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Abstract Negative selection is an immune-inspired algorithm which is typically
applied to anomaly detection problems. We present an empirical investigation of
the generalization capability of the Hamming negative selection, when combined
with the r-chunk affinity metric. Our investigations reveal that when using the r-
chunk metric, the length r is a crucial parameter and is inextricably linked to the
input data being analyzed. Moreover, we propose that input data with different
characteristics, i.e. different positional biases, can result in an incorrect generaliza-
tion effect.

1 Introduction

Negative selection was one of the first immune inspired algorithms proposed,
and is a commonly used technique in the field of artificial immune systems
(AIS). Negative selection is typically applied to anomaly detection problems,
which can be considered as a type of pattern classification problem, and is
typically employed as a (network) intrusion detection technique.

The goal of (supervised) pattern classification, is to find a functional map-
ping between input data X to a class label Y so that Y = f(X). The mapping
function is the pattern classification algorithm which is trained (or learnt)
with a given number of labeled data called training data. The aim is to find
the mapping function, which gives the smallest possible error in the mapping,
i.e. minimize the number of samples where Y is the wrong label ( this is espe-
cially important for test data not used by the algorithm during the learning
phase). In the simplest case there are only two different classes, with the task
being to estimate a function f: RY — {0,1} > Y, using training data pairs
generated i.i.d.} according to an unknown probability distribution P(X,Y)

(X1,Y1),...,(X,,Y,) eRY x Y, Y e{0,1}

such that f will correctly classify unseen samples (X,Y). If the training data
consists only of samples from one class, and the test data contains samples
from two or more classes, the classification task is called anomaly detection.

! independently drawn and identically distributed
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Once a functional mapping (a model) is found, a fundamental question
arises : does the model predict unseen samples correctly with a high accuracy,
or in other words, does the model generalize well ?. This question is empiri-
cally explored for Hamming negative selection algorithm and the associated
r-chunk matching rule.

2 Artificial Immune System

Artificial immune systems (AIS) [9] is a paradigm inspired by the immune
system and are used for solving computational and information processing
problems. An AIS can be described, and developed, using a framework which
contains the following basic elements:

e A representation for the artificial immune elements.

e A set of functions, which quantifies the interactions of the artificial im-
mune elements.

e A set of algorithms which based on observed immune principles and meth-
ods.

2.1 Hamming Shape-Space and R-chunk Matching

The notion of shape-space was introduced by Perelson and Oster [8] and
allows a quantitative affinity description between immune components known
as antibodies and antigens. More precisely, a shape-space is a metric space
with an associated distance (affinity) function.

The Hamming shape-space U;” is built from all elements of length [ over a
finite alphabet Y. A formal description of antigen-antibody interactions not
only requires a representation, but also appropriate affinity functions.

The r-chunk matching rule is an affinity function for the Hamming shape-
space and can be defined as follows :

Given a shape-space UIE , which contains all elements of length [ over an
alphabet X and a shape-space D2, where r < [.

Definition 1. An element e € UlE with e = ejes...e; and detector d €
N x D¥ with d = (p,d1dz . ..d,), for r <1, p <1—r+ 1 match with r-chunk
rule if e;=d; fori=p,....,p+7r—1.

Informally, element e and detector d match if a position p exists, where all
characters of e and d are identical over a sequence length r.

3 Hamming Negative Selection

Forrest et al. [6] proposed a (generic) negative selection algorithm for detect-
ing changes in data streams. Given a shape-space U = Sgeen U Sunseen U N
which is partitioned into training data Ssee, and testing data (Sunseen U N).
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The basic idea is to generate a number of detectors for the complemen-
tary space U \ Sseen and then to apply these detectors to classify new (un-
seen) data as self (no data manipulation) or non-self (data manipulation).

Algorithm 1: Generic Negative Selection Algorithm

input : Sgeen = set of self seen elements

output: D = set of generated detectors

begin
1. Define self as a set Sgeepn Of elements in shape-space U
2. Generate a set D of detectors, such that each fails to match any
element in Sgeen
3. Monitor (seen and unseen) data § C U by continually matching
the detectors in D against §.

end

The generic negative selection algorithm can be used with arbitrary shape-
spaces and affinity functions. In this paper, we focus on Hamming negative
selection, i.e. the negative selection algorithm which operates on Hamming
shape-space and employs the r-chunk matching rule. More specifically, we ex-
plore the performance of how well Hamming negative selection can generalize
when using the r-chunk affinity metric.

3.1 Holes as Generalization Regions

The r-chunk matching rule creates undetectable elements (termed holes).
Holes are elements of IV, or self elements, not seen during the training phase
(Sunseen ) For these elements, no detectors can be generated and therefore
they cannot be recognized and classified as non-self elements. The term holes
is not an accurate expression, as holes are necessary to generalize beyond
the training set. A detector set which generalizes well, ensures that seen and
unseen self elements are not recognized by any detector, whereas all other
elements are recognized by detectors and classified as non-self. Hence, holes
must represent unseen self elements; or in other words, holes must represent
generalization regions in the shape-space U;”.

4 Generalization Regions Experiments

In [1] and [5] results are presented which show the coherence between the
number of holes and the number of generable detectors under the assumption
that the training set Sgeen is randomly drawn from UlE . More specifically,
the coherence between the element length [, r-chunk length r, number of self
elements |Sseen | and the number of holes and generable detectors is shown [5].
However, these results provide no information where holes occur. Holes must
occur in regions where most self elements are concentrated. Recall, as holes
are not detectable by any detector, holes must represent unseen self elements,



4 Thomas Stibor, Jonathan Timmis, and Claudia Eckert

or in other words, holes must represent generalization regions. In order to
study the number and the occurrence of holes which are dependent on the r-
chunk length, we have created a number of artificial self data sets (illustrated
in figures 3,4,5; these can be found in the Appendix). The first self data set
contains 1000 random points p € [0,1]? which lie within a single ellipsoid
cluster with centre (0.5,0.5), height 0.4 and width 0.2. Each point p = (z,y)
is mapped to a binary element eg,eq,...,e15, where the first 8 bits encode
the integer x-value [255 - & + 0.5] and the last 8 bits the integer y-value
[255 -y + 0.5], i.e. [0,1]% = (iz,iy) € [1,...,256 x 1,...,256] — (bs,by) €
Ué{m} X Ué{m}. This mapping was proposed in [4]. The second self data
set contains 1000 random generated self elements which are lying within a
rectangle. The third data set contains 1000 Gaussian (¢ = 0.5,0 = 0.1)
generated points. It is not possible to generate all self elements 2 within the
self region (ellipse, rectangle, Gaussian), therefore we explore where holes
occur. Ideally, as stated before, holes should occur within the self region.

In figures 3,4,5, one can see that for r < 8, holes occur in regions which lie
outside of the self region — or put another way, only a limited number of holes
exist at all (see e.g. Fig. 3). Furthermore, it was observed that for 8 <r < 11,
holes occur in the generated self region (as they should), and a detector
specificity of » = 10 provides the best generalization results. However, for r >
11 the detector specificity is too large, and as a result, the self region is covered
by the detectors rather than by the holes. It is worth noting that a certain
detector specificity must be reached to obtain holes within the generated self
region.

By calculating the entropy [7] of the binary representation of S for differ-
ent r-chunk length r, it is possible to obtain an explanation for why a detector
specificity r > 8 is required to obtain holes close or within the self region.
Entropy is defined as

HX) = Y P(x) log, <ﬁ) [bits] (1)

reAx

where the outcome z is the value of a random variable which takes one of the
possible values Ax = {a1,as,...,a,}, having probabilities {p1,pa,...,pn}
with P(x = a;) = p;. Roughly speaking, entropy is a measurement of ran-
domness (uncertainty) in a sequence of outcomes. The entropy is maximal?,
when all outcomes have an equal probability.

In this entropy experiment, all 1000 generated self points are concatenated
to one large bit string Lg of length 16 - 103. The bit string Lg is divided into
|16-103/r] substrings (the outcomes Ax ). The entropy for r = {2,3,...,15}
for each data set is calculated and the ratio H(X)/r to the maximum possible
entropy is calculated, and depicted in a graph (see Fig. 1). The maximum

2 Simulating Sscen
3 largest uncertainty
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possible entropy for r-chunk length r is r bits (each r bit sequence is equally
likely). In figure 1, the coherence between H(X)/r and r for each data set is

2 4 6 8 10 12 1 16
r-chunk length

(a) Entropy ratio of ellipse self set

2 4 6 12 14 16 2 4 6 12 14 16

8 10 8 10
r-chunk length r-chunk length

(b) Entropy ratio of rectangle self set  (c) Entropy ratio of Gaussian self set

Figurel. Coherence between entropy ratio H(X)/r of self set S and r-chunk lengths
r=1{2,3,...,15}.

presented. One can see that when the r-chunk length r is increased towards
[, the entropy decreases as the bit strings of length r become more specific,
rather than random. Of most interest is the value at r = 8. For this value,
the entropy ratio H(X)/r results in a spiky jump, when compared to the
neighbor values » = 7 and r = 9. Through exploring the mapping function
[0,1]2 = (ig,dy) € [1,...,256 x 1,...,256] — (bs,by) € UL x UL one
can see that the bit string of length 16 is semantically composed of two bit
strings of length 8 which represents the (z,y) coordinates. A r-chunk length
r < 8 destroys the mapping information — the semantic representation of the
(x,y) coordinates — and therefore the bit strings of length r have a random
character rather than a semantic representation of the (x,y) coordinates. As
a consequence, holes occur in regions, where actually no self regions should
be (see Fig. 3(a)-3(f), 4(a)-4(f), 5(a)-5(f)).

It has been noted that a similar statement* was mentioned by Freitas and
Timmis [2] with regard to the r-contiguous matching rule: “It is important to

4 without empirical results
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understand that r-contiguous bits rule have a positional bias”. Our entropy
experiments support and empirically confirm this statement.

Furthermore, the observations implicate an additional “positional bias”
problem. When elements of different lengths are concatenated to a data
chunk, and the r-chunk length is too large (too specific) for some small length
elements and also too small (too generic) for some large length elements, then
holes occur in the wrong regions (see Fig. 2). Figure 2 shows elements eq, es

=8 [=8 =14 =14
| e | € |
I Y1 | Y2 | o o o
r=12 r=12 r—chunk detector

I I I I

'<— too specific == < too generic —>
Figure2. Concatenating elements e, ez of different length, can result in wrong
generalization, as no suitable r-chunk detector length exists which capture the rep-
resentations of e; and ez.

— which represent coordinates (z1,22) and (y1,y2) — of different lengths
and a r-chunk detector of length » = 12. This r-chunk length is too specific
for length [ = 16 of ey, but likewise too generic for length | = 28 of ey. As
a consequence, no suitable r-chunk detector length for this example in fig-
ure 2 exists. We emphasize this “positional bias” problem here, as in many
Hamming negative selection approaches when applied as a network intru-
sion detection technique, elements® of different lengths are concatenated: the
implications are clear — for an overview of this approach see [3].

5 Conclusion

Hamming negative selection is an immune-inspired technique, which can be
applied to anomaly detection problems. In this paper we have empirically ex-
plored the generalization capability of the Hamming negative selection when
using the r-chunk length r. The generalization ability in Hamming negative
selection is caused by undetectable elements termed "holes”. Holes are un-
detectable elements which must represent unseen self data. Moreover, holes
must occur in regions where most self data is concentrated. Our results have
revealed that the r-chunk length must be of a certain length to achieve a
correct generalization. The r-chunk length can not be chosen arbitrary, as
much depends on the semantic representation of the input data. An r-chunk

5 IP-Addresses, Ports, etc.
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length which does not properly capture the semantic representation of the
input data, will result in an incorrect generalization. Furthermore, we con-
clude that input data which is composed of elements of different lengths, can
itself result in an incorrect generalization, as a suitable r-chunk length does
not exist for each different length.
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(Ghr=1 (k) r =12 1) r=13

Figure3. 1000 random (self) points distributed inside an ellipse with center
(0.5, 0.5), height 0.4 and width 0.2. The grey shaded area is covered by the generated
r-chunk detectors, the white area are holes. The black points are self elements.
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(k) r=12 1) r=13

Figure4. 1000 random (self) points distributed inside two rectangles with z,y
coordinates (0.4, 0.25), height 0.2, width 0.5 and coordinates (0.25,0.4), height 0.5,
width 0.2. The grey shaded area is covered by the generated r-chunk detectors, the
white area are holes. The black points are self elements.
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(k) r=12 1) r=13

Figure5. 1000 random (self) points generated by a Gaussian distribution with
mean p = 0.5 and variance ¢ = 0.1. The grey shaded area is covered by the
generated r-chunk detectors, the white area are holes. The black points are self
elements.



