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ABSTRACT
Adversarial machine learning has attracted attention because it
makes classifiers vulnerable to attacks. Meanwhile, machine learn-
ing on graph-structured data makes great achievements in many
fields like social networks, recommendation systems, molecular
structure prediction, and malware detection. Unfortunately, al-
though the malware graph structure enables effective detection of
malicious code and activity, it is still vulnerable to adversarial data
manipulation. However, adversarial example crafting for machine
learning systems that utilize the graph structure, especially taking
the entire graph as an input, is very little noticed. In this paper, we
advance the field of adversarial machine learning by designing an
approach to evade machine learning-based classification systems,
which takes the whole graph structure as input through adversar-
ial example crafting. We derive such an attack and demonstrate
it by constructing MANIS, a system that can evade graph-based
malware detection with two attacking approaches: the n-strongest
nodes and the gradient sign method. We evaluate our adversarial
crafting techniques utilizing the Drebin malicious dataset. Under
the white-box attack, we get a 72.2% misclassification rate only by
injecting 22.7% nodes with the n-strongest node. For the gradient
sign method, we obtain a 33.4% misclassification rate with 36.34%
node injection. Under the gray-box attack, the performance of our
adversarial examples is evenly significant, although attackers may
not have the complete knowledge of the classifiers’ mechanisms.
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1 INTRODUCTION
Graph structure-based machine learning networks have become
popular inmany fields because they are discrete and universal. More
precisely, classification on graph structure can assist, especially
in complicated and informative networks such as social networks,
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molecular chemistry, and biology, as well as malware detection [19].
At the same time, adversarial machine learning gains ground day by
day [8, 16, 17]. Adversarial examples, crafted by small perturbation
of inputs, can influence most of the classifiers based on machine
learning and deep neural networks. Though, one question that is
yet to be answered is how to craft adversarial examples for the
underlying classification systems on graph structure without re-
moving nodes and edges from the original graph. This question has
attracted little attention from the scientific community so far.

All existing approaches try to tackle the problem mentioned
above in two ways. On the one hand, from the standpoint of craft-
ing adversarial examples on the graph structure, almost all works
primarily focus on adding/removing nodes and edges in the graph
to craft adversarial examples [5, 24]. However, when, for instance,
crafting malicious mobile apps, we cannot remove nodes and edges
from the function call graph if we want to keep the app’s function-
ality. Therefore, we cannot use the existing approaches to classify
malware under adversarial examples automatically [5, 24].

On the other hand, in the area of adversarial example crafting
for classification, many works do not consider the classification
on the graph structure. For example, researchers have proposed
a gradient-based attack to evade deep networks by only chang-
ing a few specific bytes at the end of each malware sample while
preserving its functionality [11]. This attack, though, considers
the bytes of binary, rather than the graph structure, as the input.
Others have suggested attacking recurrent neural networks with
the discrete characteristics of the text provided as input [3]. Last
but not least, there exist several works that discuss how to craft
adversarial examples for images [14, 15, 21].

In this paper, we propose MANIS, an adversarial example craft-
ing framework capable of evading machine learning-based malware
detection systems using the whole graph data classification and
maintaining all nodes in the original graph in order to preserve the
malware’s functionality. We leverage two core methods, which can
impose classifiers to produce erroneous results. The first method
uses the n-strongest nodes; these nodes have the most influence on
their neighbors. In brief, we insert the strongest nodes iteratively
until we can evade the classification boundary in order to misclas-
sify the malicious sample to a benign one. The second method uses
the gradient sign approach to craft the adversarial examples. Due to
the discrete feature of the graph representation, we cannot directly
calculate the gradient of the objective function like differential func-
tions. Thus, we aim at finding the gradient direction and use it to
guide the insertion of nodes to the graph. We also implement a
projection process, mapping the updated value depending on the
gradient direction to graph’s histogram representation.

https://doi.org/10.1145/3341105.3373859
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Figure 1: Adagio malware detection. Top: Detection system includes six steps. Botton: 15-Dalvik instruction categories.

To evaluate MANIS, we use the Android app ecosystem. More
precisely, we train our framework with 49,947 benign applications
from the AndroZoo project [1] and with 5,560 malicious applica-
tions retrieved from the Drebin malware samples [4]. After that,
we apply our attacking methods on the malware samples we have
using n-strongest nodes, gradient sign method, and random nodes
injection. The results reveal that, with the gradient sign method, the
classifier misclassified 33.4% malware to benign only with 36.34%
node injection, whereas, with the n-strongest nodes method, it mis-
classified 72.2% malware to benign only with 22.7% node injection.

In summary, we make the following main contributions:
• We develop the first framework to attack a classification
system using the whole graph structure without removing
any node in the original graph.

• We implement our attack against a widely-used Android
malware detection framework on the graph structure.

• We evaluate our adversarial methods using real malware
and test them for both white-box and gray-box attacks.

2 BACKGROUND
2.1 Adversarial Machine Learning
Adversarial machine learning spans both the analysis of vulnerabil-
ities in machine learning algorithms and algorithmic techniques
that generate more robust machine learning networks. On the one
hand, we consider that the attacks against machine learning algo-
rithms [12, 13] have two directions: (𝑖) attacks against the classifier
which means attackers can change their behaviors to mislead the
classifier at testing time [5, 8, 9, 11, 15, 21, 24] and (𝑖𝑖) attacks that
modify the training dataset in order to construct a corrupted clas-
sifier, also known as poisoning attack [10, 22]. On the other hand,
adversarial examples crafting (i.e., a process to utilize the small
perturbations to legitimate inputs with the intent of misleading
machine learning models) is one of the most popular approaches.
The perturbations are designed to be as small as possible to mis-
lead classifiers rather than a human being as a user to classify the
resulting input.

2.2 Android Apps and Code Analysis
Android applications are primarily written in the Java programming
language, compiled into DEX bytecode, and executed in either
the Dalvik virtual machine or the Android Runtime (ART).1 Each
Android application is composed of DEX files, AndroidManifest.xml,
Android resources files as well as other configurations.

Static analysis of Android apps provides an understanding of
the code structure without executing the program. It can help to
ensure that the code adheres to industry standards. A typical static
analysis process starts by expressing the code of the analyzed app
to some abstract models. Call graph analysis [23], or API call graph
analysis [18], is a technique to show the functions’ transfer from
callers to callees. It represents every possible run path of the pro-
gram with a static method. In real code analysis, the call graph is
generally over-approximating because of the points-to problems
and undecidable targets issues.

2.3 Malware Detection on Graph
One of the most popular machine learning networks for malware
detection on a graph is the Adagio network proposed by Hugu et
al. [7] and is illustrated in Figure 1. The extracted call graph is a
directed graph containing nodes for each application’s functions
and edges from callers to callees. Let us present this graph as a
4-tuple 𝐺 = (𝑉 , 𝐸, 𝐿, ℓ), where 𝑉 is a finite set of nodes. 𝐸 ⊆ 𝑉 ×𝑉

is shown as the set of directed edges. L is the multiset of labels in
the graph, and 𝑙 : 𝑉 → ℓ is the labeling function. Adagio defines 15
distinct categories of instructions (i.e., bottom part of Figure 1) based
on their functionalities.2 The labeling function ℓ is defined by One
Hot Encoding with 15 distinct instruction categories. Consequently,
the set of labels L is presented by a subset of all possible 15-bit
sequences.

Overall, the detection system on the graph can be summarized
as the following expressions:3

1https://source.android.com/devices/tech/dalvik
2Dalvik’s specification defines 256 instruction in total
3More detailed information can be found in the Adagio research paper [7]
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𝑓 (𝐺ℎ (𝑉 , 𝐸)) =𝑊 ∗ 𝑋 + 𝐵

𝑋 = 𝑆_𝐵𝑖𝑛(𝑆_𝐻𝑖𝑠𝑡 (𝑆_𝐻𝑎𝑠ℎ(𝑒𝑚𝑏𝑒𝑑 (𝑉 , 𝐸)))), (1)

where 𝑒𝑚𝑏𝑒𝑑 () stands for the node embedding, 𝑆_𝐻𝑎𝑠ℎ means the
neighborhood hashing, and 𝑆_𝐻𝑖𝑠𝑡 states the feature embedding.
Lastly, 𝑆_𝐵𝑖𝑛 represents a function which maps the histogram 𝐻

to a 𝑃-dimensional vector with 𝑏𝑖𝑛; 𝑃 = 𝑁 ∗𝑀 , M is the maximum
value of all bins and N is the number of bins in each histogram.
Each 𝑏𝑖𝑛 of the histogram is associated with a M dimension. These
dimensions are filled with several "1"s according to the value of
𝑎𝑖 , whereas the remaining 𝑀 − 𝑎𝑖 dimensions are set to 0. This
means, for example, node 5404 (𝑁5404) in 𝑏𝑖𝑛𝑖 appears 11 times,
then 𝑏𝑖𝑛𝑖 represents 11 as [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, . . . ]5404, like
the 𝑃 vector in Figure 1.

3 DESIGN
3.1 Overview
We associate each graph 𝑔𝑖 ∈ 𝐺 with a label 𝑦 ∈ 𝑌 = {−1, 1}, where
𝑌 = 1 means that the graph is classified as malicious in the binary
classification and 𝑌 = −1 that the graph is benign. The dataset
𝐷 : {(𝐺,𝑔𝑖 , 𝑦𝑖 ), 𝑖 ∈ 𝑁 } is represented by pairs of graphs and their
labels. Examples of such tasks include, among others, classifying
the drug molecule graphs according to their functionality as well
as a social community characteristic by features. In this type of
graph representation, the classifier 𝑓 ∈ 𝐹 : 𝐺 → 𝑌 is optimized to
minimize the following loss function:

𝐿𝑜𝑠𝑠 = 1/𝑁
𝑁∑
𝑖=1

𝐿𝑜𝑠𝑠 (𝑓 (𝐺𝑖 ), 𝑦𝑖 ), (2)

where 𝐿𝑜𝑠𝑠 (∗) is the cross entropy by default.
However, for the adversarial examples crafting task, our purpose

is to maximize the loss function. In other words, we need to increase
the possibility of misclassification with small perturbations of the
original graph. Given a trained classifier 𝑓 and an instance from
the dataset 𝐷 : {(𝐺,𝑔𝑖 , 𝑦𝑖 ), 𝑖 ∈ 𝑁 }, the attacker aims to misclassify
graph 𝐺𝑖 , which can be explained as follows:

max
𝐺∗

𝐿𝑜𝑠𝑠∗

𝐿𝑜𝑠𝑠∗ = 1/𝑁
𝑁∑
𝑖=1

𝐿𝑜𝑠𝑠 (𝑓 (𝐺∗
𝑖 ), 𝑦𝑖 )

𝐺∗
𝑖 = 𝐺𝑖 + 𝛼 ∗ badv (𝐺𝑖 ),

(3)

where b is a function responsible for creating a small perturbation
in order to misclassify the graph. Therefore, we need to construct
𝐺∗ in order to maximize the loss function.

Because this theoretical model is generative, it targets not only
the node embedding based system but also those systems that take
the whole graph/subgraph as feature embedding. On the other
hand, for other graph-based detection systems [2], which could not
allow deleting nodes and edges from graph/subgraph, the above
model is also suitable. The methods above demonstrate how we
can maximize the loss function on the graph. Although this paper
focuses on Adagio, our attacking approaches can easily be extended
to other models as well.

3.2 Adversarial samples crafting on graph
N-strongest Nodes. Hugo et al. [7] present a method to construct
a relevance map by shading each node in the graph with the sum
of the weights of the neighborhood to which it belongs. As a conse-
quence, they find the node with maximumweight values, which has
the most significant influence on the neighborhood nodes. How-
ever, in our work in order to successfully misclassify a malicious
application to a benign one (changing Y from a positive to a nega-
tive value), we need to find the node(s) with the minimal weights
and insert these nodes multiple times in the graph until 𝑌 < 0. We
define this method as the n-strongest nodes. The strongest node in
our work means the node, the weight value of which is minimal.

The initialization process is a step to prepare the weight and
find the node(s) which have the minimum weight value. We get
the weight value from the machine learning system through train-
ing and testing. With these results, we obtain n different nodes
directly through n minimal weight values. We treat these nodes
with minimal weight values as the n-strongest nodes. For instance,
after malware detection, we get the five strongest nodes, which are
[4116, 0, 4110, 12755, 13314]) with histogram representation.

After the initialization step, we need to pick up each malware
sample to craft its benign variant in order to be misclassified by the
detection system. To do so, we calculate the number of nodes in
the original graph and set the number of nodes that can be injected
into the original graph. This injected number is changed by the
percentage of total nodes in the graph with 𝛼 . The misclassification
success rate is different due to the variety of this value.

The injection operation is a crucial step in the n-strongest nodes.
As described in the detection system in Section 2.3, there are several
steps (𝑋 = 𝑆_𝐵𝑖𝑛(𝑆_𝐻𝑖𝑠𝑡 (𝑆_𝐻𝑎𝑠ℎ(𝑒𝑚𝑏𝑒𝑑 (𝑉 , 𝐸))))) from original
graph 𝐺 (𝑉 , 𝐸) to 𝑋 as the input of machine learning network, in-
cluding call graph extraction, node embedding, neighborhoods
hashing, feature embedding histogram, and histogram extension.
We construct our attacking model after neighborhood hashing.

The process of constructing adversarial examples can be sum-
marized as follows. First, we transform the function representation
of nodes in the graph to 15-bit (15 reduced instructions in function
embedding) boolean representation. Then, we select nodes from the
n-strongest nodes list and map these nodes to the boolean represen-
tation of the labeling function (the 15-bit representation of a node is
labeling) to attach our strongest nodes. Following the design of Ada-
gio, we do not consider the graph’s edge embedding in our design.
We only inject the corresponding nodes into hashing values, which
consider the current node and neighborhoods’ node embedding.
After this step, we carry out the process of feature embeddings and
transform the histogram 𝐻 to a 𝑃−dimensional vector, which is
further fed into the machine learning system to classify the apps as
malware or benign. In our work, we demonstrate n strongest nodes
injection with different numbers of n strongest nodes (from 1 to 5)
in order to decrease the total injected nodes’ ratio. This could be
extended to scenarios with more than five injected nodes.

In the last step, especially for the n-strongest node injection,
we design different attacking strategies for detection models with
histogram and non-histogram extension. As mentioned in the Sec-
tion 2.3, histogram extension distributes a node contribution in a
graph to thousands of subcomponents. As a consequence, it is more
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Figure 2: Gradient Mapping

challenging to craft adversarial examples on thousands of subcom-
ponents than on one component. Also, the histogram extension has
a significant influence on the misclassification rate. This is why we
need comparable designs for the same attacking method.

Gradient-Based Approach. We use the Android apps ecosystem
to evaluate our framework. To do so, we manipulate the graph of
Android apps𝐺 to change malicious apps’ graph𝐺 into benign ones
𝐺 ′ with gradient sign method. To successfully obtain the graph of
the malicious apps, we have the following requirements:
R1: In a histogram extension scenario, we cannot include any value
less than zero in the 𝑃-dimensional vector because these values
stand for the occurrence of the corresponding nodes in a graph. We
cannot express some nodes appearing less than zero time. For exam-
ple, a node 𝑁250 occurring 5 times is represented as [1, 1, 1, 1, 1]250.
We cannot represent it as [1, 1, 1, 1,−1]250.
R2: With histogram extension representation, all "1"s—the number
of "1" stands for the occurrence times of node—should align at
the beginning of the 𝑃-dimensional vector. For example, a node
𝑁250 occurring 5 times is represented as [1, 1, 1, 1, 1]250. We cannot
represent it as [1, 1, 1, 1, 0, 0, 1]250.
R3: Both for the histogram extension and the non-histogram ex-
tension scenarios, we cannot reduce the occurrences of the orig-
inal nodes number from the original graph. For example, for the
node 𝑁250 occurring 5 times, we cannot represent it with 4 (non-
histogram extension) and [1, 1, 1, 1, 0]250 (histogram extension).

In the following, we state how these requirements have influenced
our design decisions.

Gradient Computation: Our attack aims to increase the number
of the misclassified malicious samples (i.e., it decreases the mal-
ware classification confidence or increases the misclassification
rate). This process can be defined as one constrained optimization
problem. Figure 1 illustrates the aforementioned statement. Our
work includes gradient calculation and node mapping (projection).

First, we present the gradient calculation for scenarios of his-
togram extension. To begin with, we use the gradient sign method
to craft the manipulated graph roughly. We present the Equation 4
as a constrained optimization problem.

min
𝑛

𝑓 (𝐺ℎ)

𝑠 .𝑡 .𝑑 (𝐺ℎ,𝐺
′
ℎ
) ≤ 𝑚,

(4)

where𝐺ℎ is a 𝑃-dimensional vector and stands for the whole graph
embedding, presented with Equation 5 in Adagio [7]; while𝐺 ′

ℎ
is the

manipulated graph embedding. We solve this optimization problem
with the gradient sign method through the following squared loss
expression as our objective function:

𝑓 (𝑋 ) = (𝑋 ∗𝑊 + 𝐵 − 𝑌 )2, (5)

where X is the node representation with its number of occurrences
(non-histogram extension) or P-dimensional vector (histogram ex-
tension), B presents the offset, and Y is the label. Due to the non-
differentiability of the objective function, we define a direct vector
that has the same direction with the gradient in order to get the
gradient of error function ▽𝑓 (𝑋 )/𝑋 . Similarly, since each graph-
ical representation does not include all node components in the
histogram representation, we cannot directly utilize the whole vec-
tor representation of gradient direction (getting from the trained
weight values) in our work.

Here, we introduce a simplified representation of the gradient di-
rection. Figure 2 (a) shows a gradient vector (red dashed line arrow)
with seven components (black arrows). Meanwhile, Figure 1 (b)
presents a vector with only four components. As a consequence,
the gradient is changed (i.e., red dashed line). On the other hand,
this representation also has a negative component (i.e., line 1 in Fig-
ure 1 (b)), which is not allowed in our graph embedding mechanism
because each component stands for the number of occurrences of
the node. Therefore, in order to keep the same gradient direction,
we need to delete or transform this negative component (i.e., line 1
on the left side in Figure 1 (b)) to positive forms. In our work, we
change the negative component to the inserted positive component
(change line 1 in Figure 1 (b) to line 1 Figure 1 (c)).

In the last step, we extend the length of each component—the
length of line 2 in Figure 1 (d) is two times that of line 2 in Fig-
ure 1 (c)—in order to get the same direction with the gradient (i.e.,
the red dashed line in Figure 1 (a) and red dashed line Figure 1 (d)
are parallel). After we get the direction of the simplified gradient,
we can use the gradient sign to craft the manipulated graph, which
has no negative components due to the gradient mapping scheme.

With this step, we get the manipulated 𝑃-dimensional vector by
the gradient sign method. Again, taking 𝑁250 as an example, the
original representation is: [1, 1, 1, 1, 1]250 and after manipulating by
gradient sign method, it is changed to:

[1, 2, 1, 1,−1, 0, 0,−1, 2,−4, . . . , 1,−4, 2, . . . ]250

This representation cannot meet the requirements 𝑅1 and 𝑅2. Thus,
we need an additional operation to get the legitimate 𝑃-dimensional
vector of function call graph. We will discuss this later in the paper.

Gradient calculation under the non-histogram extension is a
straight-forward issue compared to gradient calculation under the
histogram extension. We can get the gradient in the same man-
ner as in the histogram extension. However, we do not need to
construct the reduced gradient direction as in the histogram exten-
sion. We manipulate the node value (the number of occurrences)
directly on the graph with the histogram representation like the
pixels in an image. For example, we have nodes in the graph with
histogram representation [. . . , 52, 34, 98, . . . ] . After gradient-based
manipulation, this representation changes to:

[. . . , 53.5, 32.5, 99.5, . . . , . . . ]

with 𝛼 = 0.5, and the sign value of the first and third elements are 1
and the second is -1. So far, we acquire the manipulated histogram
representation, but we cannot directly craft an adversarial example
on it because it cannot meet 𝑅3. Therefore, we need to perform
node projection, which is the same as the histogram extension.
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Node Projection: With the gradient sign method, we get the ma-
nipulated graph with the form of feature embedding. Because of
the gradient sign operation (X′ = X + sign(r_direct)), in the his-
togram extension, we get the values of some nodes of more than 1;
meanwhile, others are less than 0, which indicates the number of
occurrence of the node.

Therefore, we need to operate the graph generated by the gradi-
ent sign method in order to meet these requirements (𝑅1 and 𝑅2).
First, we iterate all nodes in the graph and discover all nodes that
appear more than one time, which means that the 𝑃-dimensional
vector of the node has at least one sub-components (𝑉 = [1, . . . ]).
This way, we narrow the injected node as much as possible by elim-
inating the never appeared nodes in the graph. In other words, we
do not introduce new nodes into the original graph. Next, for the
nodes appearing more than one time, we divide manipulated sub-
components into two groups: the negative and the positive group.
For elements in the negative group, we reassign "1" replacing it
with a negative value, which means this sub-component appears
one time. By this operation, we meet the 𝑅1 requirement. For the
elements in the positive group, we reduce these manipulated val-
ues (by gradient sign method) to "1"s as well. This means that this
sub-component can only appear one time. With these steps we can
change the manipulated 𝑃-dimensional representation:

[1, 2, 1, 1,−1, 0, 0,−1, 2,−4, . . . , 1,−4, 2, . . . ]250
to a new one:

[1, 1, 1, 1, 1, 0, 0, 1, 1, 1, . . . , 1, 1, 1, . . . ]250
So far, the new representation cannot meet the 𝑅2 requirement

because these "1"s appear not only at the beginning of the vector
but also in the middle and at the end. In order to meet 𝑅2, we need to
reduce the number of these "1"s, which indicates the appearance of
sub-components. In other words, this means that these "1"s should
be aggregated at the beginning of the 𝑃-dimensional vector.

The last issue is how many sub-components should be kept in
the 𝑃-dimensional vector, which is heavily influenced by the num-
ber of injected nodes and also the misclassification rate. We adjust
the injected sub-components number from 1 to 5 to measure our
results. In theory, it could be extended as much as possible until
the largest number of sub-components. Finally, we can get the final
representation of vector 𝑃 as: [1,1,1,1,1, 1,1,1,1,1, 0, 0, 0, . . . ]250. In
this representation, the first five "1"s stand for the original number
of occurrences. The second five "1"s stand for the adjusted occur-
rence times (vary from 1 to 5) by projection operation. These rest
sub-components will be "0"s.

For the issue of node projection in the non-histogram exten-
sion, we need to operate the aforementioned manipulated graph
in the previous section in order to meet 𝑅3. Therefore, we design a
two-step node projection scheme. First, we need to keep the num-
ber of nodes in the original graph. For example, we change the
manipulated vector (graph’s vector representation) from:

[. . . , 53.5, 32.5, 99.5, . . . , . . . ]
to:

[. . . , 53.5, 34, 99.5, . . . ]
by comparing the corresponding values in the original graph. Sec-
ond, we use the ceiling operation to get the number of injected

nodes because we cannot inject nodes with half. Then, we get the
new vector: [. . . , 54, 34, 100, . . . ]. We also set a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 value to
limit the number of injected nodes. The value of threshold will
influence the value of the misclassified rate and injected node ratio,
demonstrated in Section 4. Finally, we compare all manipulated
input values with the threshold and accomplish the node projection.

Random Node Injection. This is the simplest attacking model
which randomly selects the nodes and inject them into the graph.
In our work, we only select nodes and not edges in the graph since
we modify our graph structure after neighbors’ nodes hashing oper-
ation, which has already considered the node and edge connections.
Although this attacking method is not expensive, the misclassifica-
tion is not very significant. We will compare these results with the
approaches above in Section 4.

3.3 Adversarial Android Apk examples
So far, we have discussed how to get the adversarial examples based
on a graph structure. However, if we want to evade the malware
detection system automatically, at the end of our processing, we
need to construct adversarial Apk examples from the modified
graph. In our work, we consider the dead-area to store the modified
graph nodes, which means the injected nodes, which stand for
the functions in Apk files, cannot be invoked forever. However,
for the targeting malware detection system, the modified malware
samples cannot be detected by it. Meanwhile, the functionality of
the application should remain the same. In this work, we use the
Android repackaging method for accomplishing our purposes.

4 EVALUATION
Our attacking methods are crafted in a framework, called MANIS,
and evaluated on large datasets of real Android applications. First,
we show how do we prepare the dataset we used in our work
to evaluate our attacking methods. Then, we proceed with the
evaluation of the n-strongest nodes attacking approach. For the
evaluation of the other attacks, we state our results as follows. We
measure our attacking approaches not only from the success rate
of the misclassification but also from the number of inserted nodes
and the relationship between the number of inserted nodes and the
successfully misclassified rate. Finally, to illustrate the efficiency
of our crafting adversarial examples, we testify with the randomly
selected nodes from the function call graph in order to evade the
detection system.

4.1 Dataset
The dataset consists of 49,947 benign and 5,560 malicious An-
droid applications obtained from the AndroZoo [1] and the Drebin
project [4] respectively. To decide whether an application from An-
droZoo is benign or malicious, we leverage VirusTotal [20]. Overall,
we got 49,947 benign from the 100,288 samples we tested.

To extract the function call graph from Android’s APK/DEX files
and feed these graphs to the machine learning detection system
after several graph operation steps, we utilized the Androguard
framework [6]. Finally, we obtained the modified function call
graph as the target of adversarial examples crafting.

We tested our work with a small and a big dataset. For the
small, we selected 1000 out of the 49,947 benign samples and 415
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Figure 3: Histogram and non-histogram extension accuracy

malicious ones. For the big dataset, we utilized all the 49,947 benign
and 5560 malicious samples. The final results came from both of
them. Additionally, we split our dataset into five folds. We used the
four folds to train and the last one to test our model.

4.2 White-box and Gray-box Attacks
In white-box attacks, we assume the attackers are allowed to access
any information of the target malware classifier, including the
weights, offsets, and labels. Meanwhile, we define gray-box attacks
as the ones that the attackers can access limited information about
the target classifier. However, attackers can access other classifiers
(weights, offsets as well as labels) that are trained by other folds.
For the training and testing data, in both white-box and gray-box
environments, attackers can retrieve all of them.

4.3 Histogram and Non-Histogram Extension
The histogram extension that has presented in Section 2.3 (S_Bin in
𝑋 = 𝑆_𝐵𝑖𝑛(𝑆_𝐻𝑖𝑠𝑡 (𝑆_𝐻𝑎𝑠ℎ(𝑒𝑚𝑏𝑒𝑑 (𝑉 , 𝐸)))), maps each histogram
representation 𝐻 to a 𝑃−dimensional (𝑃 = 𝑀 ∗ 𝑁 , M is the maxi-
mum value of all bins in the dataset, N is the number of bins in each
histogram) vector 𝜙 (𝐻 )—Formula 5 in [7]) as the last step of data
preprocessing. In our work, we delved into this step and find that
it affects the misclassified rate drastically; however, the accuracy of
the machine learning detection system does not change too much.
Therefore, we designed a non-histogram extension and compared
the accuracy rate of the detection system with histogram and non-
histogram extension. Figure 3 displays the results with histogram
and non-histogram extension. It illustrates the efficiency and draw-
back with and without the non-histogram extension. If we take out
histogram extension step from the original Adagio (without our
modifications), we obtain 0.95 accuracy on average. Meanwhile, un-
der the same setting and dataset, with the histogram extension, we
get an accuracy of 0.93 on average. However, other characteristics
(misclassified rate and node injection ratio) of the two models are
extremely different. We will discuss these differences below.

4.4 N-Strongest Nodes
We now present the results of the n-strongest nodes attacking mod-
els from both the non-histogram and histogram extension models.
Table 1 shows that only injecting the 22.7% nodes (one strongest
node) into a function call graph will cause the trained classifier to
misclassify 72.2% of malicious apps. Meanwhile, if we utilize the
five strongest nodes and inject these nodes into the original graphs,
we get the 40.8% misclassified rate with the 25.7% node injection.

Table 1: N-strongest nodes (non-histogram extension)

Non-histogram extension(white-box) Non-histogram extension(gray-box)
Strongest nodes 1 2 3 4 5 1 2 3 4 5

Injected nodes ratio (𝑥 ) 22.7% 23.7% 17.6% 15.6% 25.7% 20.69% 21.25% 32.26% 17.76% 18.98%
Injected nodes ratio (𝜎) 5.8% 22.3% 22.7% 22.1% 22.4% 5.19% 20.67% 27.93% 30.76% 32.87%
Misclassified Rate (𝑥 ) 72.2% 26.7% 26.6% 32.8% 40.8% 80.79% 49.43% 35.62% 21.14% 19.8%
Misclassified Rate (𝜎) 15.4% 28.4% 34.1% 43.7% 42.5% 4.9% 42.9% 25.9% 25.6% 26.8%

Table 2: N-strongest nodes (histogram extension)

histogram extension (white-box) histogram extension(gray-box)
Strongest nodes 1 2 3 4 5 1 2 3 4 5

Injected nodes ratio (𝑥 ) 24.30% 37.27% 18.51% 46.95% 40.24% 23.68% 22.38% 14.41% 25.88% 23.35%
Injected nodes ratio (𝜎) 8.6% 8.2% 10.4% 11.3% 19.1% 24.94% 17.04% 13.17% 15.13% 14.52%
Misclassified Rate (𝑥 ) 6.01% 29.77% 6.97% 35.81% 17.65% 5.46% 21.33% 4.39% 4.70% 5.03%
Misclassified Rate (𝜎) 1.89 % 22% 3.3% 27% 14% 3.71% 29.31% 1.21% 0.82% 0.77%

With one strongest node, we get the highest misclassified rate
with the lowest injected ratio because that node has the strongest
(minimal weights) influence for moving 𝑌 from 𝑌 > 0 to 𝑌 < 0.
However, for the remaining situations, even if we inject more nodes
into graph than the former one, we acquire lower misclassified rates.
The reason is that the one first strongest node gives the highest
contribution to move 𝑌 from 𝑌 > 0 to 𝑌 < 0, but the second (third,
fourth, fifth) nodes will lower the misclassified rate because they
have positive values to affect 𝑌 value oppositely. Even worse, more
injected nodes mean a higher injected ratio. Additionally, from the
standpoint of standard deviation, we also get the smallest values
(0.154 for misclassified rate and 0.058 for injected node ratio) with
one strongest node injection.

In contrast to the n-strongest nodes without the histogram ex-
tension, we obtain a minimal misclassification rate compared with
the n-strongest nodes method with histogram extension. For one
strongest node, we only get a 6.01% misclassified rate with 24.40%
node injection. Although for two strongest nodes and four strongest
nodes, we get a higher misclassified rate, the standard derivations
of them are also very high, which means that these data are not
stable. The original reason for this phenomenon is that the process
of the histogram extension introduces many subcomponents re-
placing with one component. This means one node contribution
can be divided into multiple small contributions from many sub-
components. Therefore, even if there are several ways to create a
small perturbation for each node, the probability of misclassifying
malware is very little. The reason is that if we distribute this small
perturbation to thousands of subcomponents (M in vector 𝑃 , in our
test, we get the value of M with 8,910 and 17,652 for two datasets),
and inject the n-strongest node multiple times, the contribution
of perturbation is 𝑛 ∗ 1/8910 (or 𝑛 ∗ 1/17652), n is the number of
injected nodes, and the final value of this perturbation is also very
tiny. However, from the adversarial example crafting point of view,
we can craft malicious samples successfully even if the detection
system has robust characteristics with histogram extension.

When we examine the Table 1 and Table 2, we discover that
both of them get high standard deviation values. Strictly speaking,
the n-strongest node method does not work very well on graph-
structured data. In order to compare results with another method,
we constrain our result in Figure 4 only with the values less than the
average standard deviation from the tables above. By contrasting
Table 1 with Table 2, we find that histogram extension can improve
the robustness under the influence of adversarial examples (except
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Figure 4: Misclassified rate with n-strongest node, gradient
sign method and random selection (white-box)

the two and four strongest nodes injection since these results have
high standard deviation values).

Under the gray-box attack, we also retrieve positive results, both
with the histogram and the non-histogram extension.

4.5 Gradient Sign Method
As described in Section 3, to adjust the direction of the reduced
direct vector, we need to prolong the length (occurrence of the same
node) of existing nodes. We accomplish this step with the process of
node insertion. We show the misclassified rate and inserted nodes
ratio with the gradient sign method in Table 3 and Table 4.

For the non-histogram extension, we use different𝛼 and threshold
values to evaluate our gradient sign method. We set three different
threshold values: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 𝛼 , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 <= 𝛼 , and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 <=

2 ∗ 𝛼 . We illustrate the efficiency of our method in Table 3. With
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 < 𝛼 , we can get very a high misclassified rate with the
cost of 50 times that of injected nodes. Besides that, we get 47.46%
as the highest misclassified rate with only 15.46% node injection in
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 <= 𝛼 and 39.68% as lowest misclassified rate with 17.06%
node injection with 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 <= 2 ∗ 𝛼 configuration.

For the histogram extension, we also test the different number of
adjusted occurrence of a node described in Section 3.2. We present
our histogram extension results in the Table 4. The misclassified
rates change with the different ratios of node injection (𝛼 = 1). We
acquire the highest misclassified rate of 33.49% with the 36.3% node
injection when we keep five nodes at the node projection step.
Meanwhile, we only get a 20.56% misclassified rate with the 22.05%
node injection keeping two nodes during node projection.

One phenomenon from Table 4 is that the results follow the rule
of the more node injection, the higher the misclassified rate, except
for the first column. For the first column, we only inject 10.47% of
the nodes by keeping one node at the node projection, which means
we keep the number of nodes with a positive weight value as small
as possible. For the rest of the cases, we are not only injecting more
nodes with negative weight values (positive influence for moving
𝑌 from 𝑌 > 0 to 𝑌 < 0), but also nodes with positive values.

Under the gray-box attack, with the gradient sign method, we
get a significant misclassified rate with a similar injection ratio of
the white-box attack. Just one strange aspect is that with histogram
extension, even if we inject more nodes into the graph, the misclas-
sified rate does not change. The reason is that we take a reduced

Table 3: Gradient sign method (non-histogram extension)

𝛼 0.1 0.2 0.3
threshold < 0.1 <= 0.1 <= 0.2 < 0.2 <= 0.2 <= 0.4 < 0.3 <= 0.3 <= 0.6

non-histogram extension (white-box)
Injected nodes ratio (𝑥 ) 56.5x 17.48% 17.06% 51.8x 15.46% 14.82% 46.9x 14.22% 13.89%
Injected nodes ratio (𝜎) 1.98 1.1% 1.1 % 2.74 1% 0.6% 59.74 % 1.4% 0.5%
Misclassified rate (𝑥 ) 79.6% 45.3% 39.68% 94.21% 47.46% 43.69% 98.07% 41.20% 42.17%
Misclassified rate (𝜎) 5.2% 5.6% 1.9% 0.6% 3.7% 6.7% 2.6% 7% 0.2%

non-histogram extension (gray-box)
Injected nodes ratio (𝑥 ) 59.62x 15.61% 15.35% 48.57x 14.72% 14.7% 50.09x 15.07% 15.26%
Injected nodes ratio (𝜎) 4.71 1.18% 0.78 % 3.48 0.99% 0.98% 1.89 1.55% 1.86%
Misclassified rate (𝑥 ) 79.76% 37.59% 38.95% 96.06% 43.69% 44.18% 97.43% 44.65% 43.05%
Misclassified rate (𝜎) 3.78% 7.95% 8.29% 2.08% 8.11% 8.23% 1.33% 8.43% 8.07%

Table 4: Gradient sign method (histogram extension)

histogram extension (white-box) histogram extension(gray-box)
N 1 2 3 4 5 1 2 3 4 5

Injected nodes ratio (𝑥 ) 10.47% 22.05% 35.40% 35.42% 36.3% 9.52% 21.01% 33.11% 33.11% 33.11%
Injected nodes ratio (𝜎) 0.04% 2.23% 0.22% 1.49% 2.04% 0.4% 0.8% 1.05% 1.05% 1.05%
Misclassified rate (𝑥 ) 21.12% 20.56% 22.3% 36.30% 33.49% 18.79% 18.79% 18.79% 18.79% 18.79%
Misclassified rate (𝜎) 5.8% 6.52% 6.63% 8.21% 11.93% 2.04% 2.04% 2.04% 2.04% 2.04%

Table 5: Randomization method.

non-histogram extension (white-box) histogram extension(gray-box)
Injected nodes ratio (𝑥 ) 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Misclassified rate (𝑥 ) 2.74% 1.92% 2.98% 2.55% 3.81% 1.87% 1.78% 1.78% 1.2% 1.73%
Misclassified rate (𝜎) 0.93% 0.85% 1.5% 1.09% 1.83% 1.31% 0.99% 1.25% 0.73% 1.13%

gradient direction, obtained from the trained model. We conclude
that the gray-box attack influences the misclassified rate signifi-
cantly with histogram extension. For non-histogram extension, the
gray-box attack does not influence too much.

The misclassification rate with our gradient sign with histogram
extension is not changed consistently by increasing the node in-
jection due to the robust characteristic on graph structure and
the usage of histogram extension, which is different from most
of the other adversarial example crafting with the gradient sign
method. As shown in Figure 3, the success rate of our method with
the histogram extension is only changed linearly until 35% node
injection but stayed almost stable despite injecting more nodes.
While in most other gradient sign methods, the misclassification
rate grows significantly with the increase of injected nodes, which
is the same as our method with the non-histogram. For instance,
Kolosnjaji et al. [11] demonstrate that the misclassification rate of a
real Windows binary (PE file) is changing fast with the increase of
injected nodes. With our gradient sign method under the histogram
extension scenarios, we only get the misclassification rate of 33.49%.
However, for the non-histogram extension method, we also get a
significant misclassification rate with the increase of injected nodes.
In summary, the histogram extension is an excellent way to improve
the robustness under the influence of adversarial examples.

4.6 Randomization Method
Finally, we considered the random node insertion to demonstrate
the efficiency of our n-strongest node approach and gradient sign
method. In contrast to the aforementioned two schemes, we selected
randomly the nodes from function call graphs after label hashing.

To compare the efficiency of our crafting method, we injected
randomly selected nodes with 10%, 20%, 30%, and 40% ratio. We
evaluated those nodes both for the non-histogram and histogram
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extension. We show our result in Table 5. More precisely, it demon-
strates that the misclassified rate is meager with the randomization
method; even if we inject 50% new nodes into the graph, we only
get a 3.81% misclassification rate. On the other hand, we discovered
that the histogram extension has better robustness compared to the
non-histogram one under the influence of adversarial examples.

We summarize our attacking models in Figure 4. We illustrate the
significance of our n-strongest nodes method (NSN) and gradient
signmethod (GSM). To compare all results with a 0−1 node injection
ratio, we eliminate the injected node ratio larger than one from
Table 3. Figure 4 shows the functionality of histogram extension and
its robustness with adversarial examples. With the non-histogram
extension, both NSN and GSM get a high misclassification rate with
a small node injection ratio. With histogram, the GSM gets a stable
misclassification rate, and it peaks when injected 35% nodes. For
NSN, we get very small misclassification. GSM works more stable
than NSN with both histogram and non-histogram. For the random
node selection method, we get minimal misclassification rates.

5 RELATEDWORK
Many works in various fields have successfully crafted adversar-
ial examples. Cleverhans [16] summarizes many approaches to
craft the adversarial examples. Among the methods for evading the
existing machine learning models, the fast gradient sign method
(FGSM) [8], a gradient-based method, is a simple approach to mis-
classify the images. Meanwhile, the Jacobian Saliency Map Ap-
proach (JSMA) [17] presents forward derivative and adversarial
saliency maps to attack the deep neural networks.

Successfully attacking a malware detection system is not trivial.
Kolosnjaji et al. [11] propose a gradient-based attacking method,
which can evade deep neural networks by changing only a few
specific bytes at the end of each malware sample while the original
functionality remains intact. Anderson et al. [3] provide a solution
to attack a recurrent neural network with the discrete characteris-
tics of the text from IMDBmovie reviews as input samples. However,
none of the previous methods do consider the graph structure as
input; thus, we cannot directly use them in our evading method. Dai
et al. [5] focus on the adversarial attacks that mislead deep learning
models by modifying the combined structure of data, while Zügner
et al. [24] introduce a study of adversarial attacks on attributed
graphs, focusing on models exploiting graph convolutions.

6 CONCLUSION
In this paper, we present two methods to craft adversarial examples
to evademachine learning detection systems: n-strongest nodes and
gradient sign method. Both solutions demonstrate that graph-based
machine-learning malware detection approaches are vulnerable
to adversarial samples. Especially with the n-strongest nodes, we
show how to craft the adversarial examples with multiple insertions
of nodes with minimal weight values. The gradient sign method
(GSM) is an effective way to craft adversarial examples on the graph
structure. We have also proved the effectiveness of GSM by solving
multiple problems in practice, such as non-differentiable objective
function, indirection mapping from a graph to feature, and node
embedding with graph hashing. Overall, this paper shows that it

is possible to evade machine learning systems through adversarial
example crafting, which takes whole graph structures as inputs.
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