
Mobile Robot Navigation on Partially Known Maps
using a Fast A∗ Algorithm Version

Paul Muntean
Technical University of Munich, Germany

paul.muntean@in.tum.de

Abstract—Mobile robot navigation in total or partially un-
known environments is still an open problem. The path planning
algorithms lack completeness and/or performance. Thus, there
is the need for complete (i.e., the algorithm determines in finite
time either a solution or correctly reports that there is none) and
performance (i.e., with low computational complexity) oriented
algorithms which need to perform efficiently in real scenarios.

In this paper, we evaluate the efficiency of two versions
of the A∗ algorithm for mobile robot navigation inside indoor
environments with the help of two software applications and the
Pioneer 2DX robot. We demonstrate that an improved version
of the A∗ algorithm which we call the fast A∗ algorithm can
be successfully used for indoor mobile robot navigation. We
evaluated the A∗ algorithm first, by implementing the algorithms
in source code and by testing them on a simulator and second,
by comparing two operation modes of the fast A∗ algorithm w.r.t.
path planning efficiency (i.e., completness) and performance (i.e.,
time need to complete the path traversing) for indoor navigation
with the Pioneer 2DX robot. The results obtained with the fast
A∗ algorithm are promising and we think that this results can
be further improved by tweaking the algorithm and by using
an advanced sensor fusion approach (i.e., combine the inputs of
multiple robot sensors) for better dealing with partially known
environments.

I. INTRODUCTION

Motion planning—also known as the navigation problem
or the piano mover’s problem—is a term used in robotics
for the process of breaking down a desired movement task
into discrete motions that satisfy movement constraints and
possibly optimize some aspect of the movement. Motion
planning has several robotics applications, such as: (i) robot
navigation, (ii) automation, (iii) the driver-less car, (iv) robotic
surgery, (v) digital character animation, (vi) protein folding,
(vii) safety and accessibility in computer-aided architectural
design, (viii) UCAV Path Planning [19], etc.

A basic motion planning problem is to produce a con-
tinuous motion that connects a start configuration S and a
goal configuration G, while avoiding collision with known
obstacles. The robot and obstacle geometry is described in a
2D or 3D workspace, while the motion is represented as a path
in (possibly higher-dimensional) configuration space (describes
the pose of the robot, and the configuration space C is the set
of all possible configurations).

Problem statement: Recent studies show that every day
activity of people in cities and countries living in the modern
society is rapidly increasing [18] in such a way that efficient
navigation of people movement is needed. Researchers have
tried to come with new and better navigation approaches in the

past as for example Jones [8]. These approaches lack efficiency
or applicability to mobile robot navigation in real path planning
environments.

Available solutions: Path planing w.r.t. low-dimensional
problems can be addressed using: (i) grid-based approaches
which overlay a grid on a configuration space and assume that
each configuration is identified by a grid point. At each grid
point, the robot is allowed to move to adjacent grid points
as long as the line between them is completely contained
within Cfree (the set of configurations that avoids collision
with obstacles is called the free space Cfree) (this is tested with
collision detection), (ii) interval-based search which is similar
to grid-based search approaches except that they generate a
paving covering entirely the configuration space instead of a
grid [7], (iii) geometric algorithms which are used to point
robots among polygonal obstacles based on a visibility graph,
cell decomposition and translating objects among obstacles
using the Minkowski sum [13], (iv) potential fields which are
used to treat the robot’s configuration as a point in a potential
field that combines attraction to the goal and repulsion from
obstacles. The resulting trajectory represents the new path
which is computed fast. However, they can become trapped in
local minima of the potential field, and fail to find a path, (v)
sampling-based algorithms which represent the configuration
space with a road-map of sampled configurations. A basic
algorithm samples N configurations in C, and retains those
in Cfree to use as milestones. A road-map is then constructed
that connects two milestones P and Q if the line segment PQ
is completely in Cfree. Most notable algorithms are the A*
and D* algorithms which can rapidly explore random trees
and probabilistic road-maps.

A motion planning algorithm is said to be complete if
the planner determines in finite time either a solution or
correctly reports that there is none. Most complete algorithms
are geometry-based. Resolution completeness is the property
that the planner is guaranteed to find a path if the resolution
of an underlying grid is fine enough. Most resolution com-
plete planners are grid-based or interval-based. Probabilistic
completeness states that, as more “work is performed, the
probability that the planner fails to find a path (if one ex-
ists) asymptotically approaches zero. The performance of a
probabilistically complete planner is measured by the rate of
convergence. Incomplete planners do not always produce a
feasible path when one exists. The performance of a complete
planner is assessed by its computational complexity computed
using the big O notation.

Deficiencies of available solutions: In summary, existing
path planning algorithms lack in determining a path when one

exists or they need to much time to compute one. Thus, the
main limitations of these algorithms are related to complete-
ness and/or performance. Thus, in this work wee seek for a
suited robot path planning algorithm which is complete and
performant.

Our idea: Our insight is that an improved A∗ algorithm
(we call this the fast A∗ algorithm) can be efficiently used for
path planning of real robots in a partially known environment.
We evaluated two versions of the A∗ algorithm and presented
the results obtained with the Pioneer 2DX robot [15]. The
communication (closed loop) between our PC and the real
robot was achieved by sending real-time navigation commands
via a wireless connection based on the Lantronix WiBox [11].
Note that during the experiments the Pioneer 2DX robot used
only the ultrasonic sensors in order to partially reconstruct a
map of the partially known (containing unknown obstacles)
environment—not mapped on the initial on-line mode naviga-
tion map.

In this paper, we address the problem of efficient and
complete motion planning of a three wheeled mobile robot
by implementing two algorithms (the A∗ algorithm and the
fast A∗ algorithm) and comparing the efficiency (with focus
on completness and performance) of this two approaches on
a path planning algorithm simulator and afterwards with the
real Pioneer 2DX robot.

Our contributions: In summary, the main contributions are:

• We develop an improved version of the A∗ algorithm
which proves to be faster in offline testing (with a
software simulator) and efficient in real environments
when tested with the real Pioneer 2DX robot.

• We implement two applications: first, a simulator used
for path planning simulation in offline mode (not
with the real robot) and assessed the performance
and completness of the A∗ algorithm and of the fast
A∗ algorithm and second, a path planning application
used in online-mode (with the Pioneer 2DX mobile)
to navigate him through a partially known map using
only the fast A∗ algorithm in two different operation
modes.

• We demonstrate that the fast A∗ algorithm is effective
when tested with the Pioneer 2DX mobile robot inside
a partially known indoor environment1.

The remainder of this paper is organized as follows. Sec-
tion, II highlights background work. Section, III presents the
A∗ algorithm. Section, IV highlights implementation details.
Section, V depicts experiments results. Finally, in Section VI
we conclude and present future work.

II. BACKGROUND

A. Brief Routing History

In the 1970 scientists started research on routing algorithms
for moving chess pieces on a chess-board and on how to effi-
ciently move fragments on a puzzle map [5]. As a consequence
the research on routing algorithms started. The main reason
for starting the research in the area of routing algorithms was

1 Demo movie available: https://goo.gl/OYXMDy

that these problems can be easily abstracted and further on the
results can be applied to more complex fields of study such as
robot navigation. Thus, with the development of path finding,
several new classical routing algorithms have emerged at that
time with the goal to generate better routing results.

The Dijkstra algorithm is the most famous algorithm. The
algorithm evaluates the moving cost from one node to any
other node and sets the shortest moving cost as the connecting
cost of two nodes [5]. Around the same period the Best
First Search (BFS) algorithm was introduced. The BFS is
different from the Dijkstra algorithm, since the BFS estimates
the distance from the current position to goal position and
it chooses the next step that is more closer to the goal
position [1].

As the complexity of the path finding scenarios was grow-
ing the path finding algorithms had to be improved in order to
meet new requirements as for example 3D maps.

B. The A* Algorithm and Extensions

As response to the new path planning requirements the
A∗ algorithm appeared. The goal of the new A∗ algorithm is
path planning efficiency. The A∗ algorithm is a BFS algorithm
which uses huge amounts of memory in order to keep track
of the data related to the current proceeding nodes [14]. The
A∗ algorithm tries to combine the advantages offered by the
Dijkstra algorithm and the BFS algorithm. The A∗ algorithm
tries during each new movement to take the shortest step and
tries to determine if the step lies on the direction from source
to target [8]. The disadvantage of the A∗ algorithm is that
it uses large amounts of memory in order to store the path
planning environment.

The A∗ algorithm proved to have its limitations and in
response new methods of using the A∗ algorithm appeared.
The bidirectional A∗ algorithm [14] is used in order to reduce
the time cost of the A∗ algorithm. The most important dif-
ference of the bidirectional A∗ algorithm w.r.t. the classical
A∗ algorithm (which is searching from the source to the
target location) is that it can search from source to target and
vice-versa. The path search stops immediately when the two
directional searching processes meet each other.

The Iterative Deepening A∗ (IDA∗) [9] is a space-efficient
version of the A∗ algorithm, which suffers from cycles in the
search space (it uses no storage), repeated visits to states (the
overhead of iterative deepening), and a simplistic traversal
of the search tree. Since it is a depth-first search algorithm,
its memory usage is lower than in A∗, but unlike ordinary
iterative deepening search, it concentrates on exploring the
most promising nodes and thus does not go to the same depth
everywhere in the search tree. Unlike A∗, IDA∗ does not utilize
dynamic programming and therefore often ends up exploring
the same nodes many times [6].

Routing in three dimensions (3D) is much more complex
than under two space dimensions, thus the traditional A∗
algorithm should be improved in order to meet the additional
routing requirements. The three dimensional A∗ algorithm has
emerged as a response for better dealing with 3D environ-
ments. The three dimensional A∗ algorithm was obtained by
adding several modifications to the A∗ algorithm in order to

be used for computing navigation paths in 3D maps (e.g., the
path planning of a cart in a mine system which has multiple
levels).

Furthermore, a frequently used approach for solving simple
three dimensional path planning problems is to map the three
dimensional map into a two dimensional expression. In this
way the traditional A∗ algorithm can be used for solving
the path planning [12] in 3D environments. Note that this
technique of mapping 3D maps to 2D maps is working for path
planning in simple 3D scenarios—reduced set of constrains. In
complex scenarios this mapping method can not be used and
thus more complex approaches are needed.

III. THE A∗ ALGORITHM

In this section, we briefly describe the main parts of the
A∗ algorithm. The A∗ algorithm [3] uses the BFS algorithm
in order to find the least-cost path from a given initial node to
one goal node (the last position could be a single or multiple
nodes). It uses a distance-plus-cost heuristic function (usually
denoted by f(x)) to determine the order in which the search
visits nodes in the node tree. The distance-plus-cost heuristic
f(x)) is expressed as sum of two functions: (a) the path-cost
function, represents the cost from the starting node to the
current node (usually denoted g(x)) and (b) an admissible
“heuristic estimate” used to model an estimated from the
current position/node to the the goal position/node (usually
denoted with h(x)). The distance-plus-cost heuristic function
can be framed as follows.

f(x) = g(x) + h(x) (1)

An important constraint is that the h(x) component of f(x)
must be an admissible heuristic—briefly this means that it is
important to not overestimate the distance from current node
to the goal node. The g(x) component of f(x) represents the
total cost from the start node and not only the cost from the
previously expanded (visited) node. In case of determining the
shortest distance between two locations (nodes) it is known
that the straight line is the shortest distance. In case of routing,
h(x) could be represented as a straight-line distance from
current position to the goal position. Next we impose the
following constraint on h(x).

h(x) ≤ d(x, y) + h(y) (2)

The mathematical expression (2) imposes that every edge
represented by x and y belonging to a graph where d(x,y)
represents the length of the given edge results in an hx which is
consistent or monotone. Furthermore, (2) guarantees that one
node is processed only once and in this case the implementa-
tion of the A∗ is more efficient. In this case running the A∗
algorithm is similar to running the Dijkstra’s algorithm having
the cost reduced. Next we impose the following constraint on
the length of a graph edge.

d′(x, y) = d(x, y)− h(x) + h(y) (3)

The A∗ algorithm is an informed search algorithm. A
particularity of informed search algorithms is to search for
the routes (paths) that appear to be most likely to lead to
the goal position. Note that the A∗ algorithm differs from

the greedy best-first search algorithm because it takes into
consideration the already travelled distance. The process of
finding the path from a starting position to a target position
by using the A∗ algorithm is repetitive and ends when the
current visited node is equal to the target node or when the
target position is reached. During graph nodes traversing the
A∗ algorithm follows a path from the lowest known path based
on keeping a priority queue of all alternate path segments along
the path. When an edge of the path is traversed which has a
higher cost than another previously encountered path segment
then it immediately abandons the current path segment (having
higher cost) and continues with the lower-cost path segment.

Note that each node points to his parent node and in case
of encountering a solution the path can be easily returned and
added to a list of optimal paths. The A∗ algorithm can be
implemented based on a loop in which a repeated check of a
node (e.g., n) is performed having the lowest, f(n) value from
an open list of nodes. The analyzed node n is considered to
be the most likely candidate to be part of the optimal path. If
n is the target node then only one backtracking step has to be
performed in order to return the obtained solution. If n is not
the final node then n has to be removed from the previously
mentioned open list and introduced into another list which we
call the closed list. The next step consists of generating all
possible successor nodes of n.

However, in order to efficiently implement the A* al-
gorithm it is important to take into consideration that, g(n)
represents the cost to get the distance from the initial node to
the n’th node; h(n) is an estimate and represents the cost of
getting the distance from node n to a goal node. The equation
f(n) = g(n) + h(n) represents an estimate of the best solution
that contains the node n.

IV. THE FAST A∗ ALGORITHM IMPLEMENTATION

In this section, we first, present implementation details of
our fast A∗ algorithm and second, we present implementation
details of our two tools.

A. The Fast A∗ algorithm Implementation

Listing 1: The A∗ algorithm—informal description
0.initialize the open list
1.initialize the closed list
2.initialize goal node // this is the target node
3.initialize start node // add the node to the open
4.while open list is not empty {
5. get node n from the open list with the lowest f(n)
6. add n to the closed list
7. if n is equals the goal node then stop;
8. return solution;
9. generate each successor node n’ of n;

10. for each successor node n’ of n {
11. set the parent of n’ to n;
12. // heuristic estimate distance to goal node
13. set h(n’)
14. set g(n’) = g(n) + cost from n to get to n’
15. set f(n’) = g(n’) + h(n’)
16. if n’ contained in open and the existing node
17. is as good or better then discard n’
18. and continue;
19. if n’ is contained in closed and the existing
20. node is as good or better then discard
21. n’ and continue;
22. remove all occurrences of n’ from open and

23. closed and add n’ to the open list;
24. }
25.}
26.// if we searched all reachable nodes
27.// and still have not found a solution then return
28.return failure;

The algorithm depicted in Listing 1 has as input the open
list containing all nodes which can be visited. The open list
is implemented as a balanced binary tree sorted based on f
values, with tie-breaking in favor of higher g values. The tie-
breaking mechanism results in the goal state being found on
average earlier in the last f value pass. In addition to the
standard open and closed lists, marker arrays are used for
finding in constant time whether a state (node) is in the open
or closed list. We use a “lazy-clearing scheme in order to
avoid having to clear the marker arrays at the beginning of
each search. Each path search is assigned a unique increasing
ID that is then used to label array entries relevant for the
current performed search. Note that the closed list can be
omitted (yielding a tree search algorithm) if a solution is
guaranteed to exist or if the algorithm is adapted such that
new nodes are added to the open list only if they have a
lower f value at any previous iterations. The fast A∗ algorithm
keeps an open node in a priority queue such that it avoids
closing this list which normally happens when the node is
removed. Thus the search process is speeded up. Additionally,
we tested different algorithm heuristics, metrics, the allowance
of diagonals traversing of map tiles and came up with an
efficient set of settings for our algorithm. These characteristics
represent the main differences of our fast A∗ w.r.t. the A∗ al-
gorithm. Thus, our fast A∗ algorithm implementation provides
an order of magnitude performance improvement over the
standard textbook A∗ implementation [18]. Note that similar
versions of algorithms to ours are successfully used for as path
planning algorithms inside video games (e.g., Counter-Strike
video game [4]).

B. Offline and Online Tools

The fast A∗ algorithm depicted in Listing 1 was imple-
mented and tested with two applications ((i) offline mode
and (ii) online mode). First, (i) a C# based application was
developed (see the GUI in Figure 1) used for simulating the
A∗ algorithm and the fast A∗ algorithm in offline mode with
different parameter configurations. Second, (ii) a path planning
application (used to remotely steer/control via the Lantronix
WiBox the Pioneer 2DX robot along a navigation path) was
developed based on the Java based Saphira API [17] using
the Java Native Interface (JNI) and the Aria API [2]. Finally,
in order to determine the time needed for calculating an
optimum path from the starting position to the target position
the offline application used a high resolution timer which was
implemented using the Windows OS kernel32.dll library.

V. EXPERIMENTS

In this section, we evaluate (i.e., offline in Section V-A
and online in Section V-B) the A∗ algorithm and the fast A∗
algorithm in order to determine which would better fit to be
used in online-mode with the Pioneer 2DX robot.

Fig. 1: The 2D map used to test the A∗ and the fast A∗
algorithms. Start position was always the upper left corner

selected while final destination was selected around the
center of the map.

A. The A∗ Algorithm vs. Fast A∗ Algorithm in Offline Mode

Figure 1 represents the map used for calculating the times
for each of the run-times during offline simulation of the
A∗ algorithm and fast A∗ algorithm. The rectangles filled or
having orange border depicted in Figure 1 represent obstacles
(not passable map areas). The path depicted in Figure 1 with
interconnected blue tiles from the top left corner towards the
middle of the map represents a valid robot navigation path.
The valid path avoids obstacles depicted in Figure 1 with
rectangles having an orange border and additionally several
borders depicted with different levels of grey color. Note that
as darker the grey color tone is (in the map tiles) as forbidden
the area is for the path planning algorithm. Thus, the algorithm
tries to avoid these areas as much as possible.

Note that we conducted each run for a set of parameters
by increasing the heuristic number (Heuristic # see Table I
and Table II) from 0 to n as long as the run-time calculated in
seconds was decreasing. The first time we noticed that the run-
time was increasing we stopped the test run and we selected
another formula and repeated the experiment by starting with
the heuristic number 0. The experiments were conducted in this
manner in order to find out which is the best configuration
for the set of parameters used inside the two path planning
algorithms. Note that in a real scenario (the environment can
constantly change) path planning computations need to be
performed with a higher rate (e.g., in our opinion less than
100 milliseconds).

Table I and Table II depict with: (#) the number of the run,
(Heuristic #) the heuristic number which can vary between
1 and n, (Diagonals) if diagonals on the path were allowed
(D) or not, (Formula) different formulas used for the distance
metric (e.g., m-manhattan, M(x,y)-Max(Dx,Dy), D.S.-diagonal
shortcut, E-Euclidean and SQR-Euclidean without square) and
(Time [sec]) in seconds for each run. Table I and Table II

TABLE I: Test results of the A∗ algorithm

Heuristic # Diagonals Formula Time [sec]
1 0 D m ≥30
2 1 D m 1.34
3 2 D m 0.01
4 3 D m 0.03
5 0 D M(x,y) 10.68
6 1 D M(x,y) 2.74
7 2 D M(x,y) ≥30
8 0 D D.S. ≥30
9 1 D D.S. 1.31

10 2 D D.S. 0.03
11 3 D D.S. 0.34
12 0 D E 25.30
13 1 D E 2.20
14 2 D E ≥30
15 0 D SQR 25.96
16 1 D SQR ≥30

Total - - - 219.94

TABLE II: Test results of the fast A∗ algorithm

Heuristic # Diagonals Formula Time [sec]
1 0 D m 0.09
2 1 D m 0.03
3 2 D m 0.01
4 3 D m 0.003
5 4 D m 0.003
6 0 D M(x,y) 0.10
7 1 D M(x,y) 0.04
8 2 D M(x,y) 0.02
9 3 D M(x,y) 0.01

10 4 D M(x,y) 0.01
11 5 D M(x,y) 0.01
12 6 D M(x,y) 0.008
13 7 D M(x,y) 0.007
14 8 D M(x,y) 0.007
15 0 D D.S. 0.10
16 1 D D.S. 0.02
17 2 D D.S. 0.01
18 3 D D.S. 0.0034
19 4 D D.S. 0.0037
20 0 D E 0.11
21 1 D E 0.04
22 2 D E 0.02
23 3 D E 0.02
24 4 D E 0.01
25 5 D E 0.01
26 0 D SQR 0.12
27 1 D SQR 0.01
28 2 D SQR 0.0012
29 3 D SQR 0.0011
30 4 D SQR 0.0015

Total - - - 0.83

depict the test results obtained with our offline simulator
application designed for testing the A∗ algorithm and the fast
A∗ algorithm separately with different maps. We used several
algorithm configurations and tested on the 2D map depicted
in Figure 1.

Table I and Table II depict the obtained results for the two
used algorithms (A∗ and fast A∗). Thus we observe that the
fast A∗ algorithm is two orders of magnitude (263 = 219 [s] /
0.83 [s], see Table I and Table II) faster than the A∗ algorithm
with respect to Total time. The fast A∗ algorithm allows to
increase the heuristic number for 8 times instead the classic

A∗ allows this number to be increased up to a maximum of
three times. The shortest time is also obtained for the fast
A∗ algorithm which also shows that the performances of the
classical A∗ algorithm can be further increased in order to
gain more speed. This is also due to algorithm implementation
particularities of the fast A∗ algorithm which leaves the open
node in the priority queue. In summary the obtained results
show that fast A∗ algorithm is the best fit for usage when
performing path planning with the real Pioneer 2DX robot.

B. Path Planning with the Fast A∗ Algorithm in On-line Mode

The goal of this experiment is to measure the run-times
obtained for different runs and to find out how the robot
manages to follow a given path by avoids previously unknown
path obstacles. In this experiment we used the WiFi based
application which planned and steered the Pioneer 2DX robot
in a partially known environment by using two running modes.

D

R

O1

O2

Fig. 2: Second environment map used with the Pioneer 2DX.
Initial robot position (R); Final robot destination (D).

Figure 2 depicts a partially known environment. Note
that the rectangles with diagonals lines inside (O1 and O2)
depicted in Figure 2 represent unknown obstacles which were
previously not modeled inside the path planning application
map (Java back-end application) depicted in Figure 3. The fast
A∗ algorithm was tested on this two maps (with only and O1
and then with both O1 and O2) with the real Pioneer 2DX
robot simulator [17] with the goal to find out if the robot can
deal with partially known environments. The experiment was
performed in a room having six by eight meters and by re-
modeling it in the steering application depicted in Figure 3.
We used for the online experiments the 14 configuration from
Table II (i.e., Heuristic # 8, Diagonals on (D) and Formula
M(x,y)). We decided to use this configuration because it was
the longest run from our experiments where the Heuristic #
number could be increased (8 times) until the search time

(Time [sec]) started to rise again. We leave the experiments
with other settings as a future exercise.

First, an unknown obstacle (i.e., depicted in Figure 2 with
O2) was added to the test environment (room) and the path
planner application (online mode) was ran. Second, another
unknown obstacle (i.e., depicted in Figure 2 with O2) was
placed in the same test environment as before. As result the
test environment contained two unknown obstacles (i.e., O1
and O2). Finally, for both of this scenarios the runtimes of
the Pioneer 2DX robot were measured by navigating from the
initial location (depicted in Figure 2 with letter R) to the final
location (depicted in Figure 2 with letter D). The results of
these experiments are depicted in Table III.

Note that the obstacles depicted in the Pioneer simu-
lator map (Figure 2) are not present in the path planner
application—Figure 3. Thus the robot had to deal with this
obstacles in order to reach its target destination which was
previously given (i.e., denoted with letter D in Figure 3).

R

D

Fig. 3: Environment map available in the path planner. Initial
robot position (R); Final robot destination (D).

Figure 3 presents the map of the room as it was modeled
in the steering application—blue map areas/yellow map areas
represent non passable/passable map areas. Note that this map
did not contain the obstacles depicted in the map presented in
Figure 2 at any time. The 2D map is composed of squares
which measure in reality 10 by 10 centimeters. We found
out experimentally that larger maps can be also used during
our experiments. We tested the the planning application by
running the fast A∗ algorithm in two different modes (depicted
in Table III with M1 (first mode) and M2 (second mode)), for
more details see [16]. Table III shows that first mode is better
suited with the map depicted in Figure 2 with one obstacle
whereas the second mode is better suited for the map presented
in Figure 2 with both obstacles. The first mode differs from
second mode w.r.t. action limiters that are not added to the
robot (not used during robot movement) in first mode.

TABLE III: Path planning with the fast A∗ algorithm and
two running modes

Test run Mode Map Time [sec]
1 M1 Figure 2 with 1 obstacle 47
2 M2 Figure 2 with 1 obstacle 45
3 M1 Figure 2 with 2 obstacle 61
4 M2 Figure 2 with 2 obstacle 40

Table III depicts the run-times for the two running modes
on two real environments. In column four of Table III we
observe that for the first environment (Figure 2 with one
obstacle) the best run-time (47 seconds) is obtained with M1
selected and that for the second environment (Figure 2 with
two obstacles) the best run-time (40 seconds) is obtained with
M2 turned on. Note that in Figure 2 we had two unknown
obstacles (i.e., O1 and O2) which were added one after each
other for each of our experiments. When running the fast A∗
algorithm on the map depicted in Figure 2 (containing only O1)
with M1 the run-time increases w.r.t. M2 because the range of
the ultrasonic sensors was set tp 50 millimeters. Note that the
sensors distance parameter for M1 was set to 50 millimeters
whereas for M2 this value was set to 225 millimeters. Thus,
the robot can make decisions earlier or later along the path. As
result the obstacle depicted in Figure 2 (i.e., O1) is detected
later as compared to the detection of both obstacles depicted
in Figure 2 when the range of the sensors was increased to 225
millimeters. Thus, the result is the addition of several recovery
actions needed in order to recuperate the robot and point him
to the target destination.

However, when performing path planning with the map
depicted in Figure 2 with two unknown obstacles using M2
the run-time decreases because the range of the ultrasonic
sensors was set to 225 millimeters and the result is that the
obstacles are detected earlier. This removes additional recovery
actions needed by the robot in order to find a new obstacle
avoiding path, thus time is not wasted. We infer (with caution)
from these results that the second mode is best suited for
environments with more unknown obstacles whereas the first
mode is better suited for environments with less unknown
obstacles.

VI. CONCLUSION AND FUTURE WORK

In this paper, we evaluated the A∗ algorithm and the fast
A∗ algorithm w.r.t. completness and we shown that the fast
A∗ algorithm can be successfully used for indoor mobile
robot navigation by using only data collected from ultrasonic
sensors. We built two software tools (for offline and online
algorithm testing) which helped to tweak the used algorithms
and to take further decisions based on this results. The results
obtained from comparing the A∗ algorithm and the fast A∗
algorithm (Section V-A) indicate a speed-up of two orders
of magnitude w.r.t. the fast A∗ algorithm inside our offline
simulator. The second mode used with the fast A∗ algorithm
is best suited for environments with less unknown obstacles
whereas the first mode is better suited for environments with
more than one unknown obstacles (in our experiments). We are
aware that further experiments are need in order to fully claim
the above stated. Additionally, we showed in our experiments
that the fast A∗ algorithm is complete (finds a path in due

time). We leave the computation of its performance as a future
exercise.

In future we want to further tweak the fast A∗ algorithm
and use other algorithms with more complex unknown en-
vironments. We want to use more advanced path planning
algorithms and we want to combine input from multiple
sensors (i.e., perform fusion of data from several sources)
which will give a more precise description of the environment.
Furthermore, we want to compute the performance of the used
algorithms and compared them with each other.

ACKNOWLEDGEMENTS

We want to express our gratitude to the anonymous review-
ers for their constructive criticism.

REFERENCES

[1] Amit’s Game Programming Information, http://www.csstudents.
stanford.edu/amitp/gameprog.html, accessed on the 28 Jan. 2010.

[2] Aria, ActivMedia Robotics, Inc. Aria Reference Manual 1.1.10, 2002.
[3] A∗ algorithm, Available [Online], http://en.wikipedia.org/wiki/A*

search algorithm.
[4] Counter-strike video game, Available [Online], https://en.wikipedia.org/

wiki/Counter-Strike, 1999.
[5] P. W. Eklund, S. Kirkby, and S. Pollitt, A Dynamic Multi-source

Dijkstraś Algorithm for Vehicle Routing, In Proceedings of the
Conference on Intelligent Information Systems, 1996.

[6] Iterative deepening A∗ Available [Online], https://en.wikipedia.org/
wiki/Iterative deepening A*.

[7] L. Jaulin, Path planning using intervals and graphs. Reliable Computing
7 (1), 2001.

[8] J. H. Jones, A∗ Tutorial. http://cs.nyu.edu/courses/fall10/G22.2965-001/
astartravsales, accessed on the 28 Jan. 2010.

[9] R. Korf, Depth-first Iterative-Deepening: An Optimal Admissible Tree
Search, In Artificial Intelligence 27: 97109, 1985.

[10] K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti, The SAPHIRA
architecture: a design for autonomy, In Artificial Intelligence Based
Mobile Robots: Case Studies of Successful Robot Systems, MIT Press,
1998.

[11] Lantronix, WiBox 2100 Quick Start Guide, Available [Online], https://
www.lantronix.com/wp-content/uploads/pdf/WiBox QS.pdf, Lantronix,
2004.

[12] K. Makanae, and M. Takaki, A∗ Tutorial, Development of the
3-Dimensional Urban Spatial Data Model and Application to the
Pedestrian Navigation System, ITS. 2004.

[13] Minkowski addition, Available [Online], https://en.wikipedia.org/wiki/
Minkowski addition.

[14] P. C. Nelson, and A. A. Toptsis, Unidirectional and Bidirectional Search
Algorithms, 1992.

[15] Pioneer2DX Robot, Available [Online], http://wiki.ros.org/Robots/
AMR Pioneer Compatible.

[16] J. Rosel, and P. Iñiguez, Path planning using Harmonic Functions
and Probabilistic Cell Decomposition, In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2005.

[17] Saphira, Saphira Operations and Programming Manual Version 6.2,
Mobile Robots ROBOTICS, 1999.

[18] R. Siegwart, and I. R. Nourbakhsh, Introduction to Autonomous Mobile
Robots, MIT Press, ISBN: 9780262015356, 2004.

[19] Y. Zhang, L. Wu, and S. Wang, UCAV path planning based on
FSCABC, In Information-An International Interdisciplinary Journal,
pp. 687692, 2011.

