
ICST Transactions Preprint

Middleware-based Security for Hyperconnected
Applications in Future In-Car Networks
Alexandre Bouard1,∗, Dennis Burgkhardt1, Claudia Eckert2

1BMW Forschung und Technik GmbH, Munich, Germany
2Technische Universität München, Garching near Munich, Germany

Abstract

Today’s cars take advantage of powerful electronic platforms and provide more and more sophisticated
connected services. More than just ensuring the role of a safe transportation mean, they process private
information, industrial secrets, communicate with our smartphones, Internet and will soon host third-
party applications. Their pervasive computerization makes them vulnerable to common security attacks,
against which automotive technologies cannot protect. The transition toward Ethernet/IP-based on-board
communication could be a first step to respond to these security and privacy issues. In this paper, we present
a security framework leveraging local and distributed information flow techniques in order to secure the
on-board network against internal and external untrusted components. We describe the implementation and
integration of such a framework within an IP-based automotive middleware and provide its evaluation.

Keywords: Security & Privacy, Access Control, Middleware, CE Device, Third-Party Application, Automotive
Application, Car-to-X Communication, Decentralized Information Flow Control, Dynamic Data Flow Tracking

1. Introduction
During the last two decades, vehicles evolved into very
complex systems embedding powerful electronic plat-
forms for various purposes, e.g., safety, infotainment.
While still fulfilling their primary goal of transporta-
tion means, cars are now offering a plethora of new
connectivity interfaces and communicate with numer-
ous external communications partners: the Internet,
Consumer Electronic (CE) devices, road-side units and
other cars [1]. Like smartphones, the car will soon host
Third-Party Applications (TPAs) [2]. Such a connectivity
and new features will obviously allow a better cus-
tomization of the car and a stronger tethering between
all on-board and external communication partners.
On the other hand, this may raise the threat level
and increase the attack likeliness through these newly
extended communication interfaces.

Recently, cars have been shown to be vulnera-
ble against simple attacks involving packet sniff-
ing/injection and more complex ones, like buffer over-
flows [3]. These attacks were performed by attackers
having physical access to the car and its on-board
network, but later work have show the feasibility to
compromise the car through most of its external com-
munication interfaces[4, 5]. In addition, today’s auto-
motive applications are mostly developed for a specific

∗Corresponding author. Email: alexandre.bouard@bmw.de

platform and for a precise car model. The car man-
ufacturer knows the developer and can therefore set
contractually certain responsibilities and testing pro-
cesses. While not providing a complete security, such
a strategy allows the car maker to keep the application
integration process under its control. Loadable and on-
the-fly installable applications have revolutionized the
CE world but may shake up the static architecture of the
car. While being mostly foreseen for the infotainment
purpose, such applications will get access to Internet,
several on-board functions and may secretly compro-
mise the integrity and data confidentiality of the car [6].

At a functional level, limited communications
technologies (e.g., Controller area network (CAN),
Media oriented systems transport (MOST)) and drastic
requirements for low latency and high robustness
let only very little space to security. Part of the
solution seems to lie in the use of Ethernet and
the Internet Protocol (IP) as standard for the on-
board communications [7]. A larger bandwidth and
mature security protocols will allow to secure the
communications between two on-board platforms, but
may remain insufficient in order to achieve a holistic
solution. Future automotive applications will become
more and more complex and partly designed by
third parties. They will simultaneously trigger critical
functionalities of the car and handle large amounts
of data presenting different level of sensitivity. Not
considering the whole information security problem,

1
ICST Transactions Preprint

mailto:<alexandre.bouard@bmw.de>


A. Bouard et al

i.e., how information travels through the system, may
lead to privacy breaches and, even worse, to safety
malfunctionings, which could endanger the passengers’
life. In order to keep on producing safe and secure
vehicles, car manufacturers need to secure the on-board
architecture accordingly.

Information flow control (IFC) is about controlling
how information spread into a system and has been
successfully applied for distributed systems. Our
approach proposes to make use of the middleware layer
to enforce the security. Through this layer, on-board
applications exchange security metadata expressing
their security concerns/requirements and can enforce
policies relevant for the decentralized information flow
control model (DIFC) we developed. Dynamic data
flow tracking (DDFT) engines allow to taint data
of interest and to follow their propagation within a
running application in order to monitor and control
its potentially malicious behavior. We chose to use
such techniques to secure the integration of TPAs and
couple them to our DIFC model via the middleware. For
comparison, we design and evaluate a second security
solution for integration of TPAs, which makes use of
isolation/virtualization techniques and a DIFC-based
network input/output monitoring. At the edge of the
on-board network, a security communication proxy
filters inbound and outbound communications based
on pre-defined DDFT and DIFC policies and allows a
secure and privacy-aware tethering of online services
and external devices.

The main contributions presented in this paper are:

• a DIFC authorization model regulating on-board
communications and integration within the middle-
ware logic;

• a customized DDFT environment based on libdft [8],
which locally monitors TPAs and is coupled to the
DIFC framework;

• a security architecture for the communication proxy,
extended from our previous work [9] and complying
with the enforcement of DIFC and DDFT rules;

• a prototype implementation of our security frame-
work integrated within our automotive adaptation of
the IP-based middleware Etch [10].

The rest of the paper proceeds as follows. After
having given a brief overview of today’s automotive
security and threats to it, we introduce the main
security and privacy goals of our work as well as related
work in Section 2. Section 3 describes our architecture
for on-board security middleware and communication
proxy as well as introducing exemplary Security & Trust
Levels. Then Section 4 introduces our model for DIFC
and DDFT techniques in detail, after which Section 5
describes our implementation. Section 6 proposes an

evaluation of our prototype and security concepts and
finally Section 7 concludes this article.

2. Background and Related Work
In this section we provide some background informa-
tion about the automotive on-board architecture and its
security shortcomings. We then define the threats and
goals we consider in this work, as well as some attack
scenarios.

2.1. Current & Future On-board Network
Today, the on-board network of a premium vehicle
includes up to 70 interconnected electronic control
units (ECUs). The ECU network is organized around
specific domains, e.g., infotainment, power train,
and is interlinked via several communication bus
technologies, e.g., CAN, MOST, which necessitates
complex application gateways for interoperability.
On-board automotive applications are divided in
elementary blocks over diverse ECUs and exchange
braodcasted signal-based messages. Recently, some
research work highlighted numerous security issues
due to a lack of protection on the communication
bus and poor ECU implementations. Common attacks
have been successfully performed on both local [3, 11]
and remote interfaces [4, 5]. Plaintext communications
without authentication mechanisms allow an attacker
with access to the on-board network to easily sniff and
inject packets in order to misuse internal protocols.
A lack of input validation of some ECUs allows to
bypass authentication mechanisms via buffer overflow
techniques in order to reprogram the platform. In
some cases, the poor software implementation does not
reflect the published standards and allows to directly
activate the reprogramming mode of the platform [3].
Remote attackers may also be able to compromise
communication interfaces like the Bluetooth interface
via a brute force attack or the GSM access gateway via
buffer overflow attack in order to gain access to the on-
board network [4].

For tomorrow, the use of Ethernet/IP as on-board
communication standard has been strongly investigated
and could be part of the security answer [7]. First a
larger bandwidth will allow to comply with the require-
ments of future automotive applications [12]. It will
allow to exchange large objects like environment model
for driving assistance or infotainment content for audio
and video purposes. Secondly, mature security proto-
cols, developed specifically for the Internet world, will
be instantly applicable and should provide a suitable
protection for all bus communications. With Ether-
net/IP, automotive applications will remain complex
and distributed, but the design of engineering-driven
middleware will greatly simplify their management.

2
ICST Transactions Preprint



Automotive Middleware-based Security

Figure 1. On-board Network Architecture and considered
scenarios. Solid right-angle lines represent the wired on-board
network. The dashed arrows represent external communications
over different wireless networks.

Such middleware will abstract and automate the net-
work addressing and security enforcement [13, 14]. The
clear separation between middleware and application
logic will allow car manufacturers to separate the secu-
rity logic from the application part and to significantly
decrease the risk of buffer overflows thanks to security
programming and code validation techniques [15]. In
addition, car manufacturers will centralize most exter-
nal communication interfaces (e.g., LTE, WiFi) around
a multiplatform antenna-ECU (MPA) [16]. The MPA
design offers them the opportunity to setup a single
security gateway for all Car-2-X (C2X) communications,
easy to verify and maintain.

2.2. Threats and Goals
Today’s car are facing several challenges. Their
functional behavior relies on complex software, which
are optimized to run on resource limited-platforms,
rarely updated and process a significant amount of
data of different sensitivities. Attackers are already
taking advantage of defects in the application logic and
in weak security mechanisms. This usually results in
privacy breaches (vehicle tracking [5]), in endangering
the car’s integrity (unauthorized reprogramming of an
ECU [3]), and even worse in threatening the life of the
its occupants (partial brake disabling [3]). If nothing is
done, the emphasis of the use of C2X communications,
more and more complex on-board applications and the
integration of TPAs will only increase the security risk.
For the moment these attacks are mostly performed by
the research community, but this could quickly change.
The use of Ethernet/IP and a security middleware
solves some of our issues but do not cover the whole
information security problem. These do not address
the threats related to unintentional bugs of the on-
board applications. Besides, they do not consider unfair
authorized parties, internal (e.g., TPA) or external (e.g.,
CE device), trying to bypass security policies, i.e., by
trying to access or leak information they have no
authorization for. This work aims at improving the

information security in cars and at addressing the
threats we just mentioned.

Attacker model: In this paper, we consider an
attacker both acting internally and externally. Exter-
nally the attacker has access to all communication
interfaces, can potentially get authenticated, and have
her messages forwarded by the proxy to the inside. In
addition, she can get access to the on-board network,
sniff the traffic and inject new packets. She may as well
write a TPA and have it installed in the car through a
legitimate channel, e.g., the application store of the car
manufacturer. We assume the attacker to be bounded
only polynomially in computational power and storage,
so that the current cryptographic primitives, e.g., AES,
RSA, can be assumed to be secure, since there are
no known algorithms able to break them in polyno-
mial time. Thus she cannot break strong cryptographic
protocols or successfully guess random numbers. We
restrict the attacker to software-based attacks so that
she cannot physically tamper ECUs, e.g., read or flash
memory content. This work does not consider denial-
of-service attacks.

Use Cases & Attack scenarios: Our use cases are
depicted in Figure 1 and consider both internal and
external untrusted components, over which the car
manufacturer has no control. We define as service
a group of on-board application sharing the same
middleware layer. We take the example of a TPA
running on the Head Unit (HU). It communicates with
several on-board services and with the Internet and
some CE devices over the MPA. Internet services and
CE devices are authorized to get access to some on-
board services and can get authenticated. The TPA is
considered as conform with the internal application
programming interface (API) of the car. However it
may present a poor implementation exploitable by an
attacker. We here mainly focus on attack scenarios
leveraging the TPA to (1) compromise the integrity of
the car or (2) leak confidential information.

1. Integrity Attack Scenario: A malicious TPA may
send bogus packets on the on-board network (e.g.,
a shellcode) or access/modify locally resources of
the HU (e.g., filesystem) in order to disturb the
car functioning. Secondly, a malicious external
communication partner may send bogus messages to
the car, forwarded by the MPA and try to disturb the
car as well.

2. Confidentiality Attack Scenario: A malicious TPA
may get access to sensitive data, stored on the HU
(e.g., the home address of the driver in the navigation
module) or received from another service (e.g.,
preference settings of a user from the seat controller).
Even without the permission, the TPA may try to
send them outside, either directly over the proxy or
through an intermediate step, for example a buggy

3
ICST Transactions Preprint



A. Bouard et al

service communicating with the outside. Otherwise
as previously, an external communication partner
may leverage a bug of an on-board application and
try to retrieve confidential information it should not
get access to.

Assumptions: Next-generation ECUs will take
advantage of security middleware able to establish
communications channels over strong security
protocols like IPsec [14]. Each of them will be equipped
with a hardware security extension providing key
storage and secure boot [17]. Consequently, we assume
that after ignition of the car, the middleware, the
operating system (OS) and the hardware are not
compromised and stay so during the runtime. Thus,
we trust the middleware of every service to establish
secure communication channels with each others and
to enforce suitable security mechanisms when it is
required and expected.

2.3. Security Architecture requirements
With regard to our automotive context, we define the
following additional security challenges/ requirements.
Even when enforcing security, the car should provide
performances (for high throughput and large band-
width) and a robustness at least equivalent as they are
currently. Security solutions should be optimally per-
forming on all platforms, even on the resource-limited
ones. Our solutions should not require regular updates
or financial extra cost. The security should be easy to
manage and should not increase the application com-
plexity for all application developers and end-users.

2.4. Related Work
Cars already communicate with our smartphones via
USB, 3G or Bluetooth. Depending on the standard,
traditional challenge/response schemes ensure the
access to basic web browsing, car information, phone-
and audio-functionalities. More critical features like
remote door opening/locking are preformed via GSM
or 3G through a server of the car manufacturer. The
server acts like a firewall. However this solution is
expensive, not scalable on the long term and may not
be secure [18].

Industry projects: Until recently, automotive secu-
rity has focused on anti-theft devices such as immo-
bilizer and secure RFID transponder for car key. But
the newly highlighted security issues and an increasing
use of C2X communications reoriented the academic
and industry research toward automotive holistic secu-
rity solutions. The EVITA [19] project and its follow-
up SEIS [7] aimed at securing the on-board network.
They both proposed a modular framework establishing
internal secure communication channels and leverag-
ing secure hardware platforms. On the other hand,

a project like SeVeCom [20] addressed the security
issues of future vehicle communication networks. They
designed C2X protocols using encryption and authen-
tication mechanisms, which got implemented on the
V2X platforms of the simTD project [21]. But none of
these projects really formalize the transition of data
between outside and inside or consider the damages
that external data could cause on the inside. They all
rely on strong security components on the edge of the
on-board network performing the enforcement of static
access control lists (ACLs).

Securing a corporate network presents some similari-
ties with the automotive context, e.g., when integrating
mobile devices. Their approaches make use of strong
authentication mechanisms and device integrity mea-
surements in order to establish network connections
and VPN tunnels [22]. However they usually lack spec-
ifications for a secure resource- and data-management.
In the context of SEIS, [9] proposes a proxy-based
architecture for a secure CE-device integration. The
proxy evaluates the security level of the device and
communication and shares it with the ECUs. We chose
to extend these concepts to our architecture and to
complete it with a more formal security model.

About IFC: IFC is a form of mandatory access
control. Resources (e.g., documents) and principals
(e.g., persons) having access to them are given a label,
i.e., a clearance level. A label-based partial order defines
whether the access is authorized or not [23]. DIFC
extends the IFC concepts [24]. A resource (e.g., an
application) can be allowed to divide its access rights
and create new labels to manage with more flexibility
its access control. DIFC was adapted at the granularity
of a process: processes are separated between trusted
and untrusted during runtime. Label-based rules are
enforced locally by a customized OS [25, 26]. But
for distributed applications, OSs can exchange their
labels through the network as well [27]. However these
approaches are too fine granular and suffer from a
too significant performance overhead. For a lighter
approach, we chose to enforce DIFC labels only on on-
board communications between services. Exchanging
labels to enforce IFC is not new. For Pedigree,
a central server and customized network switches
distribute and enforce IFC policies on every network
communication [28]. However in-car applications are
distributed over ECUs with different OSs/hardwares.
In order to reduce the risk of errors, latency and
maintenance complexity, the DIFC cannot rely on any
central entity and cannot be enforced in the OS or its
hardware. We therefore chose to enforce DIFC at the
application level, especially in the middleware layer.

About DDFT: For more security, smartphone appli-
cations are tested before their release on an online
application store and are usually isolated from each
other thanks to the sandboxing mechanisms of the

4
ICST Transactions Preprint



Automotive Middleware-based Security

mobile OS. However it is not flawless [6, 29]. We
therefore consider 2 other runtime options. Either (1)
we isolate the TPA from other on-board services and
monitor its inputs/outputs, like in Section 4.1. Other-
wise (2) we monitor the TPA itself and what happens
during runtime, for example by using DDFT tech-
niques, like in in Section 4.2. DDFT allows to taint
and track data of interest within a running applica-
tion/system and have been successfully applied for var-
ious purposes, e.g., malware monitoring [30] or privacy-
aware smartphone monitoring [31]. DDFT offers two
approaches: monitoring the whole host [31] or just one
process/application [8]. Considering our requirements
for robustness and low latency, we orient our work
toward a lighter approach, the second one. This solution
causes some overhead but does not require any OS or
source code modification and has been already used
for distributed [32] and automotive [33] environments.
But monitoring or isolating TPAs will not be sufficient.
Thus, we decide to combine the isolation/monitoring
techniques to our DIFC model via the middleware.

3. On-board Security Architecture: Secure
Middleware and Communication Proxy

As mentioned in the introduction, Ethernet/IP will be
intensively used by car manufacturers as standard for
the on-board communications. The rest of this sec-
tion provides an overview about our secure middle-
ware layer (Section 3.1), the architecture of our secu-
rity proxy (Section 3.2), and ) a taxonomy for exter-
nal untrusted communication partners (Section 3.3).
Finally, Section 3.4 discusses the benefits of such a
security architecture and pinpoints its shortcomings.

3.1. A Security Middleware Extension

By definition, the middleware abstracts the commu-
nication interfaces and hides the network complexity
from the application logic. It may as well automate the
security enforcement and therefore allow the applica-
tion developer to be completely security-unaware. We
present here an architecture for a security middleware
extension (SME) [14], that can be easily coupled to any
middleware layer.

Figure 2 presents the three-layer SME architecture
we are considering here. Such a modularization offers
enough adaptivity and combination possibilities to
comply with all the different security levels required
by our use cases. For example, a simple temperature
sensor, which only sends information to the engine
controller, will not provide as much security features
as the HU which deals with multiple communication
partners and very untrusted data. The security layers
are organized as follows:

Figure 2. Architecture of the security middeware extension and
its association to a functional middleware.

• The decision layer provides security decisions by
means of static policies. These policies mostly
regulate the establishment of a communication
channel between 2 on-board platforms and the access
to all resources present on an ECU. It provides a
direct API getPolicy(), which is available from the
functional middleware level and returns the policy
decision. In addition it may include functionalities
for network monitoring and intrusion detection.

• The communication layer provides the security plug-
ins for the communication protocol implementation
and associated filtering mechanisms. It is accessible
from the middleware through the interface setChan-
nel() which opens a network socket and allows to
specify the chosen security protocol, authentication
scheme and encryption strength.

• The cryptographic layer is in charge of the key
management and the cryptographic processing,
i.e., the data encryption/decryption and signature
generation/verification. For more security, this layer
may be included in a hardware security module
for protecting the key material from an attacker
and providing integrity mechanisms such as remote
attestation.

Due to the risk of latency and errors, the configura-
tion of the middleware and its SME is statically set up
during the vehicle assembly or during periodic system
updates. It mostly concerns the definition of security
associations for IPsec channels between two ECUs and
their associated preshared keys.

3.2. A Security Communication Proxy
Controlling information flows in distributed systems
like cars is essential for a holistic security solution.
ECUs internally exchange genuine packets and there-
fore only require secure communication channels and
simple access control mechanisms. But the integration
of untrusted devices and online services, over which the
car manufacturer has no control, necessitates a more
complex authorization model. In order to get the best

5
ICST Transactions Preprint



A. Bouard et al

Figure 3. STL life cycle.

user experience, the car manufacturer cannot ban any
type of CE device or trendy online community service,
only because they do not comply with certain security
prerequisites. It can only restrict their access to the
car and adapt the security mechanisms on a case by
case basis. In addition, ECUs communicate with the
outside behind the MPA. Being more than just a super-
antenna, the MPA is a complete ECU and decouples
the communication between on-board and outside like
a NAT router. Such decoupling allows the car to use
a unique optimal security protocol for the on-board
network, while letting the choice of the outside protocol
to CE- and web-application developers. It also requires
the MPA to be able to support the “blind” ECU, e.g.,
by providing it information about the external device
or service, the identity of the concerned user, the used
wireless protocols or the likeliness of a security threat,
so that the ECU can enforce the right security decision.

For this purpose, we developed an application-
independent in-band middleware protocol, allowing
internal exchanges of security metadata. Concretely,
the middleware header is extended with a new field,
specifying the security and trust context in which
data are or may be exchanged with an external peer.
Instead of directly considering the privacy aspect of any
single piece of information, we focus on the trust we
grant the peer and quantify that. The security aspect
characterizes how secure the external communication
protocols are. On the other hand, the trust aspect
characterizes how trustworthy the remote device or
online service is considered to be. We call this context
Security & Trust Level (STL) and provide its precise
evaluation in Section 3.3. In order to distinguish
whether the STL defines the current communication
situation or whether it defines a required situation
to send a message out, we define the STLstatus and
the STLreq, respectively. The life cycle of the STL as
represented in Figure 3 is explained in the following:

The communication security proxy: The proxy
is implemented on the MPA and stands in the
middle of every communication happening between
an internal entity and the outside. Unlike traditional
NAT routers simply forwarding IP packets, the proxy
really decouples these communications and acts like

a translation interface between external and internal
middleware-based protocols. It dynamically manages
all external communication channels and their security
features, i.e., encryption process, key management
and authentication schemes. Internally, the proxy
communicates with ECUs over static IPsec channels.
Future C2X use cases foresee exchanges of big objects
at a high frequency. The proxy will not be able to
perform deep packet inspection and is as a consequence
application-unaware. The proxy evaluates for each
external entity a STLstatus and adds it in the middleware
header of every inbound packets. In addition, the proxy
enforces on them a first coarse domain-based filtering,
for example an online social network service will not
get access to any service of the power train management
domain. Inversely, for every outbound message, the
proxy, before forwarding it, makes sure that every
received STLreq is conform to the actual STL of the
communication situation. Section 3.3 provides more
information about STL-based policies.

Middleware & STL: The middleware of every on-
board service intensively uses the STL concept. All STL-
based policies are managed in its Decision Layer and are
invoked when receiving or emitting a packet. Based on
the received STLstatus, the security middleware decides
whether it is safe and authorized to process such
a packet. Depending on the ECU capacity and the
STL, the middleware can adapt its security processing
and pass the data through a security parser, e.g.,
access request to a SQL database, or run the data in
an isolated environment, e.g., JavaScript code in an
isolated web-browser. A received STLreq determines the
data sensitivity and requires the middleware to decide
whether its applications are allowed to receive such
data. Inversely, when sending a packet to the on-board
network, the middleware automatically extends the
message header with a STLreq reflecting the sensitivity
of the payload information, i.e, industrial secret or
private information. Any communication is concerned,
since a multicast address could inadvertently forward a
packet with private data to the proxy, i.e., to the outside.
The applications on top of the middleware are totally
STL-transparent, the STL enforcement happens in the
middleware. Like most policies on the ECUs, the STL-
based policies are defined by the car manufacturer at
design time and are statically set up in the SME.

3.3. The STL Taxonomy

Section 3.2 introduced the concept of STL. It defined
it as the security and trust context in which data
are (“status”) or should be (“req”) exchanged with the
outside. The rest of the section proposes an evaluation
of (1) its security aspects, (2) its trust aspect and (3) its
enforcement.

6
ICST Transactions Preprint



Automotive Middleware-based Security

1) SL definition: We define the SL as a qualitative
characterization of the security strength of an external
communication protocol. The SL is characterized as
follows:

• SL=0 Communication providing no security or
presenting exploitable design flaws.
Example: Plaintext; WEP encryption; TLS+DES or
RC4 with a 56-bits key;

• SL=1 Communication providing strong authentica-
tion of the external peers and data integrity (i.e.,
against unauthorized modifications).
Example: WPA2 encryption; Message in plaintext
protected by HMAC-SHA1;

• SL=2 Communication as secure as SL=1 and, in
addition, providing strong confidentiality (i.e., one
secret key per user, no shared key between users).
Example: TLS+AES; IPsec+AES;

• SL=3 Communication as secure as SL=2 and assuring
the presence of a secure hardware element protecting
the cryptographic materials of the external peer.
Example: SL2-protocol + remote attestation.

2) TL definition: We define the TL as an abstract
representation of how trustworthy the data sender and
receiver are. The notion of trust is usually defined as a
mix between 3 components: reputation, reliability and
security [34]. The security has already been considered,
thus the TL focuses on the 2 remaining ones. The
evaluation criteria of the TL should be clear and
easy to assess. We consider that data may only be
misused, if they are (1) physically and (2) juridically
accessible, i.e., (1) if the data leave the car and (2) if
the receiver is legally allowed to endanger the user’s
privacy (e.g., data selling/forwarding, data stored on an
unprotected server). The TL should reflect such risks
and is evaluated based on the following criteria:

• Criterion 1 (Cr. 1) “Local Usage”: determines
whether the data are limited to an on-board usage
only.

• Criterion 2 (Cr. 2) “Anonymization”: determines
whether data have to be anonymized, when released
out, i.e., whether an external receiver may be able to
trace back the identity of the car or of the user.

• Criterion 3 (Cr. 3) “Jurisdiction”: determines
whether the external receiver is considered as a safe
“place of jurisdiction” (POJ), i.e., whether the servers
hosting the online service are located in a country
imposing a regulation protecting the user’s privacy.

In order to determine the TL of an external peer, we
use the simple binary decision tree of Table 1. Every
criterion is evaluated iteratively, a “true” answer stops
the process and sets the TL value. Highly sensitive
data, like industrial secrets, should never be released

Table 1. Binary decision tree used for T L evaluation.

Cr. 1→ Cr. 2→ Cr. 3→ TL
Case 1 true - - 3
Case 2 false true - 2
Case 3 false false true 1
Case 4 false false false 0

(Cr. 1=true) and thus are assigned TL=3. Very sensitive
data, like the car position, should be able to leave the car
but not endanger the driver’s privacy (Cr. 2=true) and
therefore should be anonymized (TL=1). An application
for local hazard warning, broadcasting the position of
an accident (and also the position of the car) should be
able to do so, only if the emitted packets do not include
traceable information about the user’s or car identity.
Data with a low sensitivity, like the driver’s username
and settings, can be released without anonymization
but only to services presenting a safe POJ (Cr.3=true,
TL=1), for example a banking service, whose servers
are in Germany. A service presenting an unsafe POJ,
like Facebook in USA, should only be able to receive
nonsensitive data with TL=0. While Cr. 1 and Cr. 2 are
easy to assess and enforce, Cr. 3 needs to be determined
based on recommendations from international privacy
experts [35].

The TL taxonomy is quite simple and provides an
efficient way to control the data release with the
outside. But further tests with more use cases should
be performed. The TL criteria are very coarse, but give
to the car manufacturer a simple way to configure a
“by default” privacy/trust-aware behavior. For a more
flexible usage, the user should be able to change the
assigned TL of an online service, like a social network
of her choice, and allows it to receive some data with
TL=1 as well.

3) STL enforcement: We consider security and trust
as two independent variables necessitating separated
enforcements and evaluations. Indeed, anonymized
data with a TL=2 may be sent with a SL=1 in plaintext
(e.g., local hazard warning scenario), while data with a
TL=1 may be sent with a SL=2 (e.g., banking scenario),
because the user does not want such information to be
eavesdropped. As a consequence, we define the STL as
the concatenation of the SL and the TL, i.e., STL=(SL,
TL). For an easy management, we limit ourselves to 4
SL values and 4 TL values, coded over 4 bits in the
middleware header.

Concretely, data with a STLreq, which arrives on the
proxy will be allowed to be released to an external
service or device X: 1) if X complies with the conditions
of the received TL and is authorized to receive data
with such a TL and 2) if the communication with X
provides a SL greater than or equal to the received
SL. However, such conditions may be too constraining

7
ICST Transactions Preprint



A. Bouard et al

and may never allow certain data to leave the car.
Declassification methods allowing to assign a lower STL
to some data or to just add an exception on the proxy
should be possible. But those methods should only be
part of use cases predefined by the car manufacturer
and if necessary should involve the driver’s decision,
e.g., if it is her private data. Further considerations
about declassification methods are not provided in this
work.

STL-based polices are statically implemented in the
ECUs and do not require any update. Either the
on-board service generates the data to be sent and
associates its own STLreq depending on the appropriate
policy, or the ECU received the data from another
ECU and before forwarding them, labels them with
the received STLreq. The proxy should regularly receive
notifications to update the TL of new external services
and the SL of new or flawed communication protocols.
The CE device case is bit particular, as it gets
authenticated by the proxy and is assigned a STLstatus.
This STL depends on the used connection protocol for
the SL and is assigned a TL=1, since we assume that the
user’s device is under her control and is therefore safely
handling her private data.

3.4. Intermediary Discussion
Enforcing the security in the middleware provides a
clear separation between security/networking manage-
ment and application logic. Such an approach abstracts
the security model and makes it more efficient to
enforce and easier to verify. Security programming
methods can be easier to apply and can solve many
security flaws related to stack pointers overwriting
attacks, e.g., buffer overflows. However our STL model
has shown its limits: it implicitly considers a unique
user in the car and cannot handle the information
of more than one simultaneous passenger or driver,
respectively. Adding the unique ID of a user to the
STL label may not be sufficient to secure on-board
information flows. For the moment our approach do
not consider any TPA or any solution for constraining
it to respect authorized information flows and to not
act maliciously. The following Section 4 provides a more
formal security model completing our architecture and
STL-based enforcement.

4. Controlling Information Flows in Cars
IFC is about monitoring the in-car propagation of data
defined as data of interest. Such data may be interesting
to track within the car either because they are sensitive
data and their release should be controlled, or because
their integrity is essential to preserve, e.g., when
processed by a safety-critical application. We propose
to monitor the information flow at two different levels:
at the network level between on-board applications in

Section 4.1 and within the TPA in Section 4.2. Like for
our previous approach, we chose to enforce security and
IFC via the middleware.

4.1. Decentralized Information Flow Control
We defined the term services as a group of on-board
applications running on top of a same middleware
layer. The applications belonging to a same service
share the same security concerns for confidentiality
(e.g., because they share data of same sensitivity) and
integrity (e.g., because they trigger the same critical
mechanisms). For this reason, a security label, charac-
terizing such concerns, is assigned to every service per-
petrating network exchanges. The middleware, inde-
pendent from the on-board applications, is in charge of
monitoring and labeling the on-board network commu-
nications. Comparisons between the labels of 2 services
allow to protect the integrity and the confidentiality
of the information they process, e.g., by isolating cor-
rupted data from a critical application or preventing
an unauthorized information disclosure. The rest of
the section presents our formal DIFC model, inspired
from [27].

Security Labels. One label is assigned to each service. A
label includes two subcomponents: a secrecy label S and
an integrity label I. S and I are two sets of tags. A tag is
defined as a security concern of an individual about the
secrecy (in S) or the integrity (in I) of the information
they process. For the ECUs, a tag is a unique value
implemented as a bit-string. We refer to it with a
symbolic name like bs or bi, where the subscripts s and i
designate the concerns for respectively the secrecy and
the integrity and b the principal (e.g., the service b or
the CE device b), whose concern is characterized. We
call service tag and user tag a tag which designates the
security concerns of respectively an on-board service
or a user and her CE device. The secrecy tags are
“sticky”, i.e., information from a service labeled with bs
cannot flow to a service lacking it. The integrity tags are
“fragile”, i.e., information from a service labeled with bi
can flow to a service lacking but will then lose its label.

The labels establish a lattice enforcing a form of
mandatory access control, as shown in Figure 4.
Formally, information from a service A labeled with
SA and IA can flow to a service B labeled with SB and
IB if and only if the tags of SA are included in SB
and IA contains the tag of IB. The partial order “≺”
(pronounced “can flow to”) is defined as follows:

LA ≺ LB iff SA ⊆ SB and IA ⊇ IB,

where LA = (SA, IA) and LB = (SB, IB)

However the on-board services are distributed over
several ECUs and do not know each other’s label. We
therefore chose to label the messages as well. When
service A with label LA sends a message M to service

8
ICST Transactions Preprint



Automotive Middleware-based Security

Figure 4. Label-based lattice. This example includes 2 secrecy
tags as and bs and one integrity tag ci. Boxes represent service
labels. Grey boxes show labels including ci. Arrows link labels
between which information can flow.

B with label LB, A assigns to M the label LM such as
LA ≺ LM ≺ LB. Assigning such a label to M allows A
to disclose the information first to M (LA ≺ LM) and to
make sure that B will receive it if it fulfills the condition
LM ≺ LB, i.e., LA ≺ LB by transitivity of the partial order
≺.

Concretely in our scenario, the HU stores data
belonging to different users with different secrecy tags,
so that only the appropriate TPA and CE device can
receive the data of a particular user.

Tag Ownership. If an information could only follow the
partial order ≺, labeled messages could only travel to
services with a greater or equal secrecy level and some
information would never be able to leave the car. Our
DIFC model decentralizes the exception management.
In addition to its label, each service is assigned a set
of tags called ownership O. A tag t included in the
ownership O of a service S allows S to derogate to
the restriction imposed by t. We say that S owns t.
Obviously, no service should own all the tags of the
system. Each service should rather own a minimal set
of tags in order to remain functional.

We note ≺O (pronounced “can flow to, given O”) the
new partial order including the concept of ownership.
So that an information can flow from A labeled with LA
to B labeled with LB given the ownership O, given (1)
the secrecy tags of SA should be included in SB except
for the secrecy tags of O; and (2) the integrity tags of IB
should be included in IA except for the integrity tags of
O. We formally define ≺O as:

LA ≺O LB iff SA −O ⊆ SB −O and IA −O ⊇ IB −O,

where LA = (SA, IA) and LB = (SB, IB)

Practically, a service A with ownership OA can send a
message to a service B with ownership OB if and only
if LA ≺OA

LM ≺OB
LB. For example, a TPA will not be

given any ownership and as a consequence will not be
able to omit restrictions imposed by its label, e.g., it will
not be able to bypass the secrecy tag of a user in order
to leak her private data. On contrary, the proxy will be
given ownership of the secrecy user tag in order to be

able to communicate simultaneously with several CE
devices requesting data labeled with different secrecy
tags. We consider the proxy as providing a high security
level and therefore we trust it to use its ownership in a
secure manner.

In order to express a new security concern, during
runtime a service can create and own a new tag. At its
discretion, it can grant the ownership to other services.
For each new user U, the proxy generates a new secrecy
tag us and grants it to the HU, so that the HU can label
and protect the private data of U.

Dynamic Label Assignment (DLA): A DLA is an
explicit request from a service A to another service B
to increase the label of B with a new tag. As mentioned
in the Section 2.4, we consider here a TPA enclosed in
an isolated cell on the HU. Like for a “black box”, the
HU can only monitor the inputs and outputs of the
isolated cell and therefore of the TPA. At first the TPA is
empty labeled without any ownership and thus cannot
receive any sensitive, i.e., secrecy-labeled, information
or contact integrity-critical functions. For example, in
order to exchange private data of the driver d, the HU,
which owns ds, imposes per DLA the TPA to extend its
label with ds. The TPA cannot take the tag ds out of its
label later and is therefore only able to send messages
to services including ds in their label or ownership.
The TPA is label unaware and does not manage its own
label. Instead, a trusted dedicated service of the HU is
in charge of it and filters all inputs/outputs of that TPA.

Automotive DIFC Architecture. We chose to monitor
network communications and not every process of the
ECU in order to not suffer from a too big overhead and
to limit the risk of errors. Services are isolated from
each other in their own address space or are on different
ECUs. Applications of a same service share the same
security concerns and the same middleware layer. We
therefore chose to label them together and to rely on the
middleware layer to enforce the label-based conditions.
As shown in Figure 5, applications in different services
communicate through their respective middleware. The
Secure Channel Manager and the labeler are part
of the Communication Layer of the SME. The Secure
Connection Manager provides the logic and protocol
implementation to establish secure communication
channels. The labeler extends the header of each
message with a field for the label and enforces the
partial order ≺O. The applications of a service are
totally label-transparent and are not involved in the
DIFC security process. The rest of this subsection
provides more information about label assignment and
policies.

Label assignment: At first, the label of each service
S includes the integrity and secrecy tag (si and
ss) characterizing its own security concerns. The
assignment of additional tags in the label or ownership

9
ICST Transactions Preprint



A. Bouard et al

Figure 5. DIFC-based communication between 2 services R and
S. L and O are the label and ownership of a service. xs, ys, and
xi are secrecy and integrity tags.
1.1 - App.1 of service S sends the message M.
1.2 - Middleware S labels M such as LS ≺ LM.
1.3 - Middleware S sends the labeled message M.
2.1 - Middleware R receives the labeled message M.
2.2 - Middleware R checks whether LM ≺ LR.
2.3 - App. N of service R receives the message M.

are then specified during design phase by the car
manufacturer and depend on the use cases the service is
involved in. An example of assignment is provided for
evaluation in Section 6.1. During runtime, the proxy is
the only service able to generate new tags related to new
users and to grant them to the relevant ECUs. We do not
consider the addition of any new on-board service, after
the car left the assembly line.

DIFC label-based policies: These are managed by
the Decision Layer of the SME. They provide the
decisions to enforce in the labeler, e.g., whether to
pass a received labeled message to the applications or
which label to add to the output messages. Like for the
label assignment, these policies are defined by the car
manufacturer during the design phase.

4.2. Dynamic Data Flow Tracking
Our second approach for TPA integration makes use of
DDFT techniques. Like for a “grey box", this allows us
to get an insight of what happens during the execution.
These techniques provides an efficient way of detecting
data of interest and to track their propagation within a
running application.

Tracking and Controlling the Execution. DDFT tools
monitor each machine instruction performed by the
TPA and detect every system call and every data flow
between registers and memory. They usually make use
of dynamic binary instrumentation (DBI) frameworks
like Intel’s Pin [36] in order to inject custom code
within the execution for a policy enforcement. They can
therefore raise a warning or stop the execution in case
of an application behaving in contradiction with one of
their policies. When they are configured properly, they
allow to eliminate numerous attacks related to stack
pointers overwriting, e.g., buffer overflow [37], string

Figure 6. Example of code with data dependencies (left side –
in bold, the data to taint) and its taint propagation (right side).

format [38] and return-oriented programming [39]
attacks. In order to explain how DDFT tools proceed,
we focus on the following 3 points: taint sources, intra-
taint propagation and taint sinks. For the rest of this
section we consider the pseudocode provided in the left
part of Figure 6.

Taint sources are programs or memory location,
through which data enter the application. If recognized
as data of interest, they are tainted in the shadow
memory. The shadow memory is a mapping between
the actual memory of the application and its taints. In
our scenario, we identify as sources every traditional
input/output channel potentially used by the TPA, e.g.,
inter-process communications (like pipes), filesytem
and network socket. Concretely, the DDFT tool
monitors the functions “receiveBuffer()” (line 1) and
“readBuffer()” (line 2) and taints their returned buffers
“x” and “y” accordingly.

Taint propagation: All along the application execu-
tion, tainted data are tracked, while they are altered and
processed. An example of taint propagation is given in
the right part of Figure 6. In our example, the function
“processBuffers()” (line 3) produces out of two tainted
buffers the buffer “z” that should be tainted as well.
Originally, DDFT tools were about detecting security
attacks and a simple binary tainting (i.e., one bit of the
shadow memory tainting a byte of the real application
memory) was enough to detect whether untrusted data
were overwriting critical parts of the stack. However,
our scenarios consider data of different sensitivity that
require several taint values. We therefore propose to
taint the data according to the STL taxonomy intro-
duced earlier. For reminder, the STL does not consider
data integrity, but only considers the security of the
communication and the trust of the external commu-
nicating entity. Since the car manufacturer does not
control the development of the TPA, every output of
the TPA has to be considered as potentially dangerous
to process.

Taint sinks are programs and memory locations,
where the presence of a taint is checked and where a
policy may be enforced. The policies mostly concern the
decision about passing the data to a function or using
the data as program control data, e.g., return address.

10
ICST Transactions Preprint



Automotive Middleware-based Security

Figure 7. Overview of the DDFT framework in the on-
board network. The colored shapes represent different levels of
sensitivity, that are expressed by the taint values (i.e., yellow
square (1), red triangle (2), blue round(3) ). These taints are
injected using binary instrumentation (Injector ). The Injector
monitors the execution, especially system calls (dotted lines) and
the taint propagation between memory and registers. m1 and m2
are tainted messages sent respectively to and from the TPA. The
TPA output m2 shows a combination of the sources “round” and
“square” but not “triangle” and is therefore tainted accordingly.

For our example, it concerns the fact of writing “z” in a
file (line 5) or sending it (line 6).

Car-wide Taint Propagation. DDFT locally ensures secu-
rity and can detect a security attack or a privacy
leakage. For its integration in our car-wide security
framework, our DDFT tool instruments the middleware
layer as well and takes an active part in the in-band
middleware protocol.

The Middleware-based taint propagation is pre-
sented in Figure 7. System calls related to the network
socket management are monitored and intercepted by
the Injector. The header of the incoming message is
scanned, the STL field is extracted and its value is
used as taint value for the data payload in the shadow
memory (bullet 3). On the other hand, before being sent
out, the outgoing message gets injected a new STL value
relative to the sensitivity of the whole payload (bullet
4). The STL value is determined from the shadow mem-
ory by the Injector and carries the most relevant STL
found, i.e., the highest SL and TL found. In addition the
DDFT tool checks if the TPA is authorized to commu-
nicate with the remote service over a dedicated secure
channel.

Middleware enforcement: After receiving a TPA
message, the middleware layer of the on-board service
extracts the STL field and enforces the appropriate
policy. The middleware implementation of the service
is static and cannot enforce a different policy for each
new TPA. Instead, the service middleware relies on
the DDFT framework and trusts it to have authorized
the communication and to have provided an accurate
STL value. Then based on DDFT/DIFC generic policies,
applicable to all TPAs, the middleware decides to pass

the payload to the aimed application. More details
about the DDFT/DIFC policies, linking the STL of
the DDFT engine to the DIFC model, are provided in
Section 4.3.

DDFT Policies: We identify 2 types of DDFT policies,
both of them enforced in the DDFT framework:

a) Static polices: Such rules are embedded in the
DDFT framework and enforced for all TPAs. They
list the authorized services, with which a TPA can
communicate. They provide the taint propagation rules
(intra- and middleware-based) and the rules related
to the taint sinks and taint sources (e.g., how to
taint keyboard inputs, which tainted files can be
read/overwritten). These rules are static and defined by
the car manufacturer at design time.

b) Dynamic policies: These rules allow a better
customization of the permission given to a TPA and
specify additional services or files that can be accessed.
They are specific for one application and loaded in
the DDFT framework like a Android rule set during
the TPA installation. The rule set is evaluated against
the existing static rules and needs to be approved and
signed by the car manufacturer. Other privacy-relevant
policies and exceptions may be directly specified by the
driver thanks to on-board configuration interfaces and
displays of pop-up windows.

4.3. Coupling DIFC and DDFT
The DDFT/DIFC interface concerns the middleware
layers of the services having direct communications
with the TPA. It gave them a way to interpret the
received STL taint from the TPA based on their DIFC
label. Like the DIFC approach, the applications of a
service are unaware of this interface.

The TPA and the DDFT framework are not part
of the DIFC model and therefore not assigned any
label. It allows the TPA to receive information from the
whole car without any constraint. The DDFT engine
provides accurate STL taints, which gives a precise
idea of the output sensitivity. For example in Figure 7,
even if the TPA gets as inputs highly sensitive data
from a file, the output STL indicates that the payload
was processed only from data of lower sensitivity and
should be processed accordingly. In comparison to the
DIFC approach, DDFT allows the TPA to be more
functional, even when handling critical data.

For this DIFC/DDFT approach, the DDFT is DIFC
label-unaware and only receives messages with STL
taints. It allows us to keep the DDFT tool simple,
efficient and generic and not to worry about the
different specificities of all car models. Then, the TPAs
are most likely to receive information from on-board
services and the outside, process them and directly
communicate with the outside. The amount of traffic
from the TPA to on-board services will remain minor.

11
ICST Transactions Preprint



A. Bouard et al

As a consequence, the security should be based on
a taxonomy oriented towards a secure information
release with the outside, like the STL.

Due to the limited number of taints and the privacy
risk, the data of only one user should reach the TPA.
Therefore all monitored TPA are assigned one user
identity (ID). Like for the user tags, these IDs are
defined and distributed by the proxy. For each message
exchanged between a service and a TPA, a STL and
a user ID are added to its header. The DDFT tool
filters inbound messages based on the provided ID.
The middleware of the concerned service can easily
characterize whose privacy is concerned.

Proxy interface: Most sensitive outputs of the TPA
will aim toward the outside. In a same manner as
explained in Section 3.3, the proxy enforces a STL-
based filtering. In addition to the STL considerations,
the proxy makes sure that the ID joint to the STL is
appropriate for the communication, e.g., the ID of a
user U communicating with U’s CE device. The proxy
provides therefore 2 types of filtering: (1) STL-based for
communications with the TPA and (2) DIFC-based for
communications with on-board services.

Service interface: All on-board services can send
data to the TPA. Their middleware just provide the
right user ID (if these data are private) and a
suitable STL value. The DIFC labels are enforced
to create information flows respecting their integrity
and confidentiality. Since the integrity of the TPA
outputs cannot be assessed, the transition between
DIFC label and STL taint only focus on the information
confidentiality.

For messages flowing from an on-board service to a
TPA, the sent STL value depends on the secrecy labels
of the service:

• for a label involving tags expressing a high secrecy
for the car manufacturer, the STL gets a TL=3. The
SL is not relevant since the data will not leave the
car. The list of high-secrecy tags is defined by the car
manufacturer and available in each service interface.

• for a label involving tags expressing the secrecy of
a user, but not expressing a high secrecy for the car
manufacturer, the STL getss a TL=2 or 1 depending
on their privacy level. The SL depends on the user’s
settings since it is her own data, but as a default value
a SL=2 is advised.

• in any other case, the STL gets a TL=0 and a SL=0.

For the opposite case, i.e., when the service receives a
message from the TPA, the service middleware decides
whether to pass the data to its applications based on the
received STL and its own label:

• a STL=(*,3) forces the middleware to pass the data
to an application handling highly confidential data
that cannot leave the car. Thus an application having

a user secrecy tag in its label is not able to receive
such data. An authorized service should also include
high secrecy tag of the car manufacturer in its label.

• a STL=(*,1) or (*,2) forces the middleware to pass the
data to an application handling the private data of
a user. Therefore a service with a user’s secrecy tag
corresponding to the received ID field should be able
to get the data.

• a STL=(*,0) indicates that the data are not sensitive
and can be passed to all kind of applications.

These last rules do not really consider the SL part of
the STL. If sent to the outside, a communication from a
service has to go through a DIFC-based enforcement at
the proxy level, which is already statically configured.
The SL is more relevant for unknown and dynamic cases
where security has to be evaluated and configured on-
the-fly, like with the TPA.

5. Implementation
This section describes our prototypical implementation
combining a middleware-based DIFC enforcement to a
DDFT engine.

5.1. The Middleware
As basis of our implementation, we chose to make use
of the C-version of the middleware Etch [10]. Etch is
an open-source software project under the Apache 2.0
licence and is considered as a serious candidate for
the automotive purpose [13]. Our middleware copes
with two types of enforcement: the first one related
to the DIFC model and the second one to the DDFT
monitoring. We therefore developed two middleware
versions. The DIFC version extends the serialization of
the middleware header with two fields of 15 bytes, one
for the secrecy label, the other for the integrity label.
For the DDFT version we extended the header with a
2 integer fields including the 2 values of the STL , i.e.,
the SL and the TL. The DIFC version is used between all
on-board services, while the DDFT one is only used for
communication involving the TPA. As a consequence,
services communicating with the TPA are aware of the
2 types of header serialization. Like any traditional
middleware, the payload serialization and security
enforcement are separated from the application logic.
Etch allows to precise the label of a service and
the authorized taints through an adapted interface
description language (IDL) and provides an automatic
code generation for the enforcement of DIFC and DDFT
policies.

We developed a communication proxy similar to the
one presented in our previous work [9]. The proxy pro-
vides two secure communication interfaces: an exter-
nal one using the TLS protocol with CE devices and

12
ICST Transactions Preprint



Automotive Middleware-based Security

online services and an internal one for on-board ser-
vices establishing IPsec communication channels. Inter-
nal and external communication partners communicate
over a mirror-service of the proxy, which makes the
communication decoupling totally transparent for both
of them. The proxy is application unaware. It enforces
a message filtering based on the labels or taints present
in the middleware header of all outbound messages. For
inbound message, the proxy adds in the middleware
header the corresponding labels or taints, depending
on the communication target, i.e., an on-board service
or a TPA. The proxy determines the user identity for
the establishment of the related user tags and ID values
based on the TLS certificate provided by the user’s CE
device or based on other security credentials that an
online service can provide.

5.2. Isolation Cell
Regarding our first approach in Section 4.1 for
integration of TPAs, we make use of the XEN®

hypervisor 4.2 [40], that we set up on the HU. We
run the trusted HU middleware and applications,
which are developed by the car manufacturer, in the
most privileged domain, called Dom0. The untrusted
TPA runs in an unprivileged cell, called DomU.
Communications between Dom0 and the DomU occur
over a virtualized bridge. The XEN environment
enforces a complete isolation of the DomU otherwise.
The TPA runs on top of a label-unaware Etch
middleware. The middleware of the HU service in
Dom0 is therefore able to receive both labeled and
unlabeled middleware header. The HU service acts like
a forwarder and enforces DIFC policies for all traffic
going to and coming from the TPA.

5.3. The DDFT Engine
Regarding our second approach in Section 4.2, we make
use of the DDFT framework libdft [8]. Libdft relies on the
Intel’s Pin for DBI. This tool provides relatively good
performance in comparison to other DDFT engines [33]
and a well-defined API for a customizable security
enforcement. More than just using this framework, we
extended its expressiveness and its taint propagation
mechanisms in order to deal with the 16 values of
the STL. Originally, one byte of memory was tagged
with one bit in the shadow memory, it is now one byte
tagged by 4 bits. We limited our choice to 16 values in
order to keep the size of the shadow memory reasonable
and the taint propagation mechanisms efficient. We
extended the libdft framework with the possibility to
differentiate user inputs, i.e., from the keyboard, from
file inputs. For the file management, we implemented
in libdft a system of whitelist, which specifies which
file can be accessed by the TPA in reading or writing
and for which taint values. We developed a network

system call monitoring able to scan every incoming
message, extract the taints from the middleware header
and taint the data accordingly. In a same manner, the
framework can now detect the function calls which
send network messages and automatically inject them
with the suitable taint values of their payload.

5.4. Testing Environment
We performed this prototypical implementation and
the experiments presented in Section 6.2 on three
computers: the CE device, the proxy and the HU. They
are interlinked with a Gigabit Ethernet and are running
a standard 32-bit Fedora Linux on an Intel Atom N270
(1.6 GHz) with 1 GB or RAM. The DomU runs a Debian
6.0 Linux with 256 MB of allocated RAM. While being
more resourceful than most embedded platforms of
the car, our platforms provide a performance similar
to a current HU [41]. Our Etch middleware presents a
suitable performance, when tested on resource limited
microcontroller [13]. Our implementation does not
perform extensive modifications of the middleware
and therefore should not significantly impact the
middleware performance. However this last point
should be verified for a more rigorous validation.

6. Evaluation
In order to evaluate our system, we first discuss
the security of our concepts and how our system
would react during the attack scenarios presented in
Section 2.2. Then in the second part, we quantify
the overhead of our implementation and discuss the
functional requirements presented in Section 2.3.

6.1. Security Evaluation
For this section, we refer to the two attack scenarios
defined in Section 2.2. We describe for our two security
approaches – isolation and DDFC – how our system
would react and which threats can be stopped.

First Approach - DIFC & Isolation. Figure 8 presents an
example of label distribution and helps us to under-
stand how DIFC can secure on-board communications
and the integration of TPAs and CE devices. The CE
device connects to the proxy and gets a direct access to
on-board services and an access to the TPA through the
intermediary of a HU service. The TPA, always through
the intermediary of a HU service, can access the driver’s
data stored on the HU, receives data from ECU A and
triggers mechanisms of ECU B.

Our DIFC model does not propose any service
hierarchy, instead all services are distrustful with each
other. As a consequence, a successful attack or bug will
have a limited impact and will compromise only the
tags of the affected services. In our scenario, the CE
device of the driver d is authenticated by the proxy,

13
ICST Transactions Preprint



A. Bouard et al

Figure 8. Security scenario. Rectangular boxes represent
services running on an independent IFC aware middleware. Round
boxes represent IFC unaware applications, devices and files. Solid
arrows represent middleware-based communications.

which binds the device to the tags ds and di. The proxy
afterwards grants the HU with the ownership of the
new tags. The HU performs a DLA of these tags with
the TPA, so that the latter can access the driver’s data.
CE device and TPA cannot be trusted to enforce DIFC
rules, that‘s why their middleware is DIFC unaware and
we rely on the HU service and proxy to enforce security.

The TPA is confined to the two driver’s tags ds and
di. The presence of ds in its label allows the TPA
to get access to the driver d’s data on the HU. The
ownership of di allows the TPA to write on the d’s
data. The presence of di in its label would constrain
it to receive data labeled with di and would prevent it
from accessing for example non-sensitive configuration
files. A label with ds but without di would limit it to a
“read-only” access. The ds labeling forces a malicious
TPA to only communicate with the ds-labeled CE device
(i.e., belonging to the driver d) and prevents it from
communicating with other peers. Because the CE device
is bound to one person and labeled with the tags of one
user, we do not allow the TPA to be labeled with several
user tags.

In a same manner, a CE device is limited to one
user and gets access to the data of one user and to
non sensitive data. Sensitive data, i.e., from a service
labeled with a secrecy service tag, like as for ECU A,
are blocked by the proxy and are not forwarded to the
CE device. Like the TPA, the CE device cannot trigger
mechanisms of services with an integrity service tag in
their label, like bi for ECU B. The proxy is the only on-
board entity which generates new user tags and grants
their ownerships. The proxy is empty labeled in order to
always be able to communicate with several CE devices
and other online services.

The labels provide also an efficient way to constrain
information flows between on-board services. The HU
service can receive information from ECU A if and
only if it has the tag as in its label or ownership. As a
consequence, even if a message from ECU A, labeled
with as, is forwarded by a multicast address. The proxy
will never send such message out and no unauthorized
service, i.e., without the tag as, will process it. On the

other hand, since the HU service owns the tags as, it may
occasionally forward as-labeled data to the TPA. The
(safety) mechanisms of ECU B will only be triggered by
authorized services, i.e., services having bi in their label
or ownership.

Approach conclusion: No service is fully trusted and
owns all the tags of the system. Label, ownership and
DLA allow services to express their security concerns
for integrity and secrecy The on-board services rely
on their remote on-board communication partners
to enforce the right DIFC policy. If we consider
our integrity attack scenarios, the TPA is isolated
in a cell and cannot disturb the HU functioning.
The label enforcement of the TPA and of the CE
device are performed by the HU service and the
proxy, respectively. The exchange of labeled messages
allows the communicating services to determine if
the message/its source have a sufficient integrity level
in order to be processed or trigger a mechanism.
Regarding the confidentiality scenario, the labeling
of the CE device and the TPA prevents them from
accessing highly sensitive data. In case of a bug causing
a privacy issue, the labeling of the messages allows the
proxy to detect an unauthorized communication and to
block it.

Second Approach - DIFC & DDFT. This second
approach differs only in the way we monitor the TPA.
Communications between services and with CE devices
are secured by the same methods as previously, except
that the communications with the TPA benefit from a
new security enforcement. Both our attack scenarios
feature a TPA presenting exploitable vulnerabilities.
A well configured DDFT can detect such attacks and
stop the application before it harms the car or a user’s
privacy. The rest of this section reasons directly with
our attack scenarios.

Integrity attacks: The DDFT framework is con-
figured to detect every system call which involves
exchanges of information with the outside. It detects
in particular inter-process communications, e.g., with
critical HU processes, shared memory and filesystem
access and can block all of them. The DDFT frame-
work only authorizes certain network communications
and file accesses. Authorized and non critical files are
whitelisted by the DDFT and their access is monitored.
Therefore the HU functioning cannot locally be dis-
turbed, the DDFT framework can even enforce policies
limiting its resource consumption, e.g., against denial
of service attacks. At a remote level, a communication
with another service is only possible if it is authorized
by the rule set of the TPA and if the service has a policy
authorizing the communications with a TPA. Therefore
a TPA will not be able to reach critical functionalities,
e.g., from the brake controller, and disturb the car
functioning.

14
ICST Transactions Preprint



Automotive Middleware-based Security

Confidentiality attacks: These attacks mostly con-
cern the release of sensitive information to the outside
and have to go through the proxy. The DDFT framework
whitelist the file that the TPA can access and makes
sure that it does not access files containing the private
information of a user it is not assigned to. The services
which communicates with the TPA specify in the mid-
dleware header the STL of the data and the ID of the
user, whose privacy is concerned. A TPA can be sent
all information, the DDFT is trusted to propagate the
STL taint and to check that the ID suits the user it was
assigned. If the TPA tries to directly send some data
through the proxy, the DDFT engine injects a STL and
ID field in the payload. The proxy can then ensure that
the addressee is the one specified in the header and that
the STL condition is fulfilled. The situation is a bit more
complex if the TPA attempts to release the data through
another service communicating with the outside. That
is why a service dealing with the private data of a
user, i.e., having a user’s tag in its label or ownership,
will refuse a message with a TL=3. Only services not
communicating with the outside may receive data with
TL=3, i.e., services with secrecy service tags reflecting a
high secrecy for the car manufacturer. The processing of
data tainted with a TL=1 or 2 will depends whether the
service can handle private information, i.e., whether the
service has the user’s secrecy tag in its label or owner-
ship. The decisions about whether to process and which
SL to use later are defined by the car manufacturer and
statically set up in the middleware of the service. As
a consequence, sensitive data coming from the TPA are
processed by services respecting the concerns expressed
by the STL and allowing a privacy-aware release with
the outside.

Approach conclusion: This second approach com-
bines the advantages of DIFC for on-board and CE
device-based communications and provides more gran-
ularity as for the integration of TPA. The TPA accesses
more data, even the confidential ones and is still able
to communicate with untrusted partners if the message
does not involve sensitive information.

Limitations and potential solutions. In Section 2.2, we
assumed the integrity of the middleware/OS of every
ECU and the proxy. However secure boot and remote
attestation do not protect or detect runtime attacks,
which can be very harmful if they compromise critical
ECUs like the proxy or the HU. Other runtime
intrusion detection systems have to be considered as
well [42]. Such security tools perform scans of critical
data structures and recognition of instruction patterns
within a running platform. They generally significantly
degrade the system performance and should be used in
a carefully selected manner. Successful attacks on the
proxy could be mitigated by its compartmentalization
thanks to hypervisor or microkernel techniques. Even

if an isolated cell of the proxy gets compromised,
the proxy detects it and shuts down the cell without
impacting the other genuine cells.

Regarding the integration of a TPA in an isolated cell,
we mentioned that they can only be used by a unique
user. Several users, willing to use simultaneously a TPA,
may require the car to assign a virtual machine per user
in order to preserve their privacy. This solution may be
too resource costly. The DDFT approach, on the other
hand is less heavy. It can monitor several applications
for different users and isolate them from each other.

Partial security conclusion. Unlike OSs like Android,
which control their applications with a set of coarse
permissions, DDFT allows a fine security granularity.
More than just isolating, DDFT stops the TPA, before
the attacker takes control of it. Unlike the isolation
solution, TPAs monitored by DDFT are more functional
and several applications can be used by several users.
DIFC/DDFT is therefore a better solution from a pure
security point of view.

6.2. Functional Evaluation
Section 6.1 justifies that the DDFT approach is
providing a deeper monitoring and a better flexibility
than the isolation approach. This section assesses our
implementation overhead and determines whether this
choice can be corroborated from a functional point of
view.

We measure the middleware throughput (in call/sec)
between an application of the CE device and an on-
board TPA for a scenario similar to the one presented
in Section 6.1. We performed our tests with different
security features and in various situations in order
to demonstrate the overhead caused by our two
approaches for TPA integration. Benchmarks are run
on three separated machines as described in Section 5:
the HU, the proxy and the CE device. The CE device
application sends a simple Etch message including one
integer to the TPA. Before arriving to the TPA, the
message goes through the intermediary of the proxy
and then a service of the HU, where DIFC can be
enforced. After reception, the TPA retrieves a series of
integers from a file on the HU. Based on the received
and read integers, the TPA generates a buffer and sends
it to the CE device through the same inverse path, i.e.,
through the HU service and then the proxy. We vary
the size of the buffer in order to stress the middleware
and the taint propagation mechanisms. In this scenario
the TPA plays the role of an infotainment server, e.g.,
for music or picture. Our first set of measurements is
performed without any security features enabled (1)
and we use this case as reference. We then did the same
while encrypting the communication channel (2), i.e.,
by using TLS for the link CE device–proxy and IPsec for
the proxy–HU. After which, in addition, we enforced

15
ICST Transactions Preprint



A. Bouard et al

Figure 9. Middleware throughput average for various buffer sizes
and security modes enabled.
Mode Description:
(1) No security feature is enabled
(2) The encryption between CE device, proxy and HU is enabled.
(3) DIFC is enforced between proxy and HU + (2).
(4) The TPA runs in a Virtualization cell + (3)
(5) The TPA is DDFT monitored + (3)

Table 2. Normalized middleware throughput performance of the
scenario presented in Section 6.2. These results are computed
from the throughput averages of the different modes. The mode of
this table are similar to the used for Figure 9. Factor (i) presents
the normalized performance with (1) as reference, while factor (ii)
takes (3) as reference.

Enabled Mode (1) (2) (3) (4) (5)

Factor (i) 1 0.57 0.55 0.43 0,40
Factor (ii) - - 1 0.78 0.73

DIFC between proxy and HU (3). The measurements
of (3) gives a lower bound overhead caused by the
communication security without any TPA consideration.
The case (4) uses the same security features as (3) and
monitors the TPA with our DDFT framework and the
HU service, which enforces the DDFT/DIFC coupling
rules. The measurements of (4) allow to determine the
overhead imposed by a DIFC/DDFT framework and
our custom taint propagation mechanisms. Finally the
case (5), like (4), uses the security of (3), but instead of
DDFT, the TPA runs in an isolated XEN cell and the HU
service enforces DIFC with the TPA. The measurements
of (5) allow to evaluate the impact caused by DIFC and
the isolation cell. The throughput results of Figure 9
present the average of ten measurements of 5000 calls
each.

Discussion: After normalization of the results of
Figure 9, we realized that the performances for
different enabled security features and regardless of the
buffer size are proportionally similar. The normalized

average throughput can be found in Table 2. First
this table shows that the use of security protocols like
TLS and IPsec is responsible for the biggest impact
(∼43%). The processes for encryption/decryption and
generation/verification of security fields like HMAC are
extremely costly, when used with a high throughput
system. A second less consequent performance decrease
(∼4%) is due to the enforcement of DIFC between
proxy and HU. For each packet, proxy and HU service
checks whether the integrity and secrecy labels are
valid for the invoked function. The last performance
impact is caused by the security feature securing the
TPA. For the isolation case, the performance decreases
by 27% and for the DDFT by 22%. In the first case,
it is due by the virtualization of the network bridge
and the OS, in the second case by the function call
monitoring and the taint propagation mechanisms. As
a conclusion, for our scenario isolation and DDFT
presents a similar performance and could be used
for infotainment use cases involving a CE device
and requiring a moderate bandwidth (1,18 Mbit/sec
for the DDFT and 1,23 Mbit/sec for the isolation).
Our experimentation involves a communication link
between HU service and proxy, this link is used here to
show the impact of DIFC on our scenario and because
the isolation approach requires an intermediary step on
a HU service. However with our DDFT approach, a TPA
can directly communicate with the proxy and reaches
a bandwidth of 2,14 Mbit/sec when using DDFT and
encryption.

However, our evaluation is only focused on the
middleware level in a small 3-node network and for a
specific scenario involving simple TPAs and CE-based
applications. Tests performed with libdft for bigger
applications such as a web-browser [8] or a MP3-
player [33] have shown a more significant latency (up
to 28 times slower), whereas the isolation cell tends to
provide a constant performance, independently from
the application complexity. As a consequence, DDFT
should only be applied for simple application handling
private data and requiring a lot of interaction with
external partners. DDFT should besides optimize its
use of trusted libraries, i.e., libraries, which are not
monitored. The use of the isolation approach can
be used for a whole system and its TPAs, e.g., an
Android partition. Additional investigations involving
larger networks generating more traffic are strongly
recommended for real-world validation.

About some functional requirements: This para-
graph offers a brief evaluation of our system based on
the requirements defined in Section 2.3. Our implemen-
tation partly fulfills our performance requirement, it
does better than low-speed communication like CAN
but is far from the high-speed one like MOST. For
bandwidth demanding use case, like for audio/video
streaming, other protocols like IEEE1722 [43], which

16
ICST Transactions Preprint



Automotive Middleware-based Security

skips the use of UDP and IP, are more efficient. Our
security framework has been implemented with an
efficient automotive middleware, but the testing with
resource limited platform should be performed. Unlike
the DDFT engine, the security solution involving isola-
tion and virtualization is resource-costly and therefore
may not be suitable for resource-limited platforms.
Then security was designed in an engineering-driven
way. Enforcing security in the middleware allows the
security engineering team to not know in detail the
application logic and to focus on abstracted flows of
information. Finally with our proxy-based architecture,
developers of CE device application are totally security-
unaware and are not imposed any (security) protocol,
as far as the proxy provides a suitable interface and can
compute the STL.

Before giving our conclusion, Table 3 proposes a short
summary of the evaluation of our two approaches.

7. Conclusion
In this paper, we presented a security architecture for
next-generation automotive on-board networks, which
combines different information flow control techniques.
Our system proposes two levels of security. Locally
very untrusted components, like TPAs, are monitored
thanks to a custom DDFT engine. DDFT allows to
fully control the TPA behavior without modifying the
binary executable: At the network level, our DIFC
model allows every on-board service to independently
express its security concerns and to trust the remote
on-board communication partner to respect it. For this
purpose, the security is ensured by the middleware.
This layer is in charge of the network communications,
is strictly separated from the application logic and
allows the on-board exchange of security metadata.
The middleware is also used as a glue between DIFC
and DDFT and provides the translation interfaces
between the two models. A Proxy-based architecture,
on the edge of the embedded network, filters inbound
and outbound messages and allows an on-the-fly
evaluation of the security and trust level of all external
communications. The taxonomy used to evaluate this
security and trust level is also directly used by
the DDFT engine and by the service middleware.
More than just providing the monitoring of one
application, our security framework proposes a DIFC-
based monitoring approach of a whole system thanks
to isolation and virtualization techniques. With respect
to the integrity and confidentiality attack scenarios
in Section 2.2, our proposed framework successfully
prevents those attacks and offers a light-weight and
easy-to manage middleware-based security and privacy
framework by using the aforementioned techniques.
It also meets almost all architecture requirements
from Section 2.3. More than giving a recommendation

about which solution to use, we see our 2 approaches
for TPA integration as complementary; the choice
for an approach should be carefully evaluated and
dependent on the application complexity and the
requirements for performance and security flexibility.
However, while enhancing the in-car security and
privacy, these solutions have shown some performance
limitations. More rigorous validations therefore require
additional investigations in order to determine a
suitable tradeoff between acceptable performance and
security enforcements on resource-limited hardware.

References

[1] Elliott, M.-A. (2011) The Future of Connected Cars.
http://mashable.com/2011/02/26/connected-car/
(accessed on 14 march 2013).

[2] Lutz, Z. (2011) Renault debuts R-Link, an
in-dash Android system with app market
http://www.engadget.com/2011/12/09/renault-debuts-
r-link-an-in-dash-android-system-with-app-market/
(accessed on 14 march 2013).

[3] Koscher, K., Czeskis, A.,Roesner, F., Patel, S., Kohno,
T., Checkoway, S., McCoy, D., Kantor, B., Anderson, D.,
Shacham, H. and Savage S. (2010) Experimental Security
Analysis of a Modern Automobile. In Proceedings of
the 2010 IEEE Symposium on Security and Privacy
(Washington DC: IEEE Computer Society), 447–462.
doi:10.1109/SP.2010.34

[4] Checkoway, S., McCoy, D., Kantor, B., Anderson,
D., Shacham, H., Savage, S., Koscher, K., Czeskis,
A., Roesner, F.and Kohno, T. (2011) Comprehensive
Experimental Analyses of Automotive Attack Surfaces.
In Proceedings of the 20th USENIX conference on Security
(Berkeley: USENIX Association), 6–6.

[5] Rouf, I., Miller, R., Mustafa, H., Taylor, T., Oh, S., Xu, W.,
Gruteser, M., Trappe, W. and Seskar, I. (2010) Security
and Privacy Vulnerabilities of In-car Wireless Networks:
a Tire Pressure Monitoring System Case Study. In
Proceedings of the 19th USENIX conference on Security
(Berkeley: USENIX Association), 21-21.

[6] Slivka, E. (2012) Apple Pulls Russian SMS Spam
App from App Store. http://www.macrumors.com
/2012/07/05/apple-pulls-russian-sms-spam-app-from-
app-store/ (accessed on 15 March 2013).

[7] Glass, M., Herrscher, D., Meier, H., Piastowski, M. and
Shoo, P. (2010) SEIS - Security in Embedded IP-based
Systems. In ATZelektronik worldwide, 2010-01, 36–40.

[8] Kemerlis, V., Portokalidis, G., Jee, K. and Keromytis,
A. (2012) libdft: Practical Dynamic Data Flow
Tracking for Commodity Systems. In Proceedings of
the 8th ACM SIGPLAN/SIGOPS conference on Virtual
Execution Environments (New York: ACM), 121–132.
doi:10.1145/2151024.2151042

[9] Bouard, A., Schanda, J., Herrscher, D., Eckert, E.
(2012) Automotive Proxy-based Security Architec-
ture for CE Device Integration. In Procceedings of
5th International Conference Mobilware on Mobile Wire-
less Middleware, Operating Systems, and Applications

17
ICST Transactions Preprint

http://mashable.com/2011/02/26/connected-car/
http://www.engadget.com/2011/12/09/renault-debuts-r-link-an-in-dash-android-system-with-app-market/
http://www.engadget.com/2011/12/09/renault-debuts-r-link-an-in-dash-android-system-with-app-market/
http://dx.doi.org/10.1109/SP.2010.34
http://www.macrumors.com/2012/07/05/apple-pulls-russian-sms-spam-app-from-app-store/
http://www.macrumors.com/2012/07/05/apple-pulls-russian-sms-spam-app-from-app-store/
http://www.macrumors.com/2012/07/05/apple-pulls-russian-sms-spam-app-from-app-store/
http://dx.doi.org/10.1145/2151024.2151042


A. Bouard et al

Table 3. Summary of our system evaluation with respect to the attack scenarios of Section 2.2 and the requirements of Section 2.3
(More details are provided in Section 6).

1 - Approach DIFC/Isolation 2 - Approach DIFC/DDFT

Monitoring paradigm system oriented single-process oriented

Integrity scenario
• Protection of the HU from a TPA Yes, by isolation Yes, by monitoring
• Protection of other ECUs from a TPA Yes Yes
• Protection of the ECUs from external attackers Yes, same DIFC-based mechanisms for both approaches

Secrecy scenario
• Protection of the user’s data from a TPA Yes Yes, more fine-granular
• Privacy-aware data release, with a TPA Yes Yes, more dynamic/flexible
• Protection of the user’s data from external attackers Yes, same DIFC-based mechanisms for both approaches

Requirements
• Performance Partially, independent of Partially, dependent on

the application complexity the application complexity
• Solutions for all platforms No Yes
• No regular updates necessary Yes Yes
• No financial extra cost Yes, software-based solution Yes, software-based solution
• No complexity increase for developers and users Yes, the communication decoupling of the proxy

makes users and developers security-unaware

(Heidelberg:Springer-Verlag), 62–76. doi:10.1007/978-3-
642-36660-4_5

[10] Homepage of Etch. http://incubator.apache.org/etch/
(accessed on 15 March 2013).

[11] Hoppe, T., Kiltz, S., Dittmann, J. (2008) Security Threats
to Automotive CAN Networks & Practical Examples and
Selected Short-term Countermeasures. In Proceedings
of the 27th international conference on Computer Safety,
Reliability, and Security (Heidelberg: Springer-Verlag),
235–248. doi:10.1007/978-3-540-87698-4_21

[12] Maier. A. (2012) Ethernet - The Standard for In-
car Communication. In 2nd Ethernet & IP @ Auto-
motive Technology Day. http://www.ethernettechnology
day.com/downloads/18 _Alexander_Maier_-_BMW.pdf
(accessed on 15 March 2013).

[13] Weckemann, K., Satzger, F., Stolz, L., Herrscher, D.,
and Linnhoff-Popien, C. (2012) Lessons from a Minimal
Middleware for IP-based In-car Communication. In
Proceedings of the IEEE Intelligent Vehicles Symposium
2012 (Washington DC: IEEE Computer Society), 686–
691.

[14] Bouard, A., Glas, B., Jentzsch, A., Kiening, A., Kittel,
T., tadler, F., and Weyl, B. (2012) Driving Automotive
Middleware Towards a Secure IP-based Future. In
Proceedings of the 10th ESCAR Embedded Security in Cars
Conference.

[15] Clarke, E. M., Grumberg, O. and Peled, D. (1999) Model
Checking. MIT Press.

[16] Mecklenbrauker, C. F., Molisch, A. F., Karedal, J.,
Tufvesson, F., Paier, A., Bernado, L., Zemen, T., Klemp,
O., Czink, N. (2011) Vehicular Channel Characterization
and Its Implications for Wireless System Design and
Performance. In Proceedings of The IEEE Special Issue
on Vehicular Communications (Washington DC: IEEE
Computer Society), 99(7): 3646–3657.

[17] Fujitsu Semiconductor Europe (2012) Fujitsu Announces
Powerful MCU with Secure Hardware Extension (SHE)
for Automotive Instrument Clusters. In Fujitsu Press
Release. http://www.fujitsu.com/emea/news/pr/fseu-
en_20121129-1044-fujitsu-mcu-secure-hardware-
extension-atlas-l.html (accessed on 15 March 2013).

[18] McMillan, R. (2011) ’War Texting’ Lets
Hackers Unlock Car Doors via SMS.
http://www.pcworld.com/article/236678/War_Texting
_Lets_Hackers_Unlock_Car_Doors_via_SMS.html
(accessed on 15 March 2013).

[19] Homepage of the EVITA project. http://evita-
project.org/ (accessed on 15 March 2013).

[20] Homepage of the SeVeCom project. http://www.seve
com.org/ (accessed on 15 March 2013).

[21] Homepage of the simTD project. http://www.simtd.org/
(accessed on 15 March 2013).

[22] Detken, K.-O., Fhom, H. S., Stehman, R., Dietrich,
G. (2010) Leveraging Trusted Network Connected for
Secure Connection of Mobile Devices to Corporate
Networks. In Pont, A., Pujolle, G. and Raghavan, S.V.
[eds] Communications: Wireless in Developing Countries
and Networks of the Future (Heidelberg:Springer-Verlag).
doi:10.1007/978-3-642-15476-8_16

[23] Department of Defense (1983) Trusted Computer
System Evaluation Criteria In Orange Book

[24] Myers, A. C., Liskov, B. (2000) Protecting Privacy Using
the Decentralized Label Model. In ACM Transactions on
Software Engineering and Methodology (New York:ACM),
9:410–442.

[25] Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey,
C., Ziegler, D., Kohler, E., Mazières, D., Kaashoek, F.,
Morris R. (2005) Labels and Event Processes in the
Asbestos Operating System. In Proceedings of the 20th
ACM symposium on Operating systems principles (New
York:ACM), 17–30. doi:10.1145/1095810.1095813

18
ICST Transactions Preprint

http://dx.doi.org/10.1007/978-3-642-36660-4_5
http://dx.doi.org/10.1007/978-3-642-36660-4_5
http://incubator.apache.org/etch/
http://dx.doi.org/10.1007/978-3-540-87698-4_21
http://www.ethernettechnologyday.com/downloads/18_Alexander_Maier_-_BMW.pdf
http://www.ethernettechnologyday.com/downloads/18_Alexander_Maier_-_BMW.pdf
http://www.fujitsu.com/emea/news/pr/fseu-en_20121129-1044-fujitsu-mcu-secure-hardware-extension-atlas-l.html
http://www.fujitsu.com/emea/news/pr/fseu-en_20121129-1044-fujitsu-mcu-secure-hardware-extension-atlas-l.html
http://www.fujitsu.com/emea/news/pr/fseu-en_20121129-1044-fujitsu-mcu-secure-hardware-extension-atlas-l.html
http://www.pcworld.com/article/236678/War_Texting_Lets_Hackers_Unlock_Car_Doors_via_SMS.html
http://www.pcworld.com/article/236678/War_Texting_Lets_Hackers_Unlock_Car_Doors_via_SMS.html
http://evita-project.org/
http://evita-project.org/
http://www.sevecom.org/
http://www.sevecom.org/
http://www.simtd.org/
http://dx.doi.org/10.1007/978-3-642-15476-8_16
http://dx.doi.org/10.1145/1095810.1095813


Automotive Middleware-based Security

[26] Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières,
D. (2006) Making Information Flow Explicit in Histar.
In Proceedings of the 7th symposium on Operating
systems design and implementation (Berkeley:USENIX
Association), 263–278.

[27] Zeldovich, N., Boyd-Wickizer, S. and Mazières, D. (2008)
Securing Distributed Systems with Information Flow
Control. In Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation (Berke-
ley:USENIX Association), 293–308.

[28] Ramachandran, A., Mundada, Y., Tariq, M., and
Feamster, N. (2008) Securing Enterprise Networks Using
Traffic Tainting. In Special Interest Group on Data
Communication.

[29] Zdziarski, J. (2012) Hacking and Secur-
ing iOS Applicaitions. (O’Reilly Media,
Inc.), chap 13.1 Sandbox Integrity Check.
http://my.safaribooksonline.com/book/-/97814493252
13/jailbreak-detection/sandbox_integrity_check
(accessed 15 March 2013).

[30] Yin, H., Song, D., Egele, M., Kruegel, C. and Kirda
E. (2007) Panorama: Capturing Systemwide Informa-
tion Flow for Malware Detection and Analysis. In
Proceedings of the 14th ACM conference on Computer
and communications security (New York:ACM), 116–127.
doi:10.1145/1315245.1315261

[31] Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J.,
McDaniel, P. and Sheth, A. (2010) Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX conference on Operating systems design and
implementation (Berkeley:USENIX Association), 393–
407.

[32] Zavou, A., Portokalidis, G., Keromyitis, A. (2011) aint-
Exchange: A Generic System for Cross-Process and
Cross-Host Taint Tracking. In Proceedings of the 6th
International conference on Advances in information and
computer security (Heidelberg:Springer-Verlag), 113–128.

[33] Schweppe, H. and Roudier, Y. (2012) Security and
Privacy for In-vehicle Networks. In 1st IEEE International
Workshop on Vehicular Communications, Sensing, and

Computing (Washington DC: IEEE Computer Society).
[34] Shankar, V., Urbam, G., Sultan, F. (2002) Online trust:

a stakeholder perspective, concepts, implications, an
future directions. In Journal of Strategic Information
Systems, 11(3):325–344.

[35] Ling T. C. et al: Baker & McKenzie - Global Privacy
Handbook. IACCM (2012)

[36] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A.,
Lowney, G., Wallace, S., Reddi, V.J. and Hazelwood,
K. (2005) Pin: building customized program analysis
tools with dynamic instrumentation. In Proceedings of the
2005 ACM SIGPLAN conference on Programming language
design and implementation (New York:ACM), 190–200.
doi:10.1145/1065010.1065034

[37] Levy, E. (Aleph One). (1996) Smashing the Stack for Fun
and Profit. In the Phrack Magazine, 7(49), chap 14.

[38] Scut, team teso (2001) Exploiting Format
String Vulnerabilities. Technical Report,
http://julianor.tripod.com/bc/formatstring-1.2.pdf.

[39] Shacham, H., Page, M. and Pfaff, B. (2004) On
the Effectiveness of Address-space Randomization. In
Proceedings of the 11th ACM conference on Computer
and communications security (New York:ACM), 298–307.
doi:10.1145/1030083.1030124

[40] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris,
T., Ho, A., Neugebauer, R., Pratt, I. and Warfield, A.
(2003) Xen and the art of virtualization. In Proceedings of
the 19th ACM symposium on Operating systems principles
(New York:ACM), 164–177. doi:10.1145/945445.945462

[41] BMW AG. Navigation System Professional,
http://www.bmw.com/com/en/insights/technology/tec
hnology_guide/articles/navigation_system.html
(accessed 15 March 2013).

[42] Garfinkel, T., Rosenblum, M. (2003) A Virtual Machine
Introspection Based Architecture for Intrusion Detec-
tion. In Proceedings of NDSS Symposium 2003, Internet
Society

[43] IEEE Standards Association (2011) IEEE 1722 -
Layer 2 Transport Protocol Working Group for Time-
sensitive streams http://grouper.ieee.org/groups/1722/
(accessed 15 March 2013).

19
ICST Transactions Preprint

http://my.safaribooksonline.com/book/-/9781449325213/jailbreak-detection/sandbox_integrity_check
http://my.safaribooksonline.com/book/-/9781449325213/jailbreak-detection/sandbox_integrity_check
http://dx.doi.org/10.1145/1315245.1315261
http://dx.doi.org/10.1145/1065010.1065034
http://julianor.tripod.com/bc/formatstring-1.2.pdf
http://dx.doi.org/10.1145/1030083.1030124
http://dx.doi.org/10.1145/945445.945462
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/navigation_system.html
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/navigation_system.html
http://grouper.ieee.org/groups/1722/

	1 Introduction
	2 Background and Related Work
	2.1 Current & Future On-board Network
	2.2 Threats and Goals
	2.3 Security Architecture requirements
	2.4 Related Work

	3 On-board Security Architecture: Secure Middleware and Communication Proxy
	3.1 A Security Middleware Extension
	3.2 A Security Communication Proxy
	3.3 The STL Taxonomy
	3.4 Intermediary Discussion

	4 Controlling Information Flows in Cars
	4.1 Decentralized Information Flow Control
	Security Labels
	Tag Ownership
	Automotive DIFC Architecture

	4.2 Dynamic Data Flow Tracking
	Tracking and Controlling the Execution
	Car-wide Taint Propagation

	4.3 Coupling DIFC and DDFT

	5 Implementation
	5.1 The Middleware
	5.2 Isolation Cell
	5.3 The DDFT Engine
	5.4 Testing Environment

	6 Evaluation
	6.1 Security Evaluation
	First Approach - DIFC & Isolation
	Second Approach - DIFC & DDFT
	Limitations and potential solutions
	Partial security conclusion

	6.2 Functional Evaluation

	7 Conclusion

