
FridgeLock: Preventing Data Theft on Suspended Linux with
Usable Memory Encryption

Fabian Franzen
Technical University of Munich

franzen@sec.in.tum.de

Manuel Andreas
Technical University of Munich

manuel.andreas@tum.de

Manuel Huber
Fraunhofer AISEC

manuel.huber@aisec.fraunhofer.de

ABSTRACT
To secure mobile devices, such as laptops and smartphones, against
unauthorized physical data access, employing Full Disk Encryption
(FDE) is a popular defense. This technique is effective if the device
is always shut down when unattended. However, devices are often
suspended instead of switched off. This leaves confidential data
such as the FDE key, passphrases and user data in RAM which may
be read out using cold boot, JTAG or DMA attacks. These attacks
can be mitigated by encrypting the main memory during suspend.
While this approach seems promising, it is not implemented on
Windows or Linux.

We present FridgeLock to add memory encryption on suspend
to Linux. Our implementation as a Linux Kernel Module (LKM)
does not require an admin to recompile the kernel. Using Dynamic
Kernel Module Support (DKMS) allows for easy and fast deploy-
ment on existing Linux systems, where the distribution provides a
prepackaged kernel and kernel updates. We tested our module on
a range of 4.19 to 5.3 kernels and experienced a low performance
impact, sustaining the system’s usability. We hope that our tool
leads to a more detailed evaluation of memory encryption in real
world usage scenarios.

ACM Reference Format:
Fabian Franzen, Manuel Andreas, and Manuel Huber. 2020. FridgeLock:
Preventing Data Theft on Suspended Linuxwith UsableMemory Encryption.
In Proceedings of the Tenth ACM Conference on Data and Application Security
and Privacy (CODASPY ’20), March 16–18, 2020, New Orleans, LA, USA. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3374664.3375747

1 INTRODUCTION
Our society and businesses rely on the availability of secure com-
puting devices such as notebooks or desktop PCs. As data theft
may result in disclosure of important business secrets or sensitive
personal information, these devices need to be protected from unau-
thorized access. A threat special to portable devices is that they can
be easily stolen once unattended.

To counter the risk of data theft, many businesses and individuals
rely on FDE to protect sensitive data on their devices. Without the
appropriate passphrase or smart card, attackers will not be able to
extract sensitive information from a switched off device. Depending
on the Operating System (OS), FDE can be employed e.g. using

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7107-0/20/03. . . $15.00
https://doi.org/10.1145/3374664.3375747

Microsoft Bitlocker, Linux dm-crypt or Apple FileVault. Considering
smartphones, both iOS and Android have also integrated FDE[8].

As a plus, iOS minimizes the presence of sensitive material in
RAM using encryption aware storage controllers with secure RAM
for key material. This reduces the attack surface to adversaries
capable of obtaining a memory dump, but does not fully mitigate it
as applications may still store sensitive information in RAM.

Common solutions do not protect this temporary data, such
as passphrases or the FDE key, if the device is not fully switched
off. We believe many users, not switching off their devices for
faster wake up, are unaware of this attack surface. Attacks using
physical properties of the hardware (e.g. cold-boot attacks [11])
or using unsecured peripheral connectors could be leveraged by
an adversary to extract it. Such connectors could be JTAG, DMA-
enabled ones (like Firewire [1] or Thunderbolt) or free memory
DIMM sockets [22].

Unfortunately, hardware trust anchors like Trusted Platform
Modules (TPMs) are usually only involved in the initial authentica-
tion process at boot. After successful authentication, the FDE key
typically resides outside the TPM in normal unsecured RAM. IOS
stores the FDE key solely on its Secure Enclave Processor[14], never
exposing it to the main CPU. However, such special coprocessors
are not available on off-the-shelf laptops or PCs.

Suspend-time memory encryption approaches, proposed in pre-
vious research, en-/decrypt memory during suspend and resume
cycles. This has the advantage that once suspended, the FDE key no
longer needs to be present on the system. As a result, even attackers
with control over the CPU cannot read sensitive memory contents.
Moreover, suspend-time encryption only impacts performance dur-
ing suspension and resumption, but not during runtime. When
pursuing the goal to protect unattended devices, suspend-time en-
cryption represents an efficient and secure approach if specialized
hardware is not available. Unfortunately, previous research only
provided kernel patches for Linux, which have quickly become
outdated as the kernel evolves. Therefore, we still lack an easy-to-
use implementation to prove that this concept works in real-world
setups. In summary, we make the following contributions:

• We provide FridgeLock, a tool to study the impact of suspend
time memory encryption on real world setups.

• FridgeLock is designed as an LKM, such that suspend time
memory encryption can easily be tested on a large number
of Linux distributions without the need to recompile their
kernel. We achieve this using DKMS to recompile the LKM
in case of security updates. This results in a solution more
agnostic to kernel changes.

• We tested our module on various distributions on the x86
platform and provide performance measurements, showing
a user-acceptable performance for real world usage.

Session 5: Mobile Security CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

215

https://doi.org/10.1145/3374664.3375747
https://doi.org/10.1145/3374664.3375747
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3374664.3375747&domain=pdf&date_stamp=2020-03-16

2 RELATEDWORK
Several lines of work for protecting sensitive data in main memory
exist. Key hiding techniques [7, 10, 17, 20] offload specific keys, such
as the FDE key, from RAM to CPU or GPU registers and caches
and execute the cipher exclusively on-chip. Besides being platform-
dependent and hardly portable, key hiding mechanisms usually
have a strong impact on performance. These mechanisms only
protect a specific key and its associated cipher frommemory attacks,
but leave all other sensitive parts of main memory unprotected.
Further, attackers gaining privileges on the system can directly
access the keys, whereaswith our approach, thememory encryption
key is not available when the system is suspended.

Hardware-assisted memory encryption architectures [4, 21, 24]
transparently encrypt main memory throughout the whole runtime
of the system, keeping the encryption key and cipher computation
off the main application processor. However, these architectures
are not available on end user systems. Architectures designed by
major hardware vendors, like AMD Secure Encrypted Virtualiza-
tion (SEV) or Intel Multi-Key Total Memory Encryption (MKTME),
target server systems only. Their goal is to protect memory against
physical attackers and, at least in case of SEV, from a malicious or
compromised hypervisor. SEV, for instance, stores the encryption
key in an isolated coprocessor but has been demonstrated to be vul-
nerable against various side-channel attacks [15, 16, 23] allowing
to extract encrypted memory in plaintext or to obtain privileges on
encrypted guests. This shows that the reliable protection of main
memory at all times poses a hard challenge.

Processors for consumer devices rather offer extensions to pro-
vide secure enclaves, such as ARM TrustZone, or Intel Software
Guard Extensions (SGX). Enclaves enable shielded execution of
sensitive code and the storage of data secure from both memory
attacks and compromised OSs. These extensions can be leveraged
as building blocks for security architectures, for instance, for use
as isolated environments for encryption key storage and cipher
execution [12].

Runtime memory encryption has also been realized in software.
Some approaches leave a portion of memory unencrypted in a
sliding window while most of the main memory is encrypted
[6, 9, 18, 19]. In general, software-based runtime encryption ap-
proaches come with a notable impact on performance and can not
provide memory protection against attackers gaining privileges on
the system.

We base ourmemory encryption approach on Freeze &Crypt [13].
Further suspend-time approaches for x86 platforms are Transient
Authentication [3] and Hypnoguard [25]. Transient Authentication
encrypts mainmemory using a hardware token that provides the en-
cryption keys [2]. When the token is removed, user space processes
get suspended and their memory encrypted. Because suspension
and resumption took about eight seconds, an application-aware
mode was proposed. This allowed the protection of only specific
assets using an API, which requires modifying applications.

Hypnoguard [25] hooks en-/decryption of memory into phases
of suspension and resumption where the OS is no longer, respec-
tively not yet, active. This allows to encrypt the whole memory
without considering process mappings and without requiring ker-
nel support but has the disadvantage that the kernel’s support for

hardware devices (such as displays, keyboards) is not available. The
design requires implementing custom hardware-specific crypto
routines and drivers to interact with hardware devices, such as for
passphrase input. A TPM is used to protect the encryption while
the cipher is executed in Intel’s Trusted Execution Technology
(TXT) environment. These design decisions make Hypnoguard less
applicable in practice, while we require only adding an LKM to a
system.

3 DESIGN
Like most of the previous approaches, FridgeLock targets Linux,
because of the availability of source code. Further, we believe that
memory encryption could be ported to other OSs if we can show
feasibility on one of them. In this section, we derive the design of
FridgeLock, based on the following design goals:

Easy Integration All existing academic approaches we are
aware of are implemented as kernel patches, which forces
the end user to recompile their kernel if they want to protect
their system and, additionally, on every kernel update. To
allow for a wide potential user base and to ease kernel up-
dates with prepackaged distribution updates, we developed
FridgeLock as an LKM. This allows distribution of Fridge-
Lock as a binary or through dynamic compilation on every
kernel update using DKMS.
Ultimately, we hope that FridgeLock will be integrated into
the Linux kernel.

Low Performance Overhead We seek to keep the impact on
performance as low as possible to not adversely impact
user experience. Our LKM only hooks into the suspend and
wakeup procedures, where small additional delays should
be acceptable.

Protection of Sensitive Data Sensitive user data should be
protected from adversaries under our assumed attackermodel.

3.1 Attacker Model
We assume that an unattended device is stolen from a user in sus-
pended state. In this state, the device is inspected by the attacker.
Afterwards, the attacker can bypass all software and hardware mit-
igations (e.g. SEV) somehow. We only consider attacks where the
device is lost once i.e. a device can not be stolen and given back.
This excludes (1) evil-maid attacks where the attacker could e.g.
corrupt the system and wait for the unknowing user to return,
and (2) attacks involving an evil hardware vendor, who attacks the
system from the HW side before it is stolen. As our design is not
based on hardware trust anchors, we do not necessarily assume that
TPMs or Secure Enclaves on the CPU are correctly implemented.
An attacker may be able to execute arbitrary code (e.g. injected via
JTAG or DMA) at any privilege level after the device is stolen.

Furthermore, our used cryptographic primitives (AES) and its
operating mode (AES-XTS) have to be correctly implemented to be
effective. This attacker model should be reasonable, given that e.g.
TRESOR [17] was broken under similar assumptions [1].

3.2 Confidential Data in Memory
Given the goals and the attacker model, we evaluated the assets in
the Linux kernel that need protection:

Session 5: Mobile Security CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

216

(A0) Filesystem. The files on disk including sensitive user and
system owned files. These files are protected by FDE.

(A1) Page Cache. Opened files from disk may be cached in
RAM in the page cache. As these are basically (partial) copies
of files on disk, these can contain sensitive data.

(A2) Filesystem Metadata. Metadata of the filesystem such
as filenames, modification times and folder structure. Less
critical than actual file contents, but nonetheless sensitive.

(A3) Userspace memory. The active Virtual Memory Areas
(VMAs) of running processes. May contain private keys,
passphrases and (partial) copies of data from disk.

(A4) Free’d Pages. The Linux kernel does not clear pages that
have just been released by the kernel or by a userspace
process (e.g. explicitly or process termination).

(A5) Kernel Objects. For example, task_struct, i.e., internal
information of running processes. It contains a CPU register
snapshot, the process name, and a kernel stack reference.

(A6) Linux Keyring. The Linux keyring is a central key stor-
age inside the kernel. More specifically the CIFS filesystem
uses the keyring to store passphrases to accessed shares.

(A7) Disk encryption keys. The dm-crypt module is respon-
sible for FDE and stores its keys outside of the Linux keyring.

(A8) Arbitrary Device Buffers. Any hardware might store
sensitive I/O-data such as keystrokes.

In contrast to these assets, e.g. the Linux Text Segment or the
Firmware and Bootloader Code do not require protection under our
chosen attacker model as we exclude evil maid attacks.

3.3 Integration into Linux Power Management
In order to put the system into the S3 sleep state (Suspend-To-Ram),
the Linux kernel first suspends execution of userspace processes
(called freezing). This is necessary to stop processes from interfer-
ing with the suspend process.1 Kernel threads are not frozen by
default, but freezable kernel threads (e.g. threads that could cause
the suspend process to fail) are stopped directly after the processes.
Finally, the kernel notifies device drivers to put their device into a
power saving sleep state. When this process is finished, execution
on the CPU is halted until an interrupt initiates the resume, where
this procedure is done vice versa.

We split FridgeLock into two parts: An LKM and a non-encrypted
helper process running in userspace. The LKM is responsible for
process memory encryption, for protecting the other assets, and for
spawning the helper process right before suspension. The helper
process is responsible for memory and disk encryption key man-
agement during wakeup cycles. For this purpose, the userspace
process queries the current user for the decryption passphrase after
system wakeup.

The LKM integrates with Linux power management
using the device power management subsystem (through
register_pm_notifier()) and through the device driver power
management API (i.e. dev_pm_ops). In order to get access to this
API, we register a virtual device together with a driver FridgeLock
provides. Combined, this offers the following hooking points
crucial to our design:

1see Documentation/power/freezing-of-tasks.txt in the kernel sources for fur-
ther information.

(1) On Early Suspend: Before the system is going to freeze the
processes.

(2) On Late Suspend: After the system has frozen the processes.
(3) On Resume: Before the system is going to thaw the processes.
In the following, we describe FridgeLock’s tasks from initializa-

tion to suspension and resumption:
Initialization Time. At its initialization, the LKM creates a

character device for ioctl-based communication with the
helper process to: (1) force the helper process to sleep until
system resume, (2) to send the read-in FDE passphrase to
our LKM after entry and (3) to probe for encrypted parti-
tions needing protection. Moreover, it hooks into the device
mapper infrastructure to obtain the FDE key on set, which
we make use of to encrypt the userspace memory.

Hook 1. In case of a system suspend, the LKM is notified
through hooking point (1) and starts the helper process.
Moreover, it sets a bit on the helper process which causes
the regular freezer to skip this process.

Hook 2. At hooking point (2), when all other userspace pro-
cesses are frozen, we encrypt the memory map of the user-
space processes (except for special mappings). Further, we
evict filesystem caches and overwrite unused pages with ze-
ros afterwards. As a last step, we wipe out the FDE key. For
the actual encryption operations, we utilize the kernel crypto
API. This allows using hardware crypto accelerators, such
as AES-NI, resulting in extremely fast encryption speeds.
We encrypt each page individually and utilize AES-XTS as
cipher mode as our encryption requirements are almost iden-
tical to typical FDE, for which AES-XTS is recommended
by NIST [5]. We use the physical page addresses as IVs to
guarantee unique IVs for every page. To wipe and restore
the FDE key, FridgeLock relies on the suspend, resume and
message operations of the dm-crypt module.

Hook 3. On resume (3), the LKM wakes the helper process.
The helper, in turn, asks the user for the FDE passphrase and
restores the prior state of all dm-crypt devices using the reg-
ular cryptsetup toolchain. The LKM then decrypts userspace
memory before the system returns to normal operation.

4 IMPLEMENTATION
In the following, we describe the implementation of our FridgeLock
prototype, first our userspace helper followed by the LKM.

Userspace Helper. We partitioned our userspace helper into two
parts, which we call Stage 1 and Stage 2. Figure 1 reflects that the
LKM spawns the Stage 1 helper process at hooking point (1). The
Stage 1 process discovers the dm-crypt volumes on the system
that need to be suspended, see Figure 1. Furthermore, it sets up
an initramfs like tmpfs containing the Stage 2 helper process and
its necessary runtime environment, e.g. libcryptsetup. The Stage 1
process then chroots into this new environment and executes the
Stage 2 process inside the chroot. This chroot operation is necessary
because the rootfs is not available between wakeup and passphrase
entry of the user. The Stage 2 process is responsible for signaling
the discovered volumes to the LKM via an ioctl, which will suspend
and wipe the keys at hooking point (2). Further, the process asks
the user for the passphrase for resumption (see hooking point 3,

Session 5: Mobile Security CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

217

Kernel LKM Helper
Hook (1)

Spawn Stage 1 Discover
dm-crypt
devices

Prepare
tmpfs

Spawn
Stage 2

ioctl
dm-crypt devices

Hook (2)

Encrypt userspace

Wipe FDE key

Drop caches

Main CPU halt

Figure 1: Sequence diagram of the suspend procedure.

omitted from Figure 1). On startup, the discovered volumes are
received as parameters from the Stage 1 process and transferred to
the LKM via an ioctl. The LKM, in turn, suspends execution of the
Stage 2 process and returns control to the kernel.

Kernel Module. After our LKM gets notified of completed process
freezing, see hooking point (2) in Figure 1, it iterates through the
dm-crypt volumes received by the Stage 1 process and suspends
them using the device mapper kernel component. This suspend
operation ensures that the encryption key is securely wiped from
RAM and makes any further IO operation on the affected volume
to be blocking until resumption. Before suspension of the dm-crypt
volumes, it will place a kprobes based hook to extract the FDE key,
which we use to encrypt userspace. The projects arch-luks-suspend2
and its successor go-luks-suspend3 provide an implementation to
remove the FDE key during suspension. We utilized parts of their
implementation to realize our Stage 2 process.

Afterwards, the virtual address space encryption of all userspace
processes takes place as follows. We start by iterating through all
VMAs of our helper process. To avoid their encryption, we mark all
pages belonging to those VMAs as "already encrypted" by setting a
flag on the kernel struct page. In the next step, we iterate through
all frozen userspace and kernel tasks, encrypt their VMAs and thus
their pages in-place. Before carrying out the encryption of a page,
we first check if the "already encrypted" flag is set, then if the page
belongs to a special region (e.g. DMA or device memory), and if
not encrypt it and set the flag. This approach ensures that neither
the VMAs of our helper process nor mapped hardware memory,
unaware of our encryption, are encrypted. On resume, we use our
kprobes hook into the device mapper to observe the FDE key set of
the helper process and re-obtain it in the LKM.

Certain functionality of our LKM requires usage of unexported
kernel functions. In order to call these functions anyways, we uti-
lized the exported kernel function kallsyms_lookup_name, which
is able to resolve a symbol’s name to its address in memory. We
2https://github.com/vianney/arch-luks-suspend
3https://github.com/guns/go-luks-suspend

resolve all unexported functions at module initialization and are
thus able to call them at any point through function pointers. If no
specialized hooking mechanism is provided by the kernel, we use
kprobes and kretprobes to intercept function calls.

We utilized the /proc/sys/vm/drop_cachesmechanism to clear
the page cache. Using this mechanism, the kernel can be advised
to drop page cache, dentries and inodes from memory. We instru-
mented the invalidate_page_cache function, which is part of the
inode clearing procedure of the kernel, using the kprobes frame-
work. This instrumentation simply zeros out pages belonging to
inodes that are going to be erased.

5 EVALUATION
5.1 Completeness of Protection
Our implementation addresses (A0), (A1), (A3), (A4), (A7) by con-
struction. Asset (A2) is partially protected as dropping the page
cache also contains inode and dentry structs. However, this does not
include all filesystem metadata. Moreover, the Linux keyring (A6)
and arbitrary hardware buffers (A8) are not sufficiently protected.
In the case of (A6), an API to stop kernel threads from accessing the
invalid keys that a key-wipe would leave behind is missing. In the
case of (A8), various drivers store their buffers at arbitrary locations
(e.g. in the device memory itself, the kernel heap or kernel stack).
Protecting these buffers would require knowing every drivers exact
implementation.

Furthermore, we experimentally verified our approach by com-
paring a QEMU snapshot of an un- and FridgeLock-protected virtual
machine. In both cases, a test program loads known confidential
data from disk and places them in memory. Moreover, several ap-
plications like Firefox are started. While a scan of the unprotected
dump did reveal the FDE key and multiple copies of the confi-
dential test data, the protected instance did not. Additionally, we
analyzed the snapshots for secrets of the remaining applications us-
ing AESKeyFinder (proposed by [11]), which searches for expanded
AES keys. Our results showed that the unprotected snapshot reveals
several keys, while our protected snapshot does not.

5.2 Performance
We tested FridgeLock on a Dell XPS 15 9550 with an Intel i7 6700HQ
(2.6 GHz, 4 cores), 16 GB RAM (DDR4 2133MHz) and a PM951
Samsung 512GB SSD. The performance of FridgeLock is linearly
dependent on the memory usage of the running processes, i.e., on
the amount of memory to en-/decrypt.

Therefore, we constructed three scenarios to test FridgeLock:
➀ A minimal scenario with only a basic set of processes (init +
bash without xserver, userspace footprint 77MB), ➁ an average
load scenario (Gnome + a few Firefox instances, userspace footprint
5,5GB) and ➂ a high load scenario where all RAM is occupied by
userspace. The results are visualized in Figure 2. On system resume,
about the same time span is needed for decryption of the processes.
The overall decryption time is dominated by passphrase entry; the
cryptographic operations take the same time as for encryption.
Additionally, no time is spent on clearing caches during resume.

Session 5: Mobile Security CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

218

https://github.com/vianney/arch-luks-suspend
https://github.com/guns/go-luks-suspend

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

➀ Min. System

➁ Avg Load

➂ High Load

Time in ms

Encryption Cache Clean Normal Suspend Process

Figure 2: Overall measured system suspend time.

5.3 Maintainability
To implement our LKM, we were forced to load unexported func-
tions via kallsyms_lookup_name and place kprobes hooks where
necessary. Theseworkarounds are generally discouraged as they are
likely to break across different kernel releases, but are currently a ne-
cessity due to the lacking kernel API. While developing FridgeLock,
we experienced both the kernel API and the unexported functions
to undergo breaking changes, leading us to believe frequent main-
tenance of our LKM is necessary. We want to emphasize that this
issue is just as present in a kernel patch implementation with the
difference being that our LKM would possibly erroneously succeed
building if an unexported function changed functionality or signa-
ture due to the nature of loading them via kallsyms_lookup_name.
However, this could be avoided by additional automatic validation
outside of compilation.

6 CONCLUSION
We presented FridgeLock, a tool for suspend time memory encryp-
tion on Linux. FridgeLock enables the protection of important assets
in userspace and kernel memory on a suspended machine with de-
ployed FDE. We successfully tested FridgeLock on x86 systems with
kernel versions 4.19 to 5.3. Our evaluation on a mid-end notebook
with 16GB RAM shows that FridgeLock’s performance overhead is
sufficiently small for use in practice, even in worst-case scenarios.
This performance overhead is even more negligible considering it
only affects suspend and resume operations.

Furthermore, our implementation as an LKM with userspace
components results in an effortless installation and maintenance
process for the end user through packaging and DKMS support.
As usability is usually in direct conflict with security we deem the
high usability of FridgeLock to be its strongest point.

Nonetheless, FridgeLock is currently not able to protect all sen-
sitive assets in the kernel. First, the LKM design decision limits
access to kernel internal structures. Even if the location in memory
is known, we can not easily wipe information as we may not know
all places where it is accessed in advance. Second, device drivers
may contain numerous buffers with I/O data containing sensitive
information through which we can not easily iterate. For instance,
the keyboard driver may still contain the last typed passphrases
before suspend. We consider the extension of the FridgeLock tool
to locate and protect these buffers to be future work.

AVAILABILITY
To encourage open research, we open sourced our work at GitHub:
https://github.com/fridgelock-lkm/fridgelock.

REFERENCES
[1] Erik-Oliver Blass and William Robertson. 2012. TRESOR-HUNT: attacking CPU-

bound encryption. In Proceedings of the 28th Annual Computer Security Applica-
tions Conference. ACM, 71–78.

[2] Mark D. Corner and Brian D. Noble. 2002. Zero-interaction Authentication. In
Proceedings of the 8th Annual International Conference on Mobile Computing and
Networking (MobiCom ’02). ACM, 1–11.

[3] Mark D. Corner and Brian D. Noble. 2003. Protecting Applications with Tran-
sient Authentication. In Proceedings of the 1st International Conference on Mobile
Systems, Applications and Services (MobiSys ’03). ACM, 57–70.

[4] Guillaume Duc and Ronan Keryell. 2006. CryptoPage: An Efficient Secure Archi-
tecture with Memory Encryption, Integrity and Information Leakage Protection.
In Proceedings of the 22Nd Annual Computer Security Applications Conference
(ACSAC ’06). IEEE Computer Society, 483–492.

[5] Morris J Dworkin. 2010. Recommendation for block cipher modes of operation: The
XTS-AES mode for confidentiality on storage devices. Technical Report.

[6] Johannes Götzfried, Nico Dörr, Ralph Palutke, and Tilo Müller. 2016. HyperCrypt:
Hypervisor-Based Encryption of Kernel and User Space. In 11th International
Conference on Availability, Reliability and Security (ARES). IEEE, 79–87.

[7] Johannes Götzfried and Tilo Müller. 2013. ARMORED: CPU-Bound Encryption
for Android-Driven ARM Devices. In Proceedings of the 2013 International Confer-
ence on Availability, Reliability and Security (ARES ’13). IEEE Computer Society,
Washington, DC, USA, 161–168. https://doi.org/10.1109/ARES.2013.23

[8] Johannes Götzfried and Tilo Müller. 2014. Analysing Android’s Full Disk Encryp-
tion Feature. JoWUA 5, 1 (2014), 84–100.

[9] Johannes Götzfried, Tilo Müller, Gabor Drescher, Stefan Nürnberger, and Michael
Backes. 2016. RamCrypt: Kernel-based Address Space Encryption for User-mode
Processes. In Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security (ASIA CCS ’16). ACM, 919–924.

[10] Le Guan, Jingqiang Lin, Bo Luo, and Jiwu Jing. 2014. Copker: Computing with
Private Keys without RAM. In NDSS. 23–26.

[11] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W
Felten. 2009. Lest we remember: cold-boot attacks on encryption keys. Commun.
ACM 52, 5 (2009), 91–98.

[12] Julian Horsch, Manuel Huber, and Sascha Wessel. 2017. TransCrypt: Transparent
Main Memory Encryption Using a Minimal ARM Hypervisor. In Proceedings of
the 16th International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom ’17). IEEE, 152–161.

[13] Manuel Huber, Julian Horsch, Junaid Ali, and Sascha Wessel. 2018. Freeze and
Crypt: Linux Kernel Support for Main Memory Encryption. Computers & Security
86 (2018), 420 – 436. https://doi.org/10.1016/j.cose.2018.08.011

[14] Apple Inc. 2019. iOS Security - iOS 12.3. https://github.com/0xmachos/iOS-
Security-Guides/blob/master/iOS_Security_Guide_May19.pdf

[15] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. 2019. Exploiting
Unprotected I/O Operations in AMD’s Secure Encrypted Virtualization. In 28th
USENIX Security Symposium (USENIX Security 19). USENIX Association.

[16] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. 2018. SEV-
ered: Subverting AMD’s Virtual Machine Encryption. In Proceedings of the 11th
European Workshop on Systems Security (EuroSec’18). ACM.

[17] TiloMüller, Felix C Freiling, andAndreas Dewald. 2011. TRESORRuns Encryption
Securely Outside RAM.. In USENIX Security Symposium, Vol. 17.

[18] Panagiotis Papadopoulos, Giorgos Vasiliadis, Giorgos Christou, Evangelos
Markatos, and Sotiris Ioannidis. 2017. No Sugar but All the Taste! Memory
Encryption Without Architectural Support. In Computer Security – ESORICS 2017.
362–380.

[19] Peter A. H. Peterson. 2010. Cryptkeeper: Improving security with encrypted
RAM. In IEEE International Conference on Technologies for Homeland Security
(HST). 120–126.

[20] Patrick Simmons. 2011. Security Through Amnesia: A Software-based Solution
to the Cold Boot Attack on Disk Encryption. In Proceedings of the 27th Annual
Computer Security Applications Conference (ACSAC ’11). ACM, 73–82.

[21] G. Edward Suh, Charles W. O’Donnell, and Srinivas Devadas. 2007. Aegis: A
Single-Chip Secure Processor. In IEEE Design & Test, Vol. 24. IEEE Computer
Society Press, 570–580.

[22] Anna Trikalinou and Dan Lake. 2017. Taking DMA attacks to the next level.
BlackHat USA (2017).

[23] Jan Werner, Joshua Mason, and et al. 2019. The SEVerESt Of Them All: Inference
Attacks Against Secure Virtual Enclaves. In Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security (AsiaCCS 2019). 73–85.

[24] AlexanderWürstlein, Michael Gernoth, Johannes Götzfried, and Tilo Müller. 2016.
Exzess: Hardware-Based RAM Encryption Against Physical Memory Disclosure.
In Proceedings of the 29th International Conference on Architecture of Computing
Systems (ARCS ’16), Vol. 9637. 60–71.

[25] Lianying Zhao and Mohammad Mannan. 2016. Hypnoguard: Protecting Secrets
Across Sleep-wake Cycles. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’16). ACM, 945–957.

Session 5: Mobile Security CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

219

https://github.com/fridgelock-lkm/fridgelock
https://doi.org/10.1109/ARES.2013.23
https://doi.org/10.1016/j.cose.2018.08.011
https://github.com/0xmachos/iOS-Security-Guides/blob/master/iOS_Security_Guide_May19.pdf
https://github.com/0xmachos/iOS-Security-Guides/blob/master/iOS_Security_Guide_May19.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Design
	3.1 Attacker Model
	3.2 Confidential Data in Memory
	3.3 Integration into Linux Power Management

	4 Implementation
	5 Evaluation
	5.1 Completeness of Protection
	5.2 Performance
	5.3 Maintainability

	6 Conclusion
	References

