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Abstract—Modern automobiles are increasingly connected to
the world and integrate always more electronic components man-
aging simultaneously infotainment and safety functions. Much
more than just a simple transportation mean, the car is now
customizable and like current smartphones, it will soon allow
to load and install third-party applications directly from the
Internet, which raises some security issues. Until now, the car
manufacturer has full control over the development process of
the in-car software and in particular can perform any required
security tests before the car production. The integration of un-
trusted pieces of code requires from now on new dynamic security
mechanisms operating during the life time of the car. In this
paper, we present the integration of data flow tracking tools in
an automotive middleware allowing dynamic security monitoring
of untrusted applications. We describe the implementation and
integration of these mechanisms and provide their evaluation.

Index Terms—automotive applications, security, privacy, infor-
mation flow controls, data flow tracking

I. INTRODUCTION

Today automotive applications are deployed on on-board
electronic platforms before their delivery and in-car inte-
gration. They are usually designed and programmed specif-
ically for a brand or even for a precise car model. The car
manufacturer always knows the application developers, either
because they directly belong to the company or are working
for a subcontractor, and can therefore contractually set certain
responsibilities and testing processes. This clear relationship
allows to pinpoint potentially arising liability issues if the
security is broken. However, this model does not necessarily
protect from security weaknesses [1] and leaves very little
room for a flexible deployment. In contrast to this aforemen-
tioned pre-assembly-line development, loadable and on-the-fly
installable applications have revolutionized the mobile device
world and are now coming into cars [2]. While being foreseen
only for the infotainment domain, they bring a number of risks
that can hardly be deemed. With access to Internet and to a
wide range of on-board functions, these “apps” may secretly
do more than they appear to do under the hood [3] and may
lead to severe driver’s privacy infringements or even worse
to life-threatening issues. The architecture for deploying and
running such “apps” needs to be secured accordingly.

Dynamic data flow tracking (DFT) has been successfully
applied in various security domains: exploit detection [4],

malware analysis [5] and system monitoring [6]. It allows
to tag and track data of interest as they propagate within a
running application. Our approach presents the combination of
two information flow control (IFC) approaches in order to se-
cure, with acceptable performance, the execution environment
of original on-board applications and third-party applications
(TPAs) against security exploits and privacy infringements.
DFT is locally applied to monitor TPA and is integrated in
a car-wide security framework enforcing a decentralized IFC
model. The main contributions presented in this paper are:

• A new authorization model combining local DFT tech-
niques and car-wide IFC mechanisms.

• A prototype implementation integrating an automotive
and IP-based communication middleware, Etch [7] and
a DFT tool, our customized version of libdft [8].

The rest of the paper proceeds as follows. After giving a
brief overview in Section II about the on-board automotive
architecture and related work, Section III introduces our model
combining two different information flow control techniques.
Then, Section IV presents the implementation and integration
of the security tools in an automotive middleware. Section V
provides the evaluation of our concepts and prototype and
finally Section VI our conclusions.

II. SCOPE OF THIS WORK

This section summarizes background information on future
automotive systems and related work about security & privacy.
A threat model and relevant scenarios are provided as well.

A. Current and Future Automotive Architectures

The automotive on-board network includes up to 70 Elec-
tronic Control Units (ECUs). ECUs are organized in sub-
networks around specific domains (e.g., power train, info-
tainment), interlinked by different communication buses, e.g.,
CAN, MOST. On-board applications are divided into elemen-
tary function blocks, which are distributed over several ECUs
and use broadcast to exchange data. Due to plaintext on-board
communication and a lack of input validation in the ECUs,
cars have been shown weak against simple attacks [1].

Tomorrow, Ethernet/IP will be used as communication
standard for the on-board network and will provide a larger



bandwidth. It will allow comply with the future application
requirements for driver assistance and infotainment, which
require large volume of data to be processed at real time [9].
Secondly, secure and mature protocols from the Internet will
be immediately applicable. Then, the use of engineering-driven
middleware will greatly simplify the communication manage-
ment. It will abstract and automate the network addressing
and security enforcement [10]. Finally the centralization of
most of the external communication interfaces (e.g., LTE, Wi-
Fi) around a multi-platform antenna (called proxy here) will
give to car makers the opportunity to design a single security
gateway for all Car-to-X (C2X) communications [11].

B. Threat Model and Attack Scenarios

Securing today’s and tomorrow’s car is challenging. Au-
tomotive applications are rarely updated and involve more
and more new connected features. Their functional behavior
relies on complex software, not free from any security weak-
nesses [1] and processing a huge amount of sensitive data.
An attacker could therefore leverage defects in the logic of an
application or in a weak security mechanism. The car could
therefore leak private information or industrial secrets, have
its integrity threatened and endanger the life of its occupants.

Our scenario is depicted in Figure 1 and considers both
internal and external communication partners. We take the
example of a TPA running on the Head Unit (HU), which
is connected to services of the Internet, a CE device and to
several original on-board applications. We mainly focus on
attack scenarios trying to bypass security policies and taking
advantage of the TPA in order to 1) corrupt internal resources
or 2) release sensitive data to an unauthorized external entity.
We consider a TPA, which respects the internal API of the car.
However, it may present some weaknesses that are exploitable
by an attacker.

1) Integrity attack scenario: the TPA forwards malicious
messages from an external malicious communication
partner or gets compromised. As a result the TPA
may send bogus packets on the on-board network or
access/modify critical resources on the HU and may
dangerously disturb the car functioning.

2) Confidentiality attack scenario: the TPA accesses pri-
vate/secret information, like the driver’s home address
in the navigation system. The TPA, even without the
authorization to share it, may still send it to the outside,
either directly over the proxy or through an intermediate
step, e.g., an on-board application communicating with
the outside.

This work aims at enhancing the information security and
tackling the threats related to unfair entities, on which the
car manufacturer has no control, while still keeping the car’s
requirements for high robustness and low latency in mind.

Assumptions: Next-generation ECUs will be equipped with
a security middleware allowing on-board communications over
strong security protocols like IPsec [10]. In addition they
will soon make use of secure hardware extensions providing
secure boot and secure key storage [12]. As a consequence,

Fig. 1. Automotive scenario and considered communication channels. Solid
right-angle lines represent the wired on-board network. The dashed arrows
represent external communications over different wireless networks.

we assume that the middleware and the hardware platform
are flawless and cannot be compromised. Finally, we trust the
ECUs to establish secure communication channel with each
others and to enforce the expected security mechanisms. We
do not consider denial-of-service attacks in this work.

C. Related Work

DFT is not a new research topic, many DFT tools have
already been implemented and tested for various security
purposes, mostly for malicious code detection and information
leakage. The main idea is to recognize data of interest accord-
ing to predefined policies, to associate them with metadata
called “taint tags” and to track their propagation within a
running application or system. Two classes of tools can be
distinguished: the single-process- and the cross-process-ones.

Single-process DFT tools [4], [8] instrument every ma-
chine instruction performed by a process. To do so, they
generally make use of dynamic binary instrumentation (DBI)
frameworks like Pin [13]. They usually suffer from significant
decrease performance and need additional memory for taint
propagation. They do not require source code modification or
customized OS.

Cross-process DFT tools capture system-wide data flow
and usually rely on modified runtime environments [6], emula-
tors like QEMU [5] or hardware extensions [14]. They are usu-
ally heavyweight systems requiring an extensive maintenance.
They instrument every instruction performed in the host and
as a consequence impose a very significant overhead for the
overall system. TaintDroid [6] alleviates the issue by regarding
some libraries as “trusted”, i.e., not monitored.

Solutions for DFT in distributed systems generally offer
little reusability and require every peer to run the DFT tool,
e.g., DBTaint [15], targeting data flow in data-bases, Neon [16]
using a modified NFS server to track the taints of inbound/
outbound packets. Taint-Exchange [17] presents a generic
framework based on libdft [8] allowing exchanges of taints
over the network without proposing any concrete security
model or policy enforcement. Another interesting automotive
approach [18] proposes a security model using a DFT tool and
network taint exchanges for every application running on the
on-board network. While enhancing the security, we believe
that such approaches will not meet the automotive latency
requirements, if every on-board application is instrumented.



IFC is a general term. It usually designates a type of
mandatory access control, allowing an entity, e.g., a person
or a process, to access a resource depending on its clearance.
IFC models have been already applied to secure distributed
systems e.g., at the process level in customized OSes exchang-
ing labeled messages through the network [19] or thanks to
customized switches and a central synchronization server [20].
In opposition to DFT, these approaches provide better per-
formance. They protect the information confidentiality and
integrity, but do not protect against security vulnerabilities.

Outcome: Considering our requirements for low latency,
we orient our approach towards efficient single-process DFT.
The TPA is monitored, while trusted applications of the HU
are not monitored. Potential misbehavior of the TPA is locally
contained by the DFT tool. Communications between the TPA
and other on-board applications are secured thanks to the
enforcement of car-wide IFC policies.

III. A COMBINED APPROACH

The middleware is a software layer, common to every on-
board application, including the TPA. Our approach makes use
of the middleware to link the DFT tool and its local action to
the security framework enforcing car-wide IFC policies. The
rest of the section explains in more detail A) how the DFT tool
works, B) how DFT tools and trusted on-board applications
securely communicate, and C) how the DFT monitoring is
integrated with a car-wide IFC framework.

A. Tracking and Controlling the Execution

DFT tools are characterized by three main elements: the
taint sources, the intra-taint propagation and the taint sinks.
For this subsection, we consider the pseudocode of Figure 2.

Taint sources: Taint sources are programs or memory
locations, where data enter the monitored system after the
invocation of a function or of a system call. If recognized
as data of interest, they are tainted and tracked. Based on
our scenarios, we identify all traditional I/O channels used by
the TPA as sources : inter-process communication (e.g., pipe),
filesystem and network socket. For instance, we monitor the
functions “receiveBuffer()” (line 1) and “readBuffer()” (line
2) and tag the buffers “x” and “y” accordingly.

Intra-taint propagation: During runtime, tainted data are
tracked while being copied and altered by the application
execution, like in the function “processBuffers()” (line 3),
which generates some data out of two tainted buffers that is
tainted as well. The taint information is stored and dynamically
propagated in a shadow memory mapped to the actual process
memory. The taint expressiveness can be adapted depending
on the needs. Originally DFT was used to protect software
vulnerabilities from being exploited and a simple binary
tainting was sufficient to track untrusted data (e.g., one bit
tainting a byte of memory). But considering our goal to both
protect the system integrity and the information sensitivity,
we require more possible taint values with regard to the input
sources. In practice, to limit the execution and communication
overhead, we use four values: (3) for highly sensitive data of

Fig. 2. On the left, an example of code with data dependencies (in bold, the
data to taint). On the right the intra-taint propagation for the buffers x, y, z
along the code execution.

the car manufacturer (e.g., industrial secret) (2) for user’s very
private data (e.g., location, routes), (1) for user’s private data
(e.g., username, preferences) and (0) for nonsensitive data.
This scale does not reflect data integrity, because by definition
TPA cannot be trusted to produce data that are safe to directly
process.

Taint sinks: Like sources, taint sinks are function calls and
memory locations, where the presence of a taint is checked
in order to enforce a policy. The policies concern decision
about transmitting data to a specific function, or using the data
as program control data (e.g., return address). It determines
whether the data can be written to a standard output (e.g., in
a file, line 4) or sent over the network (line 5).

B. Middleware-based Taint Propagation

DFT tools allow to eliminate numerous attacks related
to stack pointer overwriting, like buffer-overflow or format-
string exploits. Other trusted automotive applications are not
instrumented and directly communicate with the untrusted
TPA. Thanks to the middleware and the exchange of security
metadata, the DFT tool can share the intra-taints with other
on-board applications.

Extra-taint propagation: Figure 3 shows the propagation
of taints between a TPA and other on-board applications on
other ECUs. The system calls, related to the network socket
management (lines 2, 5 in Figure 2 and bullets 3, 4 in Figure 3)
are intercepted by the Injector. For inbound messages (bullet
3), the Injector checks if the trusted applications is allowed to
communicate with the TPA, extracts the taint of the payload
from the middleware header and taints the received data in
its shadow memory. For outbound messages (bullet 4), the
Injector checks if the TPA is allowed to communicate with the
addressee and adds the taints related to the message payload
in the middleware header. Both sides of the communication
establish a secure communication channel.This prevents any
unauthorized taint manipulation or eavesdropping during the
message exchange. After the message reception, the middle-
ware of the receiving application extracts the taint values from
the payload and enforces the related security policies.

Middleware enforcement: Unlike the DFT framework, the
middleware of an on-board application enforces static policies
and cannot be aware of each new TPA’s requirements and poli-
cies. The middleware therefore enforces a taint-based filtering
involving generic rules for all TPAs. The middleware trusts
the DFT framework to communicate accurate taint values. The



Fig. 3. Overview of the DFT framework. The solid lines show the input and
output data of the TPA. The colors represent different levels of sensitivity, that
are expressed by the taint values (i.e., blue/yellow/red and 1/2/3). These taints
are injected using binary instrumentation (Injector). The Injector monitors
the execution, especially system calls (dotted lines) and the propagation of
memory and registers. m1 and m2 are tainted messages sent respectively to
and from the TPA. The TPA output m2 shows a combination of the sources
blue and yellow but not red and is therefore tainted accordingly.

taint values inform the middleware whether the data may be
sensitive. The integrity of the data cannot be assessed, but TPA
and middleware communicate through a dedicated channel.
The middleware is therefore aware of the integrity risk. It first
decides, whether it can process the payload depending on its
version and its security level. and then evaluates, based on the
taint values, which DFT/IFC rules of Section III-C to enforce.

Security policies: In order to control the data flows in the
HU and over the network, we identify two types of policies:
the first ones regulating the network exchanges and the DFT
engine (middleware- & DFT-specific), the other ones locally
enforced for a specific TPA (application-specific).

a) Middleware- & DFT-specific policies: Defined by the car
manufacturer, these rules are static and defined during the
design phase. They regulate the communication establishment
between on board applications and specify the rules for IFC
and for the interface DFT/IFC. Taint values and related source,
propagation and sink tainting rules are statically set in the DFT
engine by the car manufacturer

b) Application-specific policies: These policies only concern
the TPA. When loaded on the ECU, the TPA is supplied with a
customized rule set defining the associated permissions. These
new rules are evaluated against the static ones and integrated
in the DFT framework. Similar to the manifest provided by
every Android application, the rule set provides more detailed
policies and function whitelisting. For obvious security rea-
sons, the rule set will have to be approved and signed by
the car manufacturer after a testing process. In addition, other
privacy-relevant policies may be specified directly by the user
thanks to an on-board configuration interface.

C. Combining DFT & Car-wide IFC Enforcement

DFT provides efficient ways to control a TPA and to
add/extract information from the in-band middleware protocol.
However, because they monitor every single instruction of an
application, they impose a significant overhead. As a conse-
quence we chose to limit the taint information to four values.
On-board applications are exchanging data which belong to
different drivers or passengers and require different levels of

integrity, e.g., to trigger a safety mechanism. Four taint values
may lack some expressiveness. We therefore chose to couple
the DFT mechanisms to a solution offering more flexibility:
an automotive IFC framework.

Automotive IFC Framework: Our work about IFC in cars
has been recently submitted [21] and makes use of a model
inspired from Dstar [19]. We define as service, a group of
on-board applications running on top of the same middleware
and sharing the same security concerns in term of integrity
(e.g., because they get access to the same safety mechanisms)
and confidentiality (e.g., because they share data of same
sensitivity). IFC is about controlling and monitoring which
pieces of information are exchanged through the network
between services. The goals of our framework are twofold.
First it allows to control the access to on-board resources,
e.g., service or file. The IFC framework makes sure that the
access enquirer has a sufficient integrity level. Then it allows
to prevent information leakage, caused by unintentional bugs
and unfair external peers, like CE devices and online services.

Every service/user is assigned a label, i.e., a set of tags.
Tags are unique values qualifying for each service/user either
its integrity- or its confidentiality-concerns (i.e., the sensitivity
of the information it processes). These labels form a lattice
enforcing a form of mandatory access control, where informa-
tion from a service can flow to a second one only if it fulfills
certain conditions. Concretely, in order to send a message from
A to B, the confidentiality tags of A have to be included in
the label of B and the integrity tags of B in the label of A.
When enforced, these conditions allow to preserve first the
information confidentiality, i.e., A is sure that B is authorized
to receive its message, and then the information integrity, i.e.,
B is sure that A provides a suitable integrity level and can
therefore process the received information. Then depending on
the use case, a service can “own” a tag, which means that for
more flexibility it can chose to not enforce the condition linked
to it. For example, the proxy owns several user confidentiality
tags, i.e., reflecting the confidentiality concern of a user This
allows the proxy to be able to receive information from several
users of the car. A confidentiality tag of a user U in its label
would constrain it to receive information only from U.

The enforcement of the IFC policies is performed in the
middleware of each service each time a message is received
or sent. The security logic is isolated from the application
logic. Because a service is not necessarily aware of the label
used by another service, the middleware of the sender adds
some metadata to the message payload describing the label,
on which the receiving middleware has to enforce the IFC
policy. The tags in a service label are static and defined by
the car manufacturer at design time. Only user tags can be
generated by the proxy during runtime, e.g., when a new user
get logs into the car. In this case, the proxy can grant the
ownership of the new tag to some services like the HU. It
allows these services to securely handle the data of the user
and the communications with the TPAs (see next paragraph
“IFC/DFT Interface”). Labels and tags are only for an on-
board usage and we only trust on-board services to enforce



the IFC rules. External communication partners and TPAs do
not enforce any of them. Messages to and from the outside
are filtered by the proxy based on IFC rules. Messages to and
from a TPA are filtered and linked to IFC rules by services
authorized to communicate with it. In comparison to DFT, the
IFC framework controls the data flows at a coarser level and
provides better performance, a necessary requirement when
dealing with time-critical mechanisms.

IFC/DFT Interface: This interface concerns the services
allowed to communicate with the TPA. The applications of
the concerned services are not aware of this interface. Their
middleware links IFC labels to DFT taints. The TPA is not
assigned any label like a service, but a user identity is linked
to it. Along with the taint field, an identity field is added to
the header of each messages from and to the TPA.

Every authorized service can send data to the TPA without
constrain. The service middleware makes sure to taint the
message header with (3), if the data are sensitive for the
car manufacturer. For the driver’s private data, the service
taints the message as (2) or (1) depending on the information
sensitivity. The middleware adds the identity field of the user
whose information are private and the DFT framework makes
sure that this identity is the same as the one the TPA has been
assigned to, otherwise it ignores the message.

For every tainted message coming from the TPA, the middle-
ware adapts its processing based on the received taint:

• a taint (3) forces the middleware to make sure that the
data do not leave the car. The proxy will not forward
such data to the outside. A service, whose applications
send information out (i.e., with a user tag in their label),
will not process them.

• the taint (2) and (1) impose the middleware to own the
user confidentiality tag or have it in its label, in order to
pass the data to its applications. The difference between
(1) and (2) allows the proxy to forward data with taint
(2) only to very trusted external peer, e.g., the user’s CE
device and (1) to less trusted ones, e.g., Facebook.

• a taint (0) does not impose any constrain, the service can
freely use the data in any way, it wants.

Traditional IFC [19], [21] classifies every output of a TPA,
which receives sensitive information, as necessarily containing
sensitive information as well. DFT allows us to follow the
exact processing of the sensitive data, so that not all outputs
of the TPA need to be considered highly classified. But DFT
does not consider data integrity. All output of the TPA can
be potentially dangerous. Only middleware layers performing
input validation should be authorized to process these outputs.

IV. IMPLEMENTATION

This Section describes the integration of a DFT tool with
our IP-based automotive middleware.

Middleware: For the implementation, we chose the middle-
ware Etch, an open-source software project under the Apache
2.0 license. Etch proposes a modular and extensible architec-
ture providing an efficient serialization and is considered as
a serious candidate for the automotive purpose [22]. We used

its C-binding and extended the header for our 2 middleware
versions: with a field of 8 bytes for the IFC version (4 for
the integrity tags, 4 for the confidentiality ones) and with a
identity field of 4 bytes and a taint field of 4 bits for the DFT
version (each bit expressing the presence of a taint). Label
serialization/extraction and enforcement is performed in the
software logic of the middleware.

Then we developed an Etch proxy in C, similar to the
one in [11]. The proxy provides two secure communication
interfaces: external over SSL/TLS and internal over IPsec.
Internal and external communication partners communicate
over a mirror-service, making the communication decoupling
completely transparent. The proxy is application-unaware. Ei-
ther it extracts the label/taint field (depending on the message
target) from the payload of an outbound message and enforces
the required policy, or it adds a label/taint field (depending on
the message source) to the inbound message. User tags and
identity for DFT are based on the name provided by the client
certificate of the SSL/TLS connection.

The DFT Tool: We use the DFT framework libdft [8].
libdft relies on the Intel’s Pin [13] for DBI, i.e., in order to
inject custom code into an unmodified binary during runtime.
libdft allows to instrument machine instructions, system calls
to track data flows between registers and memory locations.
It can also raise a warning or stop the runtime in case of
unauthorized behavior. This tool provides good performance
in comparison of other frameworks [18] and a well-defined
API for a customizable security enforcement.

More than just using libdft, we extended its expressiveness
to the four taints mentioned in Section III-A, one byte of
process memory being tagged by two bits of the shadow
memory. We limited ourselves to four taints, in order to keep
the size of the shadow memory reasonable and to provide
an efficient taint propagation and management, locally for
the DFT tool and for the other services. We extended libdft
with the possibility to taint differently a user input (i.e., input
from the keyboard) from a file input. The framework manages
the access to files present on the HU thanks to a white-list
specifying for each TPA how to taint information read from a
file and how data should be tainted in order to be written in a
file. The framework monitors system calls related to network
inputs and outputs. It allows us to taint data of the ingress
traffic depending on the received taint value. For outbound
messages, the framework automatically determines the taints
of the payload and injects them in the header.

Testing environment: We performed the implementation
and experiments of Section V-A on computers interlinked
with Gigabit Ethernet and running standard 32-bit Fedora
Linux on an Intel Atom N270 (1,6 GHz) with 1GB RAM.
This configuration is comparable to current unix-based HUs,
which operate at 1,3 GHz [23]. Besides, we did not do
extensive modifications of the Etch middleware mechanisms,
which already provides suitable performances when tested on a
microcontroller [22]. Therefore we believe that the addition of
a simple IFC/DFT access control layer should not significantly
slow down the middleware. This needs, however, to be verified



for a more rigorous validation.

V. EVALUATION

In order to evaluate our system, in this Section we quantify
the overhead of our implementation and discuss its security.

A. Performance Evaluation

We measure the middleware throughput (in call/sec) be-
tween a CE device and an on-board TPA, running on the HU, in
order to demonstrate the overhead of our DFT/IFC framework.
Benchmarks are run on three separate machines running Etch
services: a CE device, a proxy and the HU. The CE device
sends a simple Etch message containing an integer to the TPA.
The TPA retrieves a series of integers from a file on the HU.
Based on the received numbers and information read from
the file, it computes an answer and sends it back. We vary
the size of the returned buffer to stress the middleware and
taint propagation mechanisms. The TPA plays the role of a
server, providing infotainment content to the CE device (e.g.
music, picture). The messages go first through the proxy, then
through a trusted HU service and finally to the TPA. IFC rules
are enforced between proxy and HU service. Our results, in
Figure 4, present the throughput performances of this scenario
for various security levels and buffer sizes. We first measured
them without any security feature enabled as reference (1). We
then performed the same tests when adding the communication
encryption (2) (SSL on the link CE device–Proxy and IPsec
for the link Proxy–HU) and the enforcement of IFC rules (3),
in order to determine a lower bound overhead imposed by
the security framework without DFT. We finally repeated the
measurements, while adding the DFT-based monitoring of the
TPA (4) and evaluated its impact.

Discussion: We realized that, when normalized, the perfor-
mances with the different enabled security features are propor-
tionally the same regardless of the buffer size. We present the
normalized results in Table I. It shows that the encryption is
responsible for the most significant part of the system overhead
(∼43%). The impact of the IFC framework between proxy
and HU service stays minor in comparison (∼4%). The DFT
monitoring decreases the system performance by 22%. This
penalty is mostly due to the instrumentation of the sockets
and the taint propagation. With DFT enabled, the use of
bigger buffer is more suitable and achieves a relatively large
bandwidth (up to 1,23 Mbit/sec). The use of DFT and IFC can
therefore be suitable for infotainment use cases involving a CE
device and requiring moderate bandwidth. Our example makes
use of a communication between proxy and HU, in order
to show the impact of using IFC and DFT simultaneously.
Direct communications CE device–TPA over the proxy reach
a bandwidth of 2,17 Mbit/sec with DFT and encryption.

However, our evaluation is mostly focused on our middle-
ware in a small 3-node network for a specific scenario in-
volving a simple TP application. Tests performed with libdft
for bigger applications like a web-browser [8] or a MP3-
player [18] have shown more significant latency. For optimal
performances, the TPAs should remain small and simple and

Fig. 4. Middleware throughput (1-4) and bandwidth (5) average for various
buffer sizes and security features enabled (Enc.: The communications are
encrypted, IFC: IFC rules are enforced, DFT: the TPA is monitored).

TABLE I
NORMALIZED PERFORMANCE OF THE SCENARIO IN SECTION V-A.

FACTOR (I) AND (II) TAKE RESPECTIVELY (1) AND (3) AS REFERENCE.

Null (1) Enc. (2) IFC/Enc. (3) DFT/IFC/Enc. (4)
Factor (i) 1 0.57 0.55 0.43
Factor (ii) - - 1 0.78

maximize the use of “trusted”, i.e., non monitored, libraries.
Additional investigations in larger network producing more
traffic are recommended for further validation.

B. Security Discussion

For this section we describe how our system would react
to the attack scenarios of Section II-B. Both scenarios feature
an attacker taking control of the TPA, e.g., through a buffer
overflow vulnerability. The DFT framework is designed and
configured to detect attacks involving the overwriting of stack
pointers and can stop the application. As a result an attacker
cannot compromise the integrity of the TPA.

About the integrity scenario: This scenario considers an
unauthorized access to car resources that may disturb the car
functionality, e.g., access to a process, file of the HU or
to critical services on other ECUs. The DFT is configured
to block every system call involving the access of shared
memory, filesystem and inter-process communications and
restricts the ones concerning the access to HU files and
network sockets. The TPA is therefore constrained to write
in the files that have been whitelisted by the rule set provided
by the car manufacturer. In a same way, the TPA is able to
communicate only with services that have been authorized
and therefore never gets access to highly critical services,
e.g., brake controller. The TPA cannot directly get access
to a HU service, except through a socket, but it has to be
authorized to do so. Besides, in case of an unsuitable rule
set, the contacted middleware can still ignore the message
if it considers it does not provide the necessary security
mechanism, e.g., input validation. However, this system does
not protect against denial-of-service attacks.

About the confidentiality scenario: This scenario mostly
considers the release of sensitive information to the outside.
As said earlier, the TPA is constrained to whitelisted files, its
capacity to write and read are controlled as well. Every data



read from a file or received from another service are tainted
with a value related to the sensitivity of the file or to the
values present in the message header. This taint is propagated
during runtime. In order to release data, the TPA either write
the data into a file, whose access is whitelisted, or send them
through the network to another authorized service. We do not
consider information leakage through a file here and focus on
the network exchanges heading out, i.e., through the proxy.
The TPA may directly contact the proxy. The proxy, based
on the taint of the message header, decides whether it may
forward to the outside. The TPA may decide to choose an
indirect way to reach the proxy: through another service, which
communicates with the outside. When receiving a message
from the TPA, the service middleware decides whether it can
process the data or not. Having a user tags in its label generally
means a high chance to forward data to the outside, so the
middleware should refuse data tainted with (3). On the other
hand, services with internal service tags, are not likely to
have their information sent to the outside. However the tag-
ownership concept may still allow such information to be sent
out, therefore the decision to process (3)-tainted depends on
the use-cases the ECU is involved in and is set by the car
manufacturer. As for (2)- and (1)-tainted data, they can be
processed only by services owning or labeled with the user
tags related the user identity contained in the message header.
This allows to share private information to services respecting
the user’s privacy. However this does not allow to maintain
the difference between the 2 types of sensitivity.

Unlike OSes like Android, which controls applications with
a limited set of coarse permissions, DFT allows a very fine
granular security customization and enforcement. A main
advantage of the DFT concerns the application flexibility.
Even if the TPA receives sensitive data, the DFT framework
determines and shares whether the outputs have to be con-
sidered as sensitive, or not. In addition, the coupling of IFC
and DFT provides an efficient enforcement to secure internal
information exchanges, while monitoring untrusted TPAs in
contact with the outside world.

System limitation: We assumed in Section II-B that the
integrity of the OS, the middleware and the DFT framework
were ensured by a secure boot. However these mechanisms
do not protect against runtime attacks, which could be signif-
icantly harmful when being performed on critical entities like
the proxy or the HU. They may be detected by host-based
intrusion detection tools performing scans and recognition of
instruction patterns within a running platform [24]. Though
these solutions might significantly degrade the system perfor-
mance and should be used in a carefully selected manner.

VI. CONCLUSION

In this paper, we presented a security architecture, lever-
aging DFT engines to secure the on-board integration of
automotive TPAs. Locally, the DFT framework controls and
monitors the TPA against exploitation of security vulnerabili-
ties. Regarding the network communications, the middleware-
based exchange of taint information allows the DFT tool and

the trusted services to preserve the data confidentiality and
system integrity. Interface rules between labels and taints allow
an efficient and simultaneous integration of the local DFT and
the car-wide IFC. However while enhancing the car security,
DFT/IFC tools have shown their limits in term of performance
and can not be used for time-critical applications without
further optimization but are suitable for an infotainment usage.
Full virtualization solutions may be an efficient and secure
alternative, that we intend to investigate.
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