiding. All of these
may be used by an attacker to disguise his presence on a
compromised machine. The issue with such hiding is that,
from the perspective of an attacker, there exist several ways
to reach each goal. However, there are commonalities which
can be exploited by a security application to counter each
goal. These are outlined below.

1) Process Hiding: Process hiding is the act of hiding
a process or task from tools within the operating system.
A competent user or system administrator will expect to
see certain processes and an unknown process may cause
suspicion. An attacker will want to avoid any such suspicion
and therefore employs process hiding techniques.

One way to counter process hiding is to perform an enu-
meration of running processes (tasks) at two different levels.
First, a “low-level” task enumeration is performed. That is,
the number of unique processes in an OS is determined
at a level lower than the dedicated OS interface provides.
Then a “high-level” enumeration is performed by using the
OS interface (e. g., using ps -A in Linux). The collected
information can then be compared and any inconsistencies

157168

indicate that process hiding is taking place. For such a
technique to work the low-level task enumeration must be
performed at a level lower than the level at which the process
hiding is taking place.

If the low-level task enumeration is performed at the
lowest level possible, then a malicious entity does not
have the opportunity to circumvent the enumeration. This
lowest possible level is the (virtual) hardware. That is, no
matter how sophisticated a process hiding technique may
be, it cannot circumvent the fact that even hidden processes
must get scheduled on a CPU in order to carry out their
payload. When a process with its own virtual address space
is scheduled, the process’s unique set of page directories and
tables must be loaded and made available to the CPU. That
is, these page directories and tables cannot be hidden due
to hardware specifications. This leads to several methods
for low-level task enumeration, some of which have already
been used in previous work [6], [7], [8], [9].

2) Kernel Module and System Driver Hiding: As with
process hiding, hiding kernel modules or system drivers is
the act of hiding these kernel-level components from tools
within the operating system and thus from the user.

While the goal is similar to that of process hiding, the
difference is that these components get loaded into kernel
memory and do not possess a separate virtual address
space. To complicate things further, these components may
continue to perform normally even when the kernel’s handle
to the particular component has been removed. That is, the
kernel is completely unaware of such a component and yet it
continues to perform its tasks. For example, a Linux module
may be loaded into memory, making the code resident in
kernel space. A malicious entity may then remove the entry
for this module from the module list without unloading the
code. This results in malicious code being resident in the
kernel without any indication that it is present. [10]

Of course, the memory which is in use by a hidden com-
ponent must be allocated and one could take the approach
of monitoring all allocated portions of kernel memory and
identifying all unknown components (i. e., components for
which the kernel has no handle). However, this approach is
highly cumbersome and impractical as it requires semantic
information about every piece of kernel information in order
to determine if a hidden components exists.

An alternative approach is based on the observation that
such a component must get loaded before it becomes hidden
and the loading of such components must be handled within
the kernel at a specific location, often through a system
call. That is, by monitoring the appropriate system call
for such components we have the opportunity to recognize
when kernel modules or system drivers are loaded and thus
alleviate the need for detecting hidden components. We may
use the same method described in Section IV-B1, comparing
this VMI view to an in-OS view. It is important to note that
this method relies heavily on the guest OS. If the guest

OS provides methods other than system calls to load kernel
code, an approach anchored in a derivative component may
not be possible.

3) Network Activity Hiding: Another common practice of
rootkits is to hide network activity. That is, an attacker will
want to hide all network traffic created by his tools from the
OS as this is another common avenue by which users and
administrators become suspicious. For example, an attacker
may want to set up a back-door that listens on a particular
port. The attacker will want to hide the fact that a service
is listening as well as any traffic created by this service.

Any traffic created within a VM must travel through the
hypervisor as the hypervisor manages all virtual I/O devices
that are extended to the VM.2 This can be taken advantage
of and in fact it is impossible for any changes within the
guest to hide network activity (or any I/O activity) from the
hypervisor. In addition, it is possible to correlate network
packets with processes on the system, as we will explain in
Section V-A4.

4) Virtual Machine Rootkits: While not seen in the wild,
rootkits that move the currently running OS into a VM
have been shown as a proof of concept [11]. Such rootkits
make use of the VMENTRY instructions provided by the
virtualization extensions of modern CPUs. Such rootkits
can be thwarted by disallowing the use of these VMENTRY
instructions from within the guest OS or trapping and
regulating their usage.

C. Network-Based Attacks

Network-based attacks include any form of attack or ma-
licious behavior which is carried out over a network. Ideally
these attacks are recognizable when monitoring network
traffic.

Traditional Network Intrusion Detection Systems (NIDS)
are a common tool in any security solution. These systems
listen on a network wire and report traffic that is deemed
suspicious, usually based on a set of signatures, i. e., patterns
of malicious network traffic. As mentioned in Section IV-B3,
all network activity from a guest OS is visible to the
hypervisor, thus introducing a NIDS within the hypervisor
is a fairly trivial task. This NIDS can be used to protect
the guest as well as to detect misbehaving processes in the
guest OS. Furthermore, information from the NIDS can then
be combined with contextual information about the process
sending or receiving the packet to raise its accuracy.

With this contextual information it is possible to provide
connection profiles for individual processes. That is, we
can correlate outgoing packets with unique processes, thus
creating a network activity profile on a process granularity.
These profiles can then be used to detect patterns or match
signatures at a per-process level.

2There do exist exceptions to this in which devices are passed to the
VM at a PCI level, but since these exceptions can be explicitly avoided in
cases where VMI is the goal, we disregard them.

158169

D. Malicious Processes

Malicious process detection is a fairly broad goal and
recognizing the subtleties of all malicious processes is
unlikely if not impossible through VMI. However, there are
some areas in which VMI can be used to support malicious
process detection.

As mentioned in Section IV-C, connection tracking may
be one avenue for malicious process detection. In addition
to building and analyzing a network profile, it is possible
to detect malicious or misbehaving processes based on
system call traces. Once we have a system call profile
for a process, this information can be used to identify
misbehaving processes through uncommon activities. Such
techniques have been presented using system call traces
collected from within the monitored system. [12], [13] By
using derivative methods the properties of these approaches
could be strengthened.

V. HARDWARE MECHANISMS

In this section, we outline some of the hardware mech-
anisms that become the building blocks of a derivative ap-
proach or a combination approach that is rooted in hardware.
We look at the x86 architecture from two perspectives. First,
we explore the introspective features that the architecture
provides when used as virtual hardware. These features
include primarily passive information gathering techniques.
Second, we show how the virtualization extensions can
be exploited for introspection purposes. As we will see,
they also allow us to actively intercept certain events and
instructions triggered inside the guest.

Information presented in this section is based on specifica-
tions found in the Intel and AMD Developer Manuals [14],
[15] unless otherwise noted. We reinforced this research
through experimentation using the Linux Kernel Virtual
Machine (KVM) [16].

A. VM State Access

A very straightforward mechanism for VMI is simply a
matter of checking and comparing CPU and/or memory state
at regular intervals. The challenge in such an approach is
determining which portions of the state are helpful. This
section outlines exactly those portions of the state based on
knowledge of the x86 architecture.

In addition to identifying those portions of state which are
helpful, one must consider the trigger upon which this state
is inspected. A timer may be the simplest solution. Although,
event-based triggers may often be more appropriate. For
example, if we wanted to use a context switch as the
event trigger, we may use the mechanism suggested in
Section V-B1.

1) Control Register 3 (CR3): The CR3 register holds
the address of the top-level page directory for the current
context when paging is activated. That is, each process has
a unique top-level page directory and the address of this page

directory is stored in the CR3 register. Since each process
has a unique top-level page directory, the address of this
directory acts a unique identifier. Hence, monitoring this
register may be used to enumerate processes. The challenge
here is determining when a process is in fact no longer
running as opposed to simply idle. One may have to rely
on heuristics and create a baseline for the running system to
determine a reasonable idle time. The Lycosid system [8],
[9] makes use of a exactly this mechanism to enumerate
processes within a system.

2) IDTR and System Call MSRs: Monitoring the IDTR
and the system call MSRs (machine specific registers) allow
us to monitor for the placement of interrupt hooks at this
level. Generally such a hook is placed within the system
call mechanism, though hooks could be placed to catch any
interrupt within the system. We will focus on monitoring
for system call hooks, however the process described here
for hooking system calls based on interrupts may be used
to monitor for any hooks within the interrupt system.

As mentioned in Section IV-A, there exist two primary
system call mechanisms for system calls within the x86
architecture. The first method is to use the IDT to store
the address of the system call handler and use the INT in-
struction to perform the actual system call. The base address
and size of the IDT are stored in the IDTR and the layout
of the entries in the IDT (gate descriptors) are specified by
the hardware architecture. These gate descriptors provide a
logical address for each interrupt handler. This information
allows us to monitor for any interrupt hooks (including
system call hooks) at the IDTR and IDT level.

The second, more recent method involves MSRs which
are responsible for handling fast switching to the system
call handler. This fast system call mechanism is provided
through the SYSENTER or SYSCALL instructions. Going
forth we will refer to the Intel syntax (i. e., SYSENTER)
as the technical differences of these two mechanisms are
irrelevant here. The MSRs store, among other things, the
offset for the system call handler.

In the case of system calls, we refer to the code that
the IDT or the appropriate MSR point to as the dispatcher
routine. We give it this distinction because this function
does not “handle” the system call. Rather, it examines the
calling conditions and refers to a data-structure called the
system call table in order to determine where the appropriate
handling function is located, then hands the appropriate
information over to this handler.

As mentioned in Section IV-A, monitoring for hooks at the
register or IDT level alone is not sufficient. We must monitor
the integrity of all stages of the system call mechanism
(c. f. Section IV-A), i. e., the appropriate registers, the IDT,
the system call dispatcher, the system call table, and the
system call handlers. Since the location and layout of some
of these functions and data-structures are not dependent on
the hardware architecture, some delivered knowledge will be

159170

necessary.
It is possible to combine such a derivative method with

a delivery approach in which the size and layout of the
dispatcher and handler functions and the system call table
are delivered to the hypervisor. Here we have an example
of rooting the semantic information in the hardware as
described in Section III, thus providing a solution with
increased robustness against circumvention. Let us consider
a simple example. We have the ability to monitor the IDTR
and therefore the IDT. The address of our dispatcher lies
within the IDT and the address of the system call table lies
within that dispatching procedure. Finally, the addresses of
the handlers are contained within the system call table. Even
though we rely on delivered information (i. e., the location
and layout of the dispatcher, handlers, and system call table),
it is impossible for a malicious entity to manipulate anything
along this chain without the change being evident from the
hypervisor since this chain is rooted in the hardware (IDTR
or MSRs). If the malicious entity alters the system call table,
the change is detectable. If it manipulates the dispatcher to
use a cloned system call table, the change is also detectable.
This chain continues until we reach the hardware (in this
case the IDTR) and any changes here are clearly detectable
as well. At this point an attacker cannot resort to a level
lower than the hardware.

Both Windows and Linux use system call mechanisms
similar to the one described here. However, it is possible to
execute the kernel in a separate virtual address space rather
than in a dedicated region of other process’s address space.
In this case the mechanism would look slightly different,
though a similar technique could be incorporated.

3) GDTR and LDTR: The Global Descriptor Table
(GDT) and Local Descriptor Table (LDT) are data-structures
that are crucial to the segmentation mechanism in the x86
architecture and the GDTR and the LDTR are the registers
that contain the location and size of GDT and LDT, respec-
tively. The layout of these tables is specified by the hardware
specifications and they may be used to regulate the segments
that are accessible at various protection levels and facilitate
the switch between these protection levels. Since these data-
structures play a part in the protection mechanisms of the
x86 architecture, they may become a target for a malicious
entity. Thus, monitoring them and their respective data-
structures for integrity may become crucial in a security
solution.

In practice, monitoring these registers and their respective
data-structures has limited usage as OSs may (and often do)
choose to effectively ignore this mechanism. That is, the OS
may choose to provide isolation and protection by leveraging
the paging mechanism and use the segmentation mechanism
in a minimal way. For example, the Linux 2.6 kernel sets up
all kernel and user segments such that the logical addresses
are equivalent with linear addresses. This means that both
protection levels share the same segments and this mech-

anism provides no protection at all. This leaves little for a
malicious entity to abuse in this respect. Though, in systems
which rely on segmentation for protection monitoring the
integrity of these registers becomes crucial.

4) Virtual I/O: The VM must rely on the hypervisor for
all input and output since the guest OS is provided virtual
I/O devices by the hypervisor so that the physical device
may be shared by multiple VMs or by the hypervisor itself.
This can, of course, be leveraged by VMI mechanisms to
monitor network traffic or keystrokes.

Performing such I/O monitoring is a matter of tapping into
the virtual I/O device within the hypervisor and interpreting
the data. When keystroke logging is the goal, for example,
this would be a matter of tapping into the appropriate
component of the hypervisor and logging the data stream
to a file. Network traffic monitoring is another interesting
application of this mechanism.

A simple example of taking advantage of network traffic
monitoring is to perform network-based intrusion detec-
tion or firewall duties from the hypervisor. However, more
interesting is to leverage the fact that the mechanism is
performing its duties from the hypervisor. For example,
Srivastava and Giffin [17] leverage this fact to present
an application-aware firewall which is isolated from the
running guest. Such an approach requires some delivered
information, but is an excellent example of tapping into a
virtual I/O device and combining this approach to come to
a result that brings together the primary advantages of both
host-based (i. e., application-awareness) and network-based
(i. e., isolation) firewalls.

It is possible to take this one step further by combining the
ability to tap into the network stream with a simple virtual
CPU state inspection of the CR3 register. This register may
be used to identify unique processes running in the VM as
discussed in Section V-A1. This allows us to create network
activity profiles for unique processes and would allow us to
perform process-specific intrusion detection and firewall du-
ties. That is, if a process is tagged as acting suspicious it may
be blocked on a process granularity. This approach maintains
isolation and relies completely on derived information and is
therefore robust against circumvention techniques that might
try to hinder application-aware solutions from correlating a
network stream to an application correctly.

B. Virtualization Extensions

This section goes into depth considering how to best
leverage several aspects of the virtualization extensions
provided by both Intel (VT-x) and AMD (SVM) for VMI.
Unless otherwise specified, these techniques are possible on
Intel as well as AMD hardware which provide similar x86
virtualization extensions.

1) Context Switch Trapping: The virtualization exten-
sions allow one to directly trap to the hypervisor on a context
switch. This results in a fairly straightforward method for

160171

trapping context switches, however this method relies on the
guest OS’s usage of the TSS. It is possible for an OS to use
the TSS mechanism in a limited way and perform software
context switches. For example, the Linux 2.6 kernel makes
limited use of the TSS, having a single TSS for each CPU.
This results in no hardware context switches, making this
technique useless.

Since the above technique is not useful for all guest
OSs, we discuss another technique that does not have the
above restrictions and is also supported by both sets of
CPU extensions. This technique traps writes to the CR3
register. The CR3 register is the control register which holds
the offset of the current page directory as described in
Section V-A1. Since each process must have its own page
directory in OSs that make use of hardware-supported virtual
memory, trapping writes to the CR3 register will result in
trap to the hypervisor on each context switch.

In fact, many hypervisors that use shadow page tables
must trap all context switches (i. e., CR3 accesses) in order
for the VM to run properly. In this case the work of trapping
is already done, one must simply incorporate their intended
action.

2) Virtual Machine Entry Trapping: As mentioned in
Section IV-B4, proof of concept malware does exist that
demonstrates the ability to move the running OS into a VM,
thus allowing the malware to perform introspection and take
advantage of interposition [11]. In order to do this, a piece
of malware must take advantage of the hardware extensions
for virtualization. One must simply disallow any attempt to
enter into a VM and react to this (e. g., logging, setting an
alert, etc). Both Intel and AMD provide the ability to trap
the entry instruction, so this can be done with relative ease.

3) System Interrupt Trapping: System-specified inter-
rupts are those interrupts which reside within the IDT at
offsets from 0 to 31. Common system-specified interrupts
are page-fault exceptions and general protection faults. For
a complete list we refer the reader to the Intel Developer
Manuals [14]. It is possible to set a VM to trap to the
hypervisor on any of these interrupts. That is, any action
which causes a system-specified interrupt may be trapped
by the hypervisor.

This can be exploited by security applications in some
cases by manipulating the guest from the hypervisor so
that an event artificially causes a system-specified interrupt
which is then trapped by the hypervisor. Such approaches
are discussed in Section V-C.

4) User Interrupt Trapping: User defined interrupts use
the same mechanism as system defined interrupts, though
they must use an interrupt code within the range 32...255
(this also acts the offset into the IDT) and are always caused
by using the INT instruction. For example, system calls
may be implemented in this way and thus may be trapped.
The virtualization extensions provided by AMD allow native
trapping of user defined interrupts in the same way that

system defined interrupts are trapped.
In order to trap these interrupts on Intel machines some

extra steps must be taken. For a full discussion on this, see
Section V-C3.

C. System Interrupt-enabled Mechanisms

As mentioned in Section V-B3, it is possible to leverage
the fact that the x86 virtualization extensions allow us to
cause the guest OS to trap to the hypervisor due to a system-
specified interrupt. Often times we may want to cause the
VM to exit due to an event for which there exists no
mechanism to cause a VMEXIT (i. e., trap to the hypervisor).
In this case, it may be possible to manipulate the VM state in
such a way that the target event will cause a system-specified
interrupt and set the hypervisor to trap this interrupt. The
challenge here is how to manipulate the VM state so that
the target event causes a trappable interrupt and how to
minimize false positives. In this context, false positives are
traps to the hypervisor that are due to our manipulation,
but do not contribute to VMI and legitimate interrupts or
exceptions are interrupts or exceptions which would have
occurred regardless of our manipulation.

Many false positives will lead to significant performance
overhead. It is therefore necessary to carefully craft such
a mechanism in order to reduce the number of false pos-
itives. In addition, involving the hypervisor in legitimate
interrupts where the hypervisor intervention is not necessary
will also lead to unwanted performance overhead. Both of
these performance factors must be taken into account when
considering such an approach.

The final challenge in such a mechanism is differentiating
between legitimate interrupts and those caused by our ma-
nipulation of the VM state. This step will vary with each
approach and is discussed in the appropriate subsections
below.

1) Avoiding Countermeasures: Changing the state of the
VM leads to the possibility that an entity within the guest
OS can detect or even deter our mechanism by looking for
these changes and possibly altering this state. For this reason
it is imperative to monitor the integrity of the corresponding
state from the hypervisor. In the simplest case this can be
achieved by monitoring the state at regular intervals. It may
also be possible to use paging protection mechanisms in
a hypervisor that makes use of shadow page tables since
the page tables which are actually being used reside outside
of the VM. Finally, in some cases it may be possible to
deter a malicious entity from detecting the mechanism at
all by trapping access to this state. For example, the x86
virtualization extensions allow us to trap accesses to most
system registers and MSRs.

2) Page-Fault Exception: A page fault is an exception
that is produced by the hardware when an exception occurs
within the paging system of the architecture. We will con-
centrate on three specific causes of page faults which are

161172

helpful for VMI:
1) A page is requested for which the page-present flag is

not set. We will refer to this as the Page Not Present
(PNP) exception.

2) An attempt to write to a page for which the write flag
is not set. We will refer to this as the Page Illegal
Write (PIW) exception.

3) An attempt to execute operations on a page for which
the non-executable flag is set. We will refer to this as
the Page Illegal Execute (PIE) exception.

The PNP exception may be leveraged to indicate any type
of access to a particular page belonging to a process. That is,
the hypervisor may unset the page-present flag for a specific
page whether the page is present or not and cause all page
faults to trap to the hypervisor. The hypervisor must then
intercept all page fault exceptions which were caused due to
a PNP exception and for which the causing page is the page
in question. The Ether system [18] uses such an approach to
monitor system call activity. Rather than unsetting the page-
present flag associated with the page in which the system call
dispatcher is resident, it replaces the data in the MSR which
holds the offset of the system call dispatcher with an offset
into a page which is always set to be not present. This is a
clever use of this exception as it allows the authors to trap
all system calls using this system call mechanism, without
having to consider false positives that would be caused by
normal execution within the page in which the system call
dispatcher is resident.

The PIW exception may be leveraged to indicate attempts
to overwrite portions of memory. To make use of this the
hypervisor must unset the write flags for the appropriate
pages and handle these exceptions. This is a straightforward
approach and works well when write protecting static data-
structures or code segments. In addition, the PIE exception
may be leveraged to indicate attempts to execute certain
portions of memory. These are straightforward methods as
we are simply using the mechanism in the way they were
intended although we are doing so from outside of the guest
OS. Litty et al. [6], [7] make use of the PIE exception in
yet another way. They use this mechanism to perform task
enumeration. That is, they set the pages of a process to non-
executable to determine whether the process is still running.

Changes made to force these interrupts are not visible to
the guest OS in a system which uses shadow page tables as
the shadow page tables are resident outside of the VM. This
makes for a method which is robust against detection and
manipulation attempts from within the guest VM.

This approach also seems as though it could be leveraged
to perform code execution trapping. That is, trapping to
the hypervisor when a portion of memory legitimately
containing code is executed. This may be done to monitor
the entrance into a function, for example. However, we
caution the reader when using this approach for the fol-
lowing reasons: Such a method for code execution trapping

will cause a trap on each instruction on the page causing
many false positives; but more problematic, it forces the
hypervisor to emulate all these instructions. This could
solved by unsetting the non-executable flag after the first
instruction is executed, though this leads us to two further
problems. First, the hypervisor needs to continuously poll
the VM state to determine whether it can reset the non-
executable flag or we must set a time in which we are sure
the function has completed execution. The second problem
is that in this time another process could enter the same
function without the hypervisor being made aware. Given
these potential problems, the paging mechanism is not the
proper approach for code execution trapping. For viable
methods see Sections V-C5 and V-C4.

3) General Protection Exception: The general protection
exception is produced for a wide variety of specific reasons
all having to do with privilege protection. For the purposes of
VMI we concentrate on the following five specific reasons:

1) An attempt to execute operation within a segment that
is not executable. We will refer to this as the Segment
Illegal Execution (SIE) Exception.

2) An attempt to write to a read-only data segment. We
will refer to this as the Segment Illegal Write (SIW)
Exception.

3) An attempt to read from a execute-only code segment.
We will refer to this as the Segment Illegal Read (SIR)
Exception.

4) Referencing an illegal or non-existent entry within the
IDT. We will refer to this as the Illegal IDT Reference
(IIR) Exception.

5) Loading the CS register with a null segment selector.
We will refer to this as the CS Null Segment Selector
(CNSS) Exception.

Leveraging the first two exceptions, namely SIE and SIW,
works almost identically to the mechanism described in
Section V-C2 with regard to the PIE and PIW exceptions.
The only difference is that here we are working within the
segmentation mechanism of the hardware rather than the
paging mechanism. This leads to a difference in granularity
as the size of a segment is not static like the size of a page,
though the VMI mechanism is almost identical except that
here we set the hypervisor to trap and interpret a different
exception.

The third cause for an exception is also due to the seg-
mentation mechanism of the hardware. The VMI mechanism
to leverage SIR exceptions is identical to that for the SIE
and SIW exceptions, though here we have the ability to
do something that the paging mechanism does not allow,
namely trap attempted read access to code segments. This
is useful for avoiding detection of VMI mechanisms that
change code, as described in Section V-C4.

The issue with any VMI mechanism that leverages the
hardware segmentation mechanism is that segmentation may

162173

not be properly used by modern OSs that use paging, as dis-
cussed in Section V-A3. Linux kernel 2.6, for example, uses
this mechanism very minimally. So while these mechanisms
may be useful in the correct environment, they rely on the
guest OS’s usage of segmentation.

The fourth cause for a general protection exception is
the IIR exception. Unlike the above general protection ex-
ceptions, the IIR exception is independent of segmentation.
This exception is useful for trapping user specified interrupts
on Intel architectures. As explained in Section V-B4, the
Intel virtualization extensions do not provide a mechanism
for trapping interrupts greater than 31 (i. e., user specified
interrupts). As with the previously described methods, the
hypervisor must be prepared to trap this particular exception.
In addition, the hypervisor must alter the IDT entries for
the interrupts that it wishes to intercept. This is simply a
matter of invalidating the entry by unsetting the segment
present flag in the call gate. Now any reference to this entry
will result in a general protection exception which can be
trapped by the hypervisor. Similarly, the hypervisor could
set the Descriptor Privilege Level (DPL) for each IDT gate
descriptor to 0. This would result in a general protection
exception each time a process with a Current Privilege Level
(CPL) greater than 0 (a user process) tries to access the gate.

Finally, the CNSS may be used in a very specific way
to facilitate system call trapping when the SYSENTER in-
struction is being used. Among other things, the SYSENTER
instruction will set the CS register based on the contents of
SYSENTER CS MSR register. That is, saving the contents
of the SYSENTER CS MSR in the hypervisor and setting
it to null will result in an CNSS exception any time the
SYSENTER instruction is executed. This exception can be
trapped to the hypervisor and the instruction emulated, thus,
allowing one to trap all system calls if the system uses the
SYSENTER mechanism.

4) Invalid Opcode Exception: The invalid opcode excep-
tion provides a mechanism that allows the kernel to handle
invalid opcodes should the CPU attempt to execute them.
As with all the mechanisms described in Section V-C, this
mechanism relies on the hypervisor being set to catch and
handle guest exceptions.

This mechanism lends itself to performing code execution
trapping. In order to do this, one must simply replace
the opcode at the position one wishes to trap with an
invalid opcode. Then, the hypervisor can distinguish this
from legitimate invalid opcode exceptions by referring to
the opcode that was intended to be executed. This does,
however, require that the hypervisor emulate the replaced
operation, which may be a challenge.

This is straightforward, though if a malicious entity where
to know where to look, such a mechanism is easy to detect
and even circumvent if further measures are not taken. For
this reason, such an approach must be combined with a
mechanism to write protect the appropriate area of memory

in order to deter circumvention such as those described in
Sections V-C2 and V-C3.

This exception has additional usefulness that is closely
related to the CNSS exception discussed in Section V-C3.
If the use of the SYSCALL instruction is deactivated in the
Extended Feature Enable Register (EFER)—this is a matter
of unsetting a flag within the EFER—and the instruction
is used, an invalid opcode exception is raised. As with the
CNSS exception, this may be used to facilitate system call
trapping, except that this method is useful if the system
uses the SYSCALL instruction to perform system calls. The
EFER must be manipulated from the hypervisor, making
the SYSCALL instruction invalid. Then, the invalid opcode
exception must be trapped to the hypervisor, the SYSCALL
instruction emulated, and control returned to the guest.

5) Debug Exception: The x86 architecture provides de-
bugging support through the use of debug registers and a
Debug Exception. As part of this support the architecture
allows one to define four linear addresses as addresses
whose execution cause a debug exception. This exception
can then be set to trap to the hypervisor. This gives us the
opportunity to set four memory addresses whose execution
will be trapped to the hypervisor. In addition, accesses to
these registers can be trapped so that any attempt to change
these values will be noticed.

This provides a good platform for performing code execu-
tion trapping, though it is restricted to exactly four addresses.
In addition, it may interfere with debuggers which wish
to make use of the hardware support within the guest. A
simple solution is to simply ignore access to the debug
registers from the guest OS while such a mechanism is
active. We argue that VMI is generally performed on pro-
duction systems where extensive debugging is not required
and since software debuggers are not hindered, this is a
feasible solution. In cases where these restrictions cause
issues, Section V-C4 provides an alternative method for code
execution trapping.

D. Countering Threats with Hardware Mechanisms

The mechanisms we described so far are intended to be
used as hardware anchors for VMI-based security applica-
tions. Table I summarizes which of these mechanisms can
be used to counter which threat from Section IV.

VI. CONCLUSION

In this paper, we argued that derivative methods should
be used when performing VMI whenever possible. A VMI
application that roots its view-generation in a derivative
anchor improves robustness against circumvention. Any time
introspection is rooted in the (virtual) hardware, there is
no way for an adversary to circumvent the introspection by
moving to a lower level. As an adversary tries to circumvent
introspection, he will eventually reach the hardware. At
this point, his only option is to attack the introspecting

163174

Threat Security anchor
IV-A Interrupt hooks V-A2 IDTR and system call MSRs

V-B3 System interrupt trapping
V-B4 User interrupt trapping
V-C2 Page fault exception
V-C3 General protection fault

IV-B1 Process hiding V-B1 Context switch trapping
V-A1 Control register 3 (CR3)

IV-B2 Module hiding V-B4 User interrupt trapping
V-C2 Page fault exception
V-C3 General protection fault
V-C5 Debug exception

IV-B3 Network activity hiding V-A4 Virtual I/O
IV-B4 Virtual machine rootkits V-B2 Virtual machine entry trapping
IV-C Network-based attacks V-A4 Virtual I/O
IV-D Malicious processes V-A4 Virtual I/O

V-B4 User interrupt trapping
V-C2 Page fault exception
V-C3 General protection fault
V-C4 Invalid opcode exception
V-C5 Debug exception

Table I
LINKING THE THREATS TO THE SUITABLE HARDWARE MECHANISMS

component itself, which is isolated from the adversary due to
the properties of VMI, leaving the adversary out of options.

Rooting the view-generation in hardware does not have to
be a complex task as shown in Section III and the advantages
have been made clear. We presented a toolbox of building
blocks that may be used to anchor view-generation in
hardware. In addition to these building blocks, we provided
a clear discussion as to how and when each of these should
be used and for which threats they may be applicable.

We urge the reader to consider the advantages of deriva-
tive methods and to apply the building blocks presented
here when realizing VMI applications. Building a deriva-
tive based VMI application is well worth the effort when
possible.

REFERENCES

[1] T. Garfinkel and M. Rosenblum, “A virtual machine introspec-
tion based architecture for intrusion detection,” in In Proc.
Network and Distributed Systems Security Symp., 2003, pp.
191–206.

[2] J. Pfoh, C. Schneider, and C. Eckert, “A formal model for
virtual machine introspection,” in Proc. of the 2nd ACM
Workshop on Virtual Machine Security. New York, NY, USA:
ACM, 2009.

[3] P. M. Chen and B. D. Noble, “When virtual is better than
real,” in Proc. of the 8th Workshop on Hot Topics in Operating
Systems. Washington, DC, USA: IEEE, 2001, p. 133.

[4] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection
through VMM-based ”out-of-the-box” semantic view recon-
struction,” in Proc. of the 14th ACM conf. on Computer and
communications security. New York, NY, USA: ACM, 2007,
pp. 128–138.

[5] B. Hay and K. Nance, “Forensics examination of volatile
system data using virtual introspection,” SIGOPS Oper. Syst.
Rev., vol. 42, no. 3, pp. 74–82, 2008.

[6] L. Litty and D. Lie, “Manitou: a layer-below approach to
fighting malware,” in Proc. of the 1st workshop on Architec-
tural and system support for improving software dependabil-
ity. New York, NY, USA: ACM, 2006, pp. 6–11.

[7] L. Litty, H. A. Lagar-Cavilla, and D. Lie, “Hypervisor support
for identifying covertly executing binaries,” in Proc. of the
17th conf. on Security symp. Berkeley, CA, USA: USENIX,
2008, pp. 243–258.

[8] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Antfarm: tracking processes in a virtual machine environ-
ment,” in Proc. of the annual conf. on USENIX ’06 Annual
Technical Conf. Berkeley, CA, USA: USENIX Association,
2006, pp. 1–1.

[9] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“VMM-based hidden process detection and identification
using Lycosid,” in Proc. the 4th ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments.
New York, NY, USA: ACM, 2008, pp. 91–100.

[10] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device
Drivers, A. Oram, Ed. O’Reilly, 2005.

[11] Subverting Vista Kernel for Fun and Profit. Blackhat
USA, 2006, last access: 04/19/2010. [Online]. Avail-
able: http://www.blackhat.com/presentations/bh-usa-06/BH-
US-06-Rutkowska.pdf

[12] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff,
“A sense of self for unix processes,” in Proc. of the 1996
IEEE Symp. on Security and Privacy. Washington, DC, USA:
IEEE, 1996, p. 120.

[13] A. P. Kosoresow and S. A. Hofmeyr, “Intrusion detection via
system call traces,” IEEE Softw., vol. 14, no. 5, pp. 35–42,
1997.

[14] Intel 64 and IA-32 Architectures Software Developer’s
Manual, 2009, last access: 09/17/2009. [Online]. Available:
http://www.intel.com/products/processor/manuals/index.htm

[15] AMD64 Architecture Programmer’s Man-
ual, 2009, last access: 09/17/2009.
[Online]. Available: http://developer.amd.com/
documentation/guides/Pages/default.aspx

[16] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori,
“kvm: the linux virtual machine monitor,” in Proc. of the
Linux Symp., vol. 1, Ottawa, ON, Canada, Jun. 2007, pp.
225–230.

[17] A. Srivastava and J. Giffin, “Tamper-resistant, application-
aware blocking of malicious network connections,” in Proc. of
the 11th international symp. on Recent Advances in Intrusion
Detection. Berlin, Heidelberg: Springer, 2008, pp. 39–58.

[18] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: mal-
ware analysis via hardware virtualization extensions,” in Proc.
of the 15th ACM conf. on Computer and communications
security. New York, NY, USA: ACM, 2008, pp. 51–62.

164175

