
Grammatical Inference Algorithms in MATLAB

Hasan Ibne Akram1, Colin de la Higuera2, Huang Xiao1, and Claudia Eckert1

1 Technische Universität München, Munich, Germany
{hasan.akram, huang.xiao, claudia.eckert}@sec.in.tum.de
2 Nantes University, Nantes, France, cdlh@univ-nantes.fr

Abstract. Although MATLAB1 has become one of the mainstream
languages for the machine learning community, there is still skepticism
among the Grammatical Inference (GI) community regarding the suit-
ability of MATLAB for implementing and running GI algorithms. In this
paper we will present implementation results of several GI algorithms,
e.g., RPNI (Regular Positive and Negative Inference), EDSM (Evidence
Driven State Merging), and k-testable machine. We show experimentally
based on our MATLAB implementation that state merging algorithms
can successfully be implemented and manipulated using MATLAB in the
similar fashion as other machine learning tools. Moreover, we also show
that MATLAB provides a range of toolboxes that can be leveraged to
gain parallelism, speedup etc.

1 Introduction

In this paper we focus on two important tasks for GI - learning regular languages
from an informant and learning k-testable languages [1] from text. We have
implemented the RPNI [2] and EDSM [3] algorithms to investigate the feasibility
of running such classes of algorithm in MATLAB. We have also implemented
algorithms to learn k-testable languages which corresponds to a subset of regular
languages.

We have followed the notations and algorithms given in Colin de la Higuera’s
[4] book. The details of RPNI algorithm can be found in chapter 12, EDSM in
chapter 14 and k-testable language in chapter 11 of the book. In this section we
briefly introduce notations and definitions.

1.1 Preliminaries

Definition 1 A Deterministic Finite Automaton is defined as a 6-tuple
A = 〈Σ,Q, q0,FA,FR, δ〉, where Σ is the set of alphabets, Q is the set of finite
states, q0 ∈ Q is the initial state, FA ⊆ Q is the set of final accepting states,
FR ⊆ Q is set of final rejecting states, δ is the transition function.

Definition 2 A Prefix Tree Acceptor (PTA) is a tree-like DFA generated by
extracting all the prefixes of the samples as states that only accepts the samples
it is built from. A prefix tree is also known as trie which is an ordered data
structure and it is expressed as a DFA to form a PTA. Let S be the sample from
which we build a PTA. APT A = PTA(S) is a DFA that contains a path from
the initial state to a final accepting state for each strings in S.
1

MATLAB is a registered trademark of The MathWorks, Inc.



2 Hasan Ibne Akram, Colin de la Higuera, Huang Xiao, and Claudia Eckert

To recognize k-testable languages we would require a special machine called
k-testable machine from which we can build an equivalent DFA.

Definition 3 Given k > 0, a k-testable machine k − T SS is a 5-tuple Zk =
〈Σ, I, F, T, C〉 where Σ is the set of alphabets, I ⊆ Σk−1 set of prefixes of length
k − 1, F ⊆ Σk−1 suffixes of length k − 1, C ⊆ Σk set of short strings, and
T ⊆ Σk set of allowed segments.

A k-testable machine k − T SS will recognize strings only either exactly in
C, or those whose prefix of length k − 1 is in I, suffix of length k − 1 is in F ,
and where all substrings of length k is in T .

2 State Merging Algorithms

The basic idea of state merging algorithm to infer a DFA is to build a PTA
from the positive sample (S+), conduct the state-merging iteratively, each in-
termediate DFA is verified by examining the negative samples. Only the merge
resulting in a DFA that rejects all the negative samples is kept as current status,
otherwise the merge is discarded. This process is repeated until the target au-
tomaton is found. Examples of such state merging algorithms are RPNI, EDSM,
Blue-Fringe etc.

2.1 RPNI

The RPNI version given in [4] uses two labels for the states in the automaton:
red states and blue states. After a series of merges between the red states and
blue states, promoting the states (e.g., blue to red), the target DFA is produced.
For the details of RPNI please consult chapter 12 of [4].

By consideration of overhead of computing, we initiated another version of
RPNI, Parallel RPNI, which opens multiple sessions for states in PTA and runs
those sessions concurrently so that if the merge at state i is failed, then the
merges at states {i + 1, i + 2, i + 3, · · ·} might be already prepared to be taken
into execution.

2.2 EDSM

RPNI basically performs a greedy search to find out the target DFA, mean-
ing whenever two states are mergable, they are merged. Obviously there could
be other option, e.g., choosing a better or even best merge by means of some
heuristics. EDSM algorithm introduced by Lang and et. al., [3] which takes such
heuristics into consideration.

3 MATLAB GI Toolbox

In this section we present the MATLAB GI Toolbox, an open source implemen-
tation of a set of GI algorithms in MATLAB. The Toolbox offers out-of-the-box



Grammatical Inference Algorithms in MATLAB 3

implementations of a range of GI algorithms that can be used like every other
machine learning tool provided in MATLAB.

The fundamental data structures in the MATLAB [5] platform are matri-
ces. Therefore, in our implementation we have used matrices as primary data
structure to represent a DFA. The DFA object contains eight different sets repre-
sented as matrices: FiniteSetOfStates: the set of finite states (Q) of the DFA,
it is stored as an integer vector in MATLAB. Alphabets: the set of symbols.
It is stored as a cell array where each cell contains a character. Transition-
Matrix : each column of the matrix corresponds to a symbol a ∈ Σ (Alphabets)
and each row corresponds to a state q ∈ Q (FiniteSetOfStates). Each cell of
the matrix is a transition δ, e.g., if there is a transition from a state qi to qj
via a symbol a, then the corresponding cell for qi and a is marked as qj . No
transition cells are marked with −1. InitialState: the set of initial states, an
integer vector which contains only state. FinalAcceptedStates: the set of final
accepted states, an integer vector which is a subset of FiniteSetOfStates. Fi-
nalRejectStates: the set of final rejecting states, an integer vector which is a
subset of FiniteSetOfStates. RED: the set of red states, an integer vector which
is a subset of FiniteSetOfStates. BLUE: the set of blue states, an integer vector
which is a subset of FiniteSetOfStates.

The input file is given in the similar format as the Abbadingo2 format. How-
ever, internally in MATLAB the training dataset is represented as cell arrays [5],
each cell containing a character, which is independent of the input file format.

3.1 Features

The MATLAB GI Toolbox provides the GI algorithms in a modular fashion so
that they can be reused to enhance or improve the existing GI algorithms. The
DFA data structure and the built-in methods can be used for RPNI, Blue-Fringe,
EDSM and can be extended to incorporate other methods such as Genetic Al-
gorithm techniques to optimize the search strategy. Moreover, this toolbox has
been made absolutely compatible to other MATLAB features and toolboxes
which enables ways of trying out new experiments using other MATLAB Tool-
boxes in an extremely easy manner. It is simple to use the toolbox to do a k-fold
cross-validation, ROC analysis etc. using internal MATLAB classes to obtain
fast results.

4 Experimental Results

In this section we present our experiments which are conducted on the Gowachin3

dataset varying the size of the target DFA and the sample size Table 1 for RPNI
and EDSM. The results obtained from the MATLAB GI Toolbox are tested also
with Gowachin. Table 2 shows experiments on learning k-testable machines. The
experiments were run in a machine having two CPUs, each with 4 core Quad-
Core AMD OpteronTMProcessor 2384, cache size: 512 KB, memory 66175292
2

Abbadingo is a DFA learning competition held in 1998. The details about the competition and data format can
be found at: http://www-bcl.cs.may.ie/

3
Gowachin: DFA Learning Competition is a test version of a follow-on to Abbadingo One. Artificial datasets for
training and testing can be generated using this website: http://www.irisa.fr/Gowachin/



4 Hasan Ibne Akram, Colin de la Higuera, Huang Xiao, and Claudia Eckert

KB. In these experiments, the accuracy results are as expected, bad when an
insufficient amount of data is provided.

sample size → 200 500 1000 5000

DFA size ↓ RPNI EDSM RPNI EDSM RPNI EDSM RPNI EDSM ↓

3
99.17 99 100 99.28 99.33 100 99.17 100 a
0.49 0.44 0.48 2.25 1.03 1221.6 43.12 23.09 t

5
100 77.94 92.28 100 99.78 99.67 100 99.72 a
0.50 639.59 511.67 31.84 2.28 26.06 11.10 245.95 t

10
67.39 66.78 100 99.89 99.61 100 100 100 a
16.09 736.31 2.9 257.79 4.57 464.95 31.47 1421.8 t

20
63.94 52.5 61.67 60.77 99.06 99.33 100 100 a
13.10 2043.6 180.71 1873.8 21.46 3677.99 99.20 3989.71 t

Table 1. MATLAB GI ToolBox executions of RPNI and EDSM with different target DFA sizes and sample sizes.
Row a shows the accuracy (%) and row t shows the time cost in seconds.

5 Conclusion & Future Work

The experimental results shown above clearly indicate that MATLAB is per-
fectly suitable for GI algorithms and experiments, at least for reasonable sizes of
datasets. Besides the two state merging algorithms, we have also implemented
learning algorithm for k-testable machine. Moreover, we have implemented a par-
allel version of RPNI using the MATLAB Parallel Toobox [5], where we have
been able to gain 10-15% speedup for each additional CPU. Our future plan is to
incorporate other GI algorithms such as L*, OSTIA (for learning transducers)
etc. in the toolbox.

sample size → 200 500 1000 5000

k ↓ t p r t p r t p r t p r

2 1.16 0.12 0.14 2.98 1 0.58 6.03 1 0.408 31.77 0.5 1
3 1.16 1 0.14 2.84 1 0.579 5.83 1 0.407 31.30 1 1
5 1.17 1 0.04 2.86 1 0.142 5.89 1 0.023 30.78 1 0.543
10 4.58 1 0.002 9.19 NaN 0 16.08 1 0.007 65.06 1 0.002

Table 2. MATLAB GI ToolBox executions of learning k-testable machine. Column t shows the time cost in seconds, p
the precision and r the recall.

To the best of our knowledge this is the first open source implementation of
GI algorithms in MATLAB. We plan to publish the MATLAB GI ToolBox as an
open source library under the MIT License for open source software. The beta
version of MATLAB GI ToolBox can be downloaded from the following link:
http://www.sec.in.tum.de/~hasan/matlab/gi_toolbox/.

References

1. Garćıa, P., Vidal, E.: Inference of k-testable languages in the strict sense and
application to syntactic pattern recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 12(9) (1990) 920–925

2. Oncina, J., Garcia, P.: Identifying regular languages in polynomial time. In: Ad-
vances in Structural and Syntactic Pattern Recognition, volume 5 of Series in Ma-
chine Perception and Artificial Intelligence, World Scientific (1992) 99–108

3. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo one dfa learning
competition and a new evidence-driven state merging algorithm. In: ICGI ’98:
Proceedings of the 4th International Colloquium on Grammatical Inference, London,
UK, Springer-Verlag (1998) 1–12

4. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press (2010)

5. MathWorks: Matlab - the language of technical computing. (2010)
http://www.mathworks.com/products/matlab.


