
HawkEye: Cross-Platform Malware Detection
with Representation Learning on Graphs

Peng Xu1, Youyi Zhang2, Claudia Eckert1, and Apostolis Zarras3

1 Technical University of Munich
2 Tongji University

3 Delft University of Technology

Abstract. Malicious software, widely known as malware, is one of the
biggest threats to our interconnected society. Cybercriminals can uti-
lize malware to carry out their nefarious tasks. To address this issue,
analysts have developed systems that can prevent malware from success-
fully infecting a machine. Unfortunately, these systems come with two
significant limitations. First, they frequently target one specific platfor-
m/architecture, and thus, they cannot be ubiquitous. Second, code ob-
fuscation techniques used by malware authors can negatively influence
their performance. In this paper, we design and implement HawkEye,
a control-flow-graph-based cross-platform malware detection system, to
tackle the problems mentioned above. In more detail, HawkEye utilizes a
graph neural network to convert the control flow graphs of executable
to vectors with the trainable instruction embedding and then uses a
machine-learning-based classifier to create a malware detection system.
We evaluate HawkEye by testing real samples on different platforms and
operating systems, including Linux (x86, x64, and ARM-32), Windows
(x86 and x64), and Android. The results outperform most of the existing
works with an accuracy of 96.82% on Linux, 93.39% on Windows, and
99.6% on Android. To the best of our knowledge, HawkEye is the first
approach to consider graph neural networks in the malware detection
field, utilizing natural language processing.

1 Introduction

With the development of 5G and IoT networks, as well as autonomous driving,
Linux-based devices are becoming ubiquitous around the world. Meanwhile, the
malicious software targeting these systems increasingly attracts the attention of
both academia and industry, especially for Linux-based IoT devices and cloud
servers. Historically, the security community concentrates on detecting and ana-
lyzing malware samples that primarily target Windows-based systems. However,
this has changed as embedded systems and cloud servers rely on various architec-
tures and operating systems. Unfortunately, most of the existing malware detec-
tion systems target a single platform and cannot recognize the cross-platforms’
malware. Take modern ICT environments as an example; it is common to find a
mixture of different operating systems on servers (e.g., Linux) and workstations

2 Peng Xu , Youyi Zhang , Claudia Eckert, and Apostolis Zarras

(e.g., Windows). Without anti-malware products for all the different operating
systems, malware can easily infiltrate an organization’s premice [12]. As a matter
of fact, more and more malware is targeting cross-platforms [5]. Additionally, the
native libraries of Android apps, including the malicious native code, are cross-
platform (i.e., x86, ARMv7, ARMv8).

There are currently numerous malicious code detection methods using ma-
chine learning to characterize and discover the malicious behavior patterns of
malware. Although these methods serve the target platforms with an extra se-
curity layer, nearly all of them suffer cross-platform issues because they lever-
age specific features to target a distinct type of malware. For example, the
permission-based Android malware detection system cannot detect malicious
Windows PE examples. For instance, the Windows Richer Header [14] feature
cannot detect Linux ELF malware and Android’s DEX files.

To address cross-platform issues in general, Control Flow Graphs (CFG)
based method is a solution in the right direction because all programs have
CFGs, which makes this approach platform-independent. However, the existing
CFG-based methods [4, 16] have two inevitable drawbacks. On the one hand,
these approaches are far from scalable because of the expensive graph match-
ing computation and sub-graph isomorphism. These techniques conduct pairwise
graph matching for malware search, the complexity of which makes them unus-
able in large-scale datasets. On the other hand, the fixed graph pattern [4,16] is
hard to adapt to different code because of too many manually fixed features.

In this paper, we design and implement HawkEye, a cross-platform malware
detection framework to tackle these problems. HawkEye is based on a hybrid
Control Flow Graph and Graph Neural Networks and is inspired by Natural
Language Processing. HawkEye includes three primary components: (i) a graph
generator, which extracts both static and dynamic control flow graphs from
executable files; (ii) a graph-neural-network-based graph embedding method re-
sponsible for converting the whole attributed graph to a unique vector; (iii) a
machine-learning classification system able to classify malware samples. Overall,
this framework not only can be used by various platforms but also outperforms
numerous malware detection solutions.

In summary, we make the following main contributions:

– We develop a cross-platform malware detection framework, which can detect
not only Windows-based malware but also Linux and Android malware.
HawkEye currently supports Intel, ARM, and MIPS architectures.

– We implement a representation-learning-based feature engineering-based on
graph neural networks capable of identifying malware samples. To the best
of our knowledge, HawkEye is the first approach to leverage graph neural net-
works (GNN) for cross-platform malware detection with the help of trainable
features and transform learning.4

4 Although Devign [17] uses GNN in the cybersecurity field, it only targets the C

source code of famous CVE.

Title Suppressed Due to Excessive Length 3

– We introduce instruction, basic-block, and graph embedding to assist out
feature engineering and convert the program code to vectors,

– We evaluate HawkEye with real-world applications and various metrics. For
Windows and Android malware detection, the results outperform most of
the existing works. For Linux, we also retrieve significant results.

2 Related Work

MalConv [10] models the execution sequences of disassembled malicious binaries.
It implements a neural network that consists of convolutional and feedforward
neural constructs. That architecture embodies a hierarchical feature extraction
approach that combines the convolution of n-grams of instructions with plain
vectorization of features derived from the Portable Executable (PE) files’ headers.

Ember [3] presents an open dataset for training static PE malware machine
learning models. It extracts eight groups of raw features that include parsed
features, format-agnostic histograms, and counts of strings. Those features in-
clude features extracting from the header file, imported functions table, exported
functions table, raw byte histogram, and string information.

Adagio [4] implements a kernel-hashing-based malware detection system on
the function call graph. It is based on the efficient embeddings of function call
graphs with an explicit feature map inspired by a linear-time graph kernel. In an
evaluation with real malware samples purely based on structural features, Adagio
outperforms several related approaches. MAGIN [16], on the other hand, takes
the manually fixed 11 features from the attributed CFG, which is the same with
Gemini [15].

3 Motivation

3.1 Cross-platform Malware Detection

On the one hand, the reason why we need cross-platform malware detection is
primarily stimulated by the increasing native library-based Android malware.
Furthermore, those native libraries are not only targeting the ARM32/ARM64
CPUs but also Intel X86/X64 CPUs. So far, most Android malware detection
works are only concentrating on Android byte-code (DEX files), especially for
the static code analysis based malware detection. Although few works consider
the native library-based malware, no work so far takes care of the malicious
code introducing by various version native libraries (i.e., for Intel and ARM
platforms).

On the other hand, although it seems unimaginable to design a malware
detection system targetting not only to Windows platform but also Linux and
macOS, there are more and more examples illustrating that the same malicious
code or vulnerability affects not only Windows but also Linux Users [5]. Even in
cases with similar methods to detect malware on different platforms, it is nearly
impossible to adopt one approach directly from one platform to another due

4 Peng Xu , Youyi Zhang , Claudia Eckert, and Apostolis Zarras

Table 1: Comparsion with previous works

Approaches Description

CFG
Gemini [15], MAGIN [16] ACFG + Manually indicated features
Adagio [4] CFG + Manual one-hot embedding features

Byte Sequences
MalConv [10] Convolutional + trainable embedding
Ember [3] Gradient boosted decision tree + LightGBM

CFG+NLP
Pektaş et. al. [9] Malware Detection + call graph + graph embedding
HawkEye Cross-platforms + Representation learning on graph

to some differences. For example, the API-based malware detection systems [9]
are tightly associated with the underlying operating system. It means that Win-
dows, Linux, Android, and macOS operating systems have significantly different
underlying support for those detection systems.

Therefore, a malware detection system for various operating systems is a new
topic in the cybersecurity field. To detect malware for cross-platform CFGs are
considered a fundamental feature since they are platform-independent and thus
are proper to represent a program behavior [4, 16].

3.2 Representation Learning based Feature Engineering

To generate the node attribute in the control flow graph, we take representation
learning into consideration. Representation learning, which can automatically
learn features from raw data, has increasingly attracted researchers’ and engi-
neers’ focus. Compared to those manually indicated attributed control flow graph
(ACFG) methods, like Xu et al. [15], Adagio [4], and Yan et al. [16], HawkEye
can extract ACFG automatically without preparing manual features and avoid-
ing the challenge of manual indicated methods (how to pick up the useful features
is a challenge) because of the representation learning. For example, to represent
the vertex of ACFG, Xu et al. [15] manually indicated six block-level attributes
(numbers of calls, instructions, arithmetic instruction and transform instruction,
string constants, and number of constants) and two inter-block attributes (num-
bers of offspring and betweenness). Additionally, HawkEye borrows ideas from
natural language processing (NLP) to assist feature engineering. HawkEye uses
the word2vec to convert instructions to vectors. Although MalConv [10] and Em-
ber [3] also take benefits from NLP and leverage the n-gram method to extract
features, n-gram also loses the bag-to-word information.

In brief, HawkEye introduces representation learning as the fundamental tech-
nique to represent code, which is different compared to [4, 15, 16], and use the
control flow graph as fundamental to organize the program, which is different
with those target-specific methods [9,10]. Additionally, it utilizes NLP to convert
the byte sequences (instruction and basic block) to vectors, used to replace the
manually indicated features [4,15,16]. The differences between HawkEye and the
current works are summarized in Table 1.

Title Suppressed Due to Excessive Length 5

mov,lea,......,jne

add,pop,
mov,ret

push,mov,
sub,call

add,add,pop, ...

nop

M
N
E
M
O
N
I
C
2

VEC

(0.10,...),(-0.2,...).....(0.17...)

(0.26,...)...

(-0.31,...)...

(0.26,...),(0.26,...),(-0.19,...) ...

(0.04,...)

Benign

Malware

Control Flow Graph Tagged CFG

G
R
A
P
H

E
M
B
E
D
D
I
N
G

Binary
-

(x32, x64,
ARM, …)

Graph
Vectors

+

Adjacency
Metrix

+

Malicious
Label

D
E
T
E
C
T
O
R

MLPGNN

Graph Embedding Network &
MLP Malware Detector

Fig. 1: System architecture

4 System Design

4.1 Architecture

We formalize our cross-platform malware detection system as a binary classifica-
tion problem. We define the graph sets, which represents the structural informa-
tion of the executable files (malware and benign), as our input, like GD(V D, ED),
where V D presents the set of graph’s nodes, and ED presents the edges among
those nodes and D presents the number of the graph. For each graph gi, it is
encoded as gi(V,X,A), where A ∈ {0, 1}m∗m is the adjacency matrix and m is
the number of the graph’s node, m = |V |. X ∈ Rm∗d presents a d-dimensional
real-valued vector xj ∈ Rd.

loss = min

n∑
i=1

λ(f(gi(V,X,A)) + δw(f))− yi (1)

where i ∈ n and n = |D|. The goal of HawkEye is to learn a mapping from
GD to Y D, f : G → Y to predict whether an executable file is malicious or
not. The prediction function f can be learned by minimizing the loss function
in Equation 1, where g is the graph embedding and f is the MLP-classifier. In
our work, we also add one w(∗) function to adjust the stability (reduces the
influence of the difference from graph size) of HawkEye, and δ is a coefficient to
scale the function w. Figure 1 illustrates HawkEye’s architecture. The executable
binary is the framework’s input, and the prediction label (malware or benign)
is the output. In summary, it includes three primary modules:graph generator,
Feature embedding and MLP-based classifier as our malware detector.

4.2 Graph Generator

Based on the Angr framework (including angr-utils and bingraphvis) [11], we
build our own CFG Generator to extract flow graphs from the executable bina-
ries. The extracted graphs from cross-platform binaries include the static and
dynamic CFG as well as the fCG (function call graph). For the static CFG,
HawkEye constructs a directed graph G = (N,E) with the basic block addresses

6 Peng Xu , Youyi Zhang , Claudia Eckert, and Apostolis Zarras

and assembly code inside of basic blocks, where N represents all the nodes of
the graph, including the node name and content (assembly instructions), and E
represents the set of edges of the graph. The dynamic CFG and the fCG can be
considered as a reduced graph of the static CFG. The dynamic CFG only con-
cludes the basic blocks covered by symbolic execution. The fCG, on the other
hand, collects the assembly code at the function level.

4.3 Feature Embedding

This component aims to generate a finite-dimensional nonlinear vector for each
instruction in basic blocks. We divide this task into three modules: (i) mnemonic
(opcode) embedding, (ii) block embedding, and (iii) CFG embedding.

Mnemonic Embedding. All the assembly instructions usually come with the
following form: label:[mnemonics][operands][comment]. The label is an identifier
that is a position marker for instructions and data. The instruction mnemonic is
a brief word that marks an instruction, such as mov, add, and sub. The operands
represent the value of instruction control and transfer. We only consider the
mnemonic part because those mnemonics are linked to behaviors; the operands
are the corresponding behaviors objects. As the final operands usually depend on
the immediate number, register, and memory, we cannot use them as a feature
because of their inherent variability. Therefore, we concentrate on analyzing the
sequence of mnemonics. We show the difference between mnemonic and instruc-
tion embedding in the evaluation. There exist numerous methods to convert the
sequence mnemonics into a vector sequence. In this work, we adjust the skip-
gram sampling model of word2vec [6] to reduce word to the opcode of instruction
to implement the mnemonic embedding.

Block Embedding. The embedding of a basic block is derived from all the
instructions contained in the embedded block. The method for producing block
embedding is normalization. Then, the normalization method is represented as:
xnormalization = x−Min

Max−Min , where Max and Min are the maximal and minimal
values among all embedding vectors in the basic block. The first element of
vectors is picked up to get the maximal and minimal values. The list of block
embedding vectors is forwarded to our adapted graph embedding network and
malware detector for training.

Graph Embedding. To calculate the graph embedding from embedding vectors
of the generated tagged CFG, we combine the graph structure characteristics
and the node features with a settable iteration size (one Hyperparameter of
GNN). For the graph embedding, in our case, the vertices (nodes) of a graph are
functions, and the edges are connections among those functions. Those vertices
(nodes) contain a set of opcodes inside them. The function embedding constructs
each node’s feature. In essence, we apply the graph embedding network based on
structure2vec to convert the vectors of one graph to a unique vector. This neural
network mainly considers two aspects of information: the instruction sequence
in the node and the connection between the basic blocks. Our GNN combines

Title Suppressed Due to Excessive Length 7

Table 2: The number of samples in different datasets

Platforms
Training Validation Testing Total

Malware Benign Malware Benign Malware Benign Malware Benign

Windows-x86 17,910 19,043 5,970 6,347 5,970 6,346 29,850 31,736
Android 15,331 15,000 5,111 5,000 5,111 5,000 25,553 25,000
Linux-x86 5,501 5,693 1,834 1,898 1834 1,897 9,169 9,488
Linux-x64 319 923 106 307 106 307 533 1,539
Linux-ARM32 434 446 144 148 144 148 724 744

these two kinds of information to generate our graph embedding vectors through
deep neural structures. The realization of graph embedding generation is the
execution of a graph neural network with unsupervised feature learning. So far,
HawkEye can transform the input data into a group of graph embedding vectors
containing feature information.

4.4 MLP-based Malware Classifier

In this step, we establish a machine learning model that distinguishes malware
from benign executables following the generated graph embedding vectors. The
trained model with the best accuracy is stored as the final malware detection
model. We use a multi-layer perceptron (MLP) for classification tasks. More
specifically, we use one input layer, two hidden layers with 32 units, and one
output layer in our MLP. We take the hinge loss as our loss function, which de-
termines the difference between raw output prediction value < P = MLP (X) >
and real value < R = Y label >.

5 Evaluation

5.1 Dataset and Experimental Setup

Dataset Preparation. We collected our malware samples from VirusShare [1]
and AndroZoo [2]. For benign samples, we collected ELF binary samples from
libraries and executable files from Ubuntu 18.04-x64, Ubuntu {14.04, 16.04,
18.04}-x86 on Intel, and Raspbian 32-bit on ARM. For Windows-x86, we col-
lected the benign binary samples from Windows XP, 7, 8, and 10. For Android
samples, we collected all the samples from AndroZoo and used VirusTotal [13]
API to label malicious samples classified as malware by more than five frame-
works in VirusTotal. The samples in the training dataset account for 60% of
the total binaries, while the samples in the validation dataset account for 20%.
Finally, the samples in the testing dataset account for 20% of the total binaries.
The detailed statistics are shown in Table 2.

Learning Setup. In our implementation, for the graph embedding network, we
selected minibatch as 1, which is analogous to an online learning model. The
reason behind our choice is that the input data contains the adjacency matrix,

8 Peng Xu , Youyi Zhang , Claudia Eckert, and Apostolis Zarras

mov callq lea je cmp test jmpq add xor pop

0.5

1.0

1.5
1e7

0 100 200 300 400
0.0

0.5

1.0

1.5
1e7

(a) Intel X86

ldr mov cmp add str beq b bne andeq sub

0.5
1.0
1.5
2.0
2.5
3.0

1e6

0 200 400 600 800 1000
0

1

2

3
1e6

(b) ARM

invoke-virtual iget-object move-result-object const-string iget

1.00

1.25

1.50

1.75

2.00

1e6

0 50 100 150 200
0.0

0.5

1.0

1.5

2.0
1e6

(c) Android-Dalvik

Fig. 2: Power-law Distribution for Intel, ARM and Dalivk Opcodes.

which consumes a significant amount of memory, especially some APKs have
more than 90,000 nodes (basic blocks of control flow graph). The classifier takes
an input feature size of 32. The supervised classifier takes a loss value among the
mean absolute error, sigmoid cross-entropy, and hinge loss to compare the rate of
convergence using the ADAM [7] optimization algorithm with a 0.04 learning rate
over 10 to 25 epochs. To avoid over-fitting, we use the model parameters at the
minimum validation loss as the final learned weighted matrix θ. We execute the
learning process for diverse situations on a Tensorflow computation framework
on a server equipped with AMD EPYC Processor (64 cores) and 128 GB DDR4
memory RAM.

5.2 Power Law and Opcode Embedding

Before moving to our evaluation tasks, we use power-law distribution to prove
the reasonability of using natural language processing techniques in our work.
Figure 2 presents the opcode distribution for various platforms with the above
datasets. Figure 2(a) shows the opcode distribution for Intel X86/X64 (we con-
sider 32-bit and 64-bit opcode together since 96% of them are overlapped). In to-
tal, we have 463 opcodes; the 10 largest usage opcodes are illustrated. Figure 2(b)
shows the ARM’s opcode and its distribution. We have 1,131 ARM-opcode in
total; the top 10 opcodes are shown. Meanwhile, Figure 2(c) shows Dalvik’s op-
code distribution, which has 216 opcodes; the top 5 opcodes are presented. All
of them follow the power-law distribution, which means borrowing word embed-
ding techniques from natural language processing to do opcode embedding is
reasonable.

5.3 Evaluation Tasks

After determining the experimental setup, we evaluate HawkEye’s performance
on the following tasks: malware detection performance, CFG generation, and
training efficiency.

We tested our model’s accuracy using the standard Area Under Curve -
Receiver Operating Characteristic (AUC-ROC) curve. We utilize four metrics:

Title Suppressed Due to Excessive Length 9

Table 3: Performance comparison with other approaches

Model Accuracy (%) Precision (%) Recall (%) F1 (%) AUC: (%)

WIN-Ge 93.39 94.79 97.74 96.24 94.61
WIN-MalConv [10] 90.77 98.88 34.34 50.97 82.43
WIN-Ember [3] 98.23 97.47 89.72 93.43 96.67
WIN-MAGIC [16] 82.46 86.63 82.46 81.96 84.78

ANDROID-Ge 99.85 99.74 99.74 99.74 99.57
ANDROID-Adagio [4] 95.00 91.07 94.0 95.32 91.07

precision, recall, F1, and FPR, often used to describe a binary classification
model’s testing accuracy.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.00

0.25

0.50

0.75

1.00
Tr

ue
 P

os
iti

ve
 R

at
e ROC

ANDROID_Ge 0.995675
ANDROID_Adagio 0.910714
WIN_Ge 0.946083
WIN_EMBER 0.966643
WIN_Malconv 0.824301
Android_android_os 0.958200

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall

ANDROID_Ge 0.995675
ANDROID_Adagio 0.910714
WIN_Ge 0.946083
WIN_EMBER 0.966643
WIN_Malconv 0.824301
Android_android_os 0.958200

Fig. 3: ROC and precision-recall on
Windows-x86 and Android

As Figure 3 and Table 3 re-
veal, we compared our results with
other works on Windows-32 and
Android platforms. The reason
for this choice is as follows. For
Windows-32 and Android samples,
there are efficiently labeled mal-
ware samples. In addition, there
are enough related works to com-
pare the performance of our frame-
work. However, to detect malware
on Linux platforms, such as Linux-
32, Linux-64, and Linux-ARM32,
we cannot find any comparable
works to support our achievement.

As Table 3 shows, on the
Windows-x86 platform, for accu-
racy and precision, Ember [3] gets
a better result than our graph em-
bedding (GE) approach. However,
for recall and F1-score, Ember does not work better. MAGIC gets the worst re-
sults among all of our experiments. When compared with MalConv [10], HawkEye
outperforms its results. Similar to the Windows-x86 platform, we compare our
performance on the Android platform with Adagio [4], which is a one-hot
embedding-based malware detection with CFG. Our GE-based approach out-
performs Adagio’s results. In conclusion, our HawkEye outperforms other related
works in nearly all metrics, especially on the recall and F1-function.

5.4 Hyper-Parameters Selection

Different Number of Epochs. To evaluate our module’s convergence feature,
we set a different number of epochs, between 10 and 25, in order to test the
differences in the performance. The validation is processed every five epochs to

10 Peng Xu , Youyi Zhang , Claudia Eckert, and Apostolis Zarras

(a) Epoch

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC of GNN Trainer

ROC of 0.001 learning rate (AUC = 0.984597)
ROC of 0.005 learning rate (AUC = 0.988318)
ROC of 0.01 learning rate (AUC = 0.982421)
ROC of 0.05 learning rate (AUC = 0.983824)
ROC of 0.1 earning rate (AUC = 0.940088)

(b) Learning Rate (c) Embedding Size

Fig. 4: ROC results with different iteration

select the best-weighted matrix. As Figure 4(a) depicts, the accuracy rises, and
the loss decreases shapely in the first three epochs in an ordinary situation.
After 12 epochs, the ROC value will be maintained at a certain level and only
slightly float up and down. In essence, we get the best ROC results after 12
epochs. We then save the model parameters for future restoration in the test
process. In conclusion, our model can have convergence quickly and achieve the
best performance after about 15 epochs. In this experiment, the other hyper-
parameters are fixed as the learning rates equal 12, the iteration size equals 2,
and the embedding size is 32.

Different Learning Rates. The learning rate is a configurable hyper-parameter
used in the training of neural networks. It is referred to as the step size that the
weights are updated during training. The various value of learning rate affects
the performance significantly. In this section, the influence of learning rates is
studied. HawkEye evaluates the various learning rates with values: {0.001, 0.005,
0.01, 0.05, 0.1}. In this experiment, the other hyper-parameters are fixed as
epoch equals 12, the iteration size equals 2, and the embedding size is 32. Fig-
ure 4(b) illustrates the outcomes. In detail, the AUCs of HawkEye achieve more
than 98% for learning rate of {0.001, 0.005, 0.01, 0.05}, and when learning rate
equals to 0.005, HawkEye gets the best of AUC with 98.83%. Only for the 0.1
learning rate, the AUC drops to 94%, which is due to the big step size of weight
updating.

Different Embedding Sizes. From Figure 4(c), we can conclude that the em-
bedding size in a specific range does not impact the performance significantly.
The ROC curves are similar to each other, with an embedding size from 8 to
32. Considering the embedding size is positive relative to the training time and
evaluation time, we decided to use 8 as embedding size for the trade-off between
performance and efficiency. It is worth mentioning that if we select a bigger
embedding size (e.g., 64) compared to a small input feature size (e.g., 32), the
performance will decrease sharply because the features get dilute.

5.5 Detection on Obfuscated Samples

Title Suppressed Due to Excessive Length 11

Table 4: Detection rate of obfuscated APK

ClassEnc. StrEnc. Refl. Triv. Triv.-Str. Triv.-Ref.-Str. Triv.-Ref.-Str.-Class.

PRAGuard5 38.0 64.0 96 90.0 50.0 44.0 32.0
Drebin 99.12 98.99 86.58 98.32 98.99 99.32 96.98
Our framework 99.33 98.99 86.58 98.32 98.99 99.32 96.98

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Tr
ue

 P
os

iti
ve

 R
at

e

ROC of malware detection

classEnc AUC : 0.997738
striEnc AUC : 0.995267
trivial AUC : 0.994858
Ref. AUC : 0.994586
Trivial + StriEnc : 0.996273
Trivial + StrEnc + Ref. : 0.995932
Trivial+StrEmc+Ref.+classEnc : 0.990707

Fig. 5: ROC of obfuscated APK

Here, we present our experimental
results for the detection of obfus-
cated samples. We only take ob-
fuscated Android samples as our
input and compare our work with
PRAGuard [8]. The obfuscated
methods include class encryption,
string encryption, reflection, and
various combinations. For other
platform samples, our work can
be extended easily. PRAGuard
mentions the influence of obfus-
cated applications on Android malware detection. It presents seven types of
obfuscation techniques and influenced performance. We evaluate our framework
on the PRAGuard dataset. The ROC is illustrated in Figure 5. We compare
the detection rate with PRAGuard in Table 4. From the extracted results, we
identify that obfuscation does not influence our framework.

6 Conclusion

In this paper, we investigate a new methodology that detects malware on cross-
platform architectures. We design and implement three separate tools: (i) a
CFG generator, (ii) a feature embedding (includes opcode embedding and graph
embedding) networks, and (iii) an MLP neural network malware detector. The
combination of the above tools allowed us to build HawkEye, a combined detector.
HawkEye solves the classification accuracy by training itself via diverse inner
maximization methods, different embedding maps, and a specific type of CFG.
The experiments validate that HawkEye can fast and accurately classify malware.
Overall, it proves that the control flow graph and the graph neural networks can
be successfully applied in malware detection.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreements No 883275 (HEIR) and No. 833115

(PREVISION).

12 Peng Xu , Youyi Zhang , Claudia Eckert, and Apostolis Zarras

References

1. VirusShare.com. https://virusshare.com/. Accessed: 2019-07-05.
2. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Androzoo: Collecting Millions of

Android Apps for the Research Community. In: IEEE/ACM Working Conference
on Mining Software Repositories (MSR) (2016)

3. Anderson, H.S., Roth, P.: EMBER: An Open Dataset for Training Static PE Mal-
ware Machine Learning Models. ArXiv e-prints (2018)

4. Gascon, H., Yamaguchi, F., Arp, D., Rieck, K.: Structural Detection of Android
Malware Using Embedded Call Graphs. In: ACM Workshop on Artificial Intelli-
gence and Security (2013)

5. Germain, J.M.: New Security Hole Puts Windows and Linux Users at Risk. https:
//www.technewsworld.com/story/86778.html (2020)

6. Goldberg, Y., Levy, O.: Word2vec Explained: Deriving Mikolov et al.’s Negative-
Sampling Word-Embedding Method. arXiv preprint arXiv:1402.3722 (2014)

7. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980 (2014)

8. Maiorca, D., Ariu, D., Corona, I., Aresu, M., Giacinto, G.: Stealth Attacks: An
Extended Insight Into the Obfuscation Effects on Android Malware. Computers &
Security 51, 16–31 (2015)

9. Pektaş, A., Acarman, T.: Deep Learning for Effective Android Malware Detection
Using API Call Graph Embeddings. Soft Computing 24(2), 1027–1043 (2020)

10. Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., Nicholas, C.K.:
Malware Detection by Eating a Whole Exe. In: AAAI Workshop on Artificial
Intelligence for Cyber Security (2018)

11. Shoshitaishvili, Y., Wang, R., Hauser, C., Kruegel, C., Vigna, G.: Firmalice - Au-
tomatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware.
In: Network & Distributed System Security Symposium (NDSS) (2015)

12. Stange, S.: Detecting Malware Across Operating Systems. Network Security
2015(6), 11–14 (2015)

13. Total, V.: Virustotal-Free Online Virus, Malware and Url Scanner. Online:
https://www. virustotal. com/en (2012)

14. Webster, G.D., Kolosnjaji, B., von Pentz, C., Kirsch, J., Hanif, Z.D., Zarras, A.,
Eckert, C.: Finding the Needle: A Study of the PE32 Rich Header and Respec-
tive Malware Triage. In: International Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA) (2017)

15. Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.: Neural Network-Based
Graph Embedding for Cross-Platform Binary Code Similarity Detection. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS) (2017)

16. Yan, J., Yan, G., Jin, D.: Classifying Malware Represented as Control Flow Graphs
Using Deep Graph Convolutional Neural Network. In: Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN) (2019)

17. Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: Effective Vulnerability Identifi-
cation by Learning Comprehensive Program Semantics via Graph Neural Networks.
In: Advances in Neural Information Processing Systems (2019)

